Where Can We Draw The Line?

On the Hardness of Satisfiability Problems

Introduction

- Objectives:
 - To show variants of SAT and check if they are NP-hard
- Overview:
 - Known results
 - 25AT
 - Max2SAT

What Do We Know?

 Checking if a propositional calculus formula is satisfiable (SAT) is NPhard.

> Example: propositional calculus formula ¬(×∧¬z∧(¬w∨x))∨(×∧¬y)→¬y

What Do We Know?

 We concentrated on a special case: CNF formulas.

structure of CNF formulas

(..v..v...v..)∧...∧(..v..v...v..)

What Do We Know?

Complexity ©D.Moshkovits

2SAT

- Instance: A 2-CNF formula ϕ
- Problem: To decide if ϕ is satisfiable

Example: a 2CNF formula

2SAT is in P

<u>Theorem:</u> 2SAT is polynomial-time decidable. <u>Proof:</u> We'll show how to solve this problem efficiently using path searches in graphs...

Searching in Graphs

<u>Theorem</u>: Given a graph G=(V,E) and two vertices s,t∈V, finding if there is a path from s to t in G is polynomialtime decidable.

<u>Proof</u>: Use some search algorithm (DFS/BFS). ■

Graph Construction

- Vertex for each variable and a negation of a variable
- Edge (α,β) iff there exists a clause equivalent to $(\neg \alpha \lor \beta)$

Graph Construction: Example

 $(\neg x \lor y) \land (\neg y \lor z) \land (x \lor \neg z) \land (z \lor y)$

Observation

<u>Claim</u>: If the graph contains a path from α to β , it also contains a path from $\neg\beta$ to $\neg\alpha$.

<u>Proof</u>: If there's an edge (α,β) , then there's also an edge $(\neg\beta,\neg\alpha)$.

Correctness

Claim:

a 2-CNF formula ϕ is unsatisfiable iff

there exists a variable x, such that:

- 1. there is a path from x to $\neg x$ in the graph
- 2. there is a path from $\neg x$ to x in the graph

Correctness (1)

- Suppose there are paths x..¬x and ¬x..x for some variable x, but there's also a satisfying assignment ρ.
- If $\rho(x)=T$ (similarly for $\rho(x)=F$):

 $(\neg \alpha \lor \beta)$ is false!

Correctness (2)

Suppose there are no such paths.

 $\neg X$

Construct an assignment as follows:

Ζ

1. pick an unassigned literal α , with no path from α to $\neg \alpha$, and assign it T

X

¬Ζ

2. assign T to all reachable vertices
3. assign F to their negations
4. Repeat until all vertices are assigned

Correctness (2)

<u>Claim:</u> The algorithm is well defined. <u>Proof:</u> If there were a path from x to both y and ¬y, then there would have been a path from x to ¬y and from ¬y to ¬x.

Correctness

A formula is unsatisfiable iff there are no paths of the form $x..\neg x$ and $\neg x..x$.

2SAT is in P

We get the following efficient algorithm for 2SAT:

- For each variable x find if there is a path from x to ¬x and vice-versa.
- Reject if any of these tests succeeded.
- Accept otherwise
- \Rightarrow 2SAT \in P.

Max2SAT

- Instance: A 2-CNF formula ϕ and a goal K.
- <u>Problem</u>: To decide if there is an assignment satisfying at least K of φ's clauses.

$$(\neg x \lor y) \land$$
$$(\neg y \lor z) \land$$
$$(x \lor \neg z) \land$$
$$(z \lor y)$$

Max2SAT is in NPC

<u>Theorem</u>: Max2SAT is NP-Complete. <u>Proof</u>: Max2SAT is clearly in NP. We'll show 3SAT≤_pMax2SAT.

Proof: By checking.

<u>Claim:</u> Let

 $\psi(x,y,z,w) = (x) \land (y) \land (z) \land (w) \land (\neg x \lor \neg y) \land (\neg y \lor \neg z) \land (\neg z \lor \neg x) \land (\neg x \lor \neg w) \land (\neg y \lor \neg w) \land (z \lor \neg w).$

- Every satisfying assignment for (xvyvz) can be extended into an assignment that satisfies <u>exactly</u> 7 of the clauses.
- Other assignments can satisfy at most 6 of

the clauses

The Construction

For each 1≤i≤m, replace the i-th clause of the 3-CNF formula (α∨β∨γ) with a corresponding ψ(α,β,γ,w_i) to get a 2-CNF formula.

• Fix K=7m.

Make sure this construction is poly-time

Correctness

- Every satisfying assignment for the 3-CNF formula can be extended into an assignment that satisfies 7m clauses.
- If 7m clauses of the 2-CNF formula are satisfied, each ψ has 7 satisfied clauses, so the original formula is satisfied.

Corollary

$\Rightarrow 3SAT ≤_p Max2SAT and Max2SAT ∈ NP$ $\Rightarrow Max2SAT is NP-Complete. \blacksquare$

- We've seen that checking if a given CNF formula is satisfiable is:
 - Polynomial-time decidable, if every clause contains up to 2 literals.
 - NP-hard, if each clause may contain more than
 2 literals.
- We've also seen Max2SAT is NP-hard.

- A special case of a NP-hard problem may be polynomial time decidable.
- The optimization version of a polynomialtime decidable problem may be NP-hard.