Where Can We Draw The Line?

On the Hardness of Satisfiability Problems

Introduction

- Objectives:
- To show variants of SAT and check if they are NP-hard
- Overview:
- Known results
- 2SAT
- Max2SAT

What Do We Know?

- Checking if a propositional calculus formula is satisfiable (SAT) is NPhard.

> Example: propositional calculus formula

$$
\neg(x \wedge \neg z \wedge(\neg w \vee x)) \vee(x \wedge \neg y) \rightarrow \neg y
$$

What Do We Know?

- We concentrated on a special case: CNF formulas.
structure of CNF formulas
$(. . \vee . . \vee \ldots . . \vee ..) \wedge \ldots \wedge(. . \vee . . \vee \ldots . . \vee .$.

What Do We Know?

2SAT

- Instance: A 2-CNF formula φ
- Problem: To decide if φ is satisfiable

Example: a 2CNF formula

$$
(-x v y) \wedge(-y \vee z) \wedge(x v-z) \wedge(z v y)
$$

2SAT is in P

Theorem: 2SAT is polynomial-time decidable.
Proof: We'll show how to solve this problem efficiently using path searches in graphs...

Searching in Graphs

Theorem: Given a graph $G=(V, E)$ and two vertices $s, t \in V$, finding if there is a path from s to \dagger in G is polynomialtime decidable.
Proof: Use some search algorithm (DFS/BFS). \quad -

Graph Construction

- Vertex for each variable and a negation of a variable
- Edge (α, β) iff there exists a clause equivalent to ($\neg \alpha \vee \beta$)

Graph Construction: Example

$$
(-x y y) \wedge(-y v z) \wedge(x v-z) \wedge(z v y)
$$

Observation

Claim: If the graph contains a path from α to β, it also contains a path from $\neg \beta$ to $\neg \alpha$.
Proof: If there's an edge (α, β), then there's also an edge $(\neg \beta, \neg \alpha)$.

Correctness

Claim:
a 2-CNF formula φ is unsatisfiable iff there exists a variable x, such that:

1. there is a path from x to $\neg x$ in the graph
2. there is a path from $\neg x$ to x in the graph

Correctness (1)

- Suppose there are paths $x . . \neg x$ and $\neg x$.. x for some variable x, but there's also a satisfying assignment ρ.
- If $\rho(x)=T$ (similarly for $\rho(x)=F$): $(\neg \alpha \vee \beta)$ is false!

Correctness (2)

- Suppose there are no such paths.
- Construct an assignment as follows:

1. pick an unassigned literal α, with no path from α to $\neg \alpha$, and assign it T

2. assign T to all reachable vertices 3. assign F to their negations
3. Repeat until all vertices are assigned

Correctness (2)

Claim: The algorithm is well defined.
Proof: If there were a path from x to both y and $\neg y$,
then there would have been a path from x to $\neg y$ and from $\neg y$ to $\neg x$.

Correctness

A formula is unsatisfiable iff there are no paths of the form $x . . \neg x$ and $\neg x . . x$.

2SAT is in P

We get the following efficient algorithm for 2SAT:

- For each variable x find if there is a path from x to $\neg x$ and vice-versa.
- Reject if any of these tests succeeded.
- Accept otherwise
\Rightarrow 2SATEP. \square

Max2SAT

- Instance: A 2-CNF formula φ and a goal K.
- Problem: To decide if there is an assignment satisfying at least K of φ 's clauses.

Example: a 2CNF formula

Max2SAT is in NPC

Theorem: Max2SAT is NP-Complete.
Proof: Max2SAT is clearly in NP.
We'll show 3SAT<pMax2SAT.

$$
(\text { (.v.v.v.) ^...^(.....v..) }
$$

$$
\left.s_{\mathrm{p}} \quad(\ldots . . .)\right)_{\ldots} \ldots(.)
$$

K

Claim: Let

By checking.

$$
\begin{aligned}
\psi(x, y, z, w)= & (x) \wedge(y) \wedge(z) \wedge(w) \wedge \\
& (\neg x v \neg y) \wedge(\neg y \vee \neg z) \wedge(\neg z v \neg x) \wedge \\
& (x \vee \neg w) \wedge(y \vee \neg w) \wedge(z v \neg w) .
\end{aligned}
$$

- Every satisfying assignment for ($x \vee y \vee z$) can be extended into an assignment that satisfies exactly 7 of the clauses.
- Other assignments can satisfy at most 6 of the_clauses

The Construction

- For each 1 sism, replace the i-th clause of the 3-CNF formula ($\alpha v \beta v \gamma$) with a corresponding $\psi\left(\alpha, \beta, \gamma, w_{i}\right)$ to get a 2-CNF formula.
- Fix K=7m.

Make sure this construction is poly-time

Correctness

- Every satisfying assignment for the 3-CNF formula can be extended into an assignment that satisfies 7 m clauses.
- If 7 m clauses of the 2-CNF formula are satisfied, each ψ has 7 satisfied clauses, so the original formula is satisfied.

Corollary

$\Rightarrow 3 S A T \leq$ Max2SAT and Max2SATENP \Rightarrow Max2SAT is NP-Complete. \square

Summary $<$

- We've seen that checking if a given CNF formula is satisfiable is:
- Polynomial-time decidable, if every clause contains up to 2 literals.
- NP-hard, if each clause may contain more than 2 literals.
- We've also seen Max2SAT is NP-hard.

Conclusions \langle

- A special case of a NP-hard problem may be polynomial time decidable.
- The optimization version of a polynomialtime decidable problem may be NP-hard.

