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Preface to the First Edition

This book is designed to help students and professionals who use mathematics in their daily routine to learn 
Mathematica, a computer system designed to perform complex mathematical calculations. My approach is 
simple: learn by example. Along with easy to read descriptions of the most widely used commands, I have 
included a collection of over 750 examples and solved problems, each specifically designed to illustrate 
an important feature of the Mathematica software. 

I have included those commands and options that are most commonly used in algebra, trigonometry, 
calculus, differential equations, and linear algebra. Most examples and solved problems are short and to the 
point. Comments have been included, where appropriate, to clarify what might be confusing to the reader.

The reader is encouraged not only to replicate the output shown in the text, but to make modifications 
and investigate the resulting effect upon the output. I have found this to be the most effective way to learn 
the syntax and capabilities of this truly unique program. 

The first three chapters serve as an introduction to the syntax and style of Mathematica. The structure 
of the remainder of the book is such that the reader need only be concerned with those chapters of interest 
to him or her. If, on occasion, a command is encountered that has been discussed in a previous chapter, the 
Index may be used to conveniently locate the command’s description.

Without a doubt you will be impressed with Mathematica’s capabilities. It is my sincere hope that you 
will use the power built into this software to investigate the wonders of mathematics in a way that would 
have been impossible just a few years ago.

I would like to take this opportunity to thank the staff at McGraw-Hill for their help in the preparation 
of this book and to give a special note of thanks to Mr. Joel Lerner for his encouragement and support of 
this project.

EUGENE DON
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Preface to the Second Edition

The recent introduction of Mathematica 6 and Mathematica 7 has brought significant changes to many 
of the commands that comprise the language. A complete listing of all the changes can be found in the 
Documentation Center that is included with your program. Most notably:

 Some of the menus and dialog boxes have changed. These changes are mostly cosmetic and should 
not cause any confusion. 

 The BasicInput palette has been renamed Basic Math Input.

 Graphics output was enhanced in version 6. Consequently plots, particularly three-dimensional plots, 
may look slightly different from those in previous versions.

 In versions 4 and 5 a semicolon (;) was used merely to suppress an annoying line of output when 
executing graphics commands. In versions 6 and 7, the semicolon suppresses graphics output com-
pletely and must therefore be deleted when using commands such as Plot, Plot3D, Show, etc. 
Furthermore, since the semicolon may now be used to suppress  graphics, DisplayFunction ã
Identity and DisplayFunction ã $DisplayFunction are no longer needed.

 Some of the commands that had previously been supplied in packages (and had to be loaded prior to 
use) are now included in the kernel and may be used without invoking Needs or . Some of the 
commands are located in different packages, and some of them are available by download from the 
Wolfram website.

 Some of the commands in version 5 have been eliminated and put into “legacy” packages, included 
with Mathematica 6 and 7. They will have to be loaded prior to using them.

 Some of the commands (e.g., ImplicitPlot) have been eliminated and their functionality has 
been incorporated into other commands (e.g., ContourPlot).

 Animation has been significantly enhanced with the introduction of Animate and Manipulate.

A tool has been incorporated into Mathematica that will scan notebooks written using older versions 
of the software. Any incompatibilities are flagged and suggestions for correcting them are automatically 
generated.

This second edition incorporates all of these changes in the command descriptions, examples, and solved 
problems. In addition a comprehensive list of commands used in the book, together with their descriptions, 
is conveniently located in the appendix.

The manuscript for this book was proofread several times and all the examples and solved problems have 
been checked for accuracy. If you should come across a mistake that has not been caught, or would like to 
share your thoughts about the book, please feel free to send an e-mail to 

mathematica.corrections@gmail.com
I hope you will find this book helpful in navigating through Mathematica. I would like to thank Professor 

John-Tones Amenyo of York College for his help in highlighting those parts of the text that required 
modification.

EUGENE DON
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CHAPTER 1

Getting Acquainted

1.1 Notation and Conventions
Mathematica is a language that is best learned by experimentation. Therefore, the reader is urged to try as many 
examples and problems as possible and experiment by changing options and parameters. In fact, this chapter 
may be considered a tutorial for those readers who want to get their hands on Mathematica right away. 

New commands are introduced with a  bullet, and options associated with them are bulleted with 
a • symbol for easy reference. 

In keeping with Mathematica’s conventions, all commands and instructions will be written in Courier 
bold face type and Mathematica output in Courier light face type. 

 This line is written in Courier bold face type.
 This line is written in Courier light face type.

Menu commands in this text are described using double arrows (⇒). For example, 
Format ⇒ Style ⇒ Input, written in Arial font, means go to the “Format” menu, then to the “Style” 
submenu, and then click on “Input.”

Mathematica occasionally uses a special symbol, `, which we call a backquote. Do not confuse this 
with an apostrophe.

Finally, most Mathematica commands use an arrow, →, to specify options within the command. You may use 
–> ( – followed by > ) as an alternate, if you wish. Mathematica will automatically convert this sequence to →. In 
a similar manner, the sequence != is automatically converted to ≠, <= is replaced by ≤, and >= is changed to ≥ .
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The examples used in this book were executed using Mathematica versions 6 and 7. You may notice 
some differences on your computer if you are using earlier versions of the software. Most noticeably, 
graphics, particularly three-dimensional graphics, have been enhanced in the later version and many com-
putational algorithms have been improved, resulting in greater efficiency and speed.

1.2 The Kernel and the Front End
The kernel is the computational engine of Mathematica. You input instructions and the kernel responds 
with answers in the form of numbers, graphs, matrices, and other appropriate displays. The kernel works 
silently in the background and, for the most part, is invisible.

The interface between the user and the kernel is called the front end and the medium of the front end is 
the Mathematica notebook. The notebook not only enables you to communicate with the kernel, but is a 
convenient tool for documenting your work.

To execute an instruction, type the instruction and then press [ENTER]. Most PCs have two [ENTER] 
keys, but only the [ENTER] key to the far right of the keyboard will execute instructions. The other 
[ENTER] key must be pressed with the [SHIFT] key held down; otherwise you will merely get a new 
line. This is especially important if you are using a laptop. If you are using a Macintosh computer, do not 
confuse the [ENTER] key with the [RETURN] key.

The picture in Example 1 shows the standard Mathematica display. The symbols on the 
right-hand side form the Basic Math Input palette and allow access by mouse-click to the 
most common mathematical symbols. (If you don’t see the palette on your screen, click on 
Palettes ⇒ BasicMathInput or Palettes ⇒ Other ⇒ Basic Math Input and it should appear.) Other 
palettes such as Basic Math Assistant and Classroom Assistant (version 7 and above) are available for 
specialized purposes and can be accessed via the Palettes menu. 

Each symbol is accessed by clicking on the palette. If you use the palette, your notebooks will look like 
pages from a math textbook. Most examples in this book take full advantage of the Basic Math Input 
palette. However, each Mathematica symbol has an alternative descriptive format that can be typed “manually.” 
For example, π can be represented as Pi and 5  can be written Sqrt[5]. These representations are 
useful for experienced Mathematica users who prefer not to use the mouse.

The notebook in Example 1, labeled “Untitled–1,” is where you input your commands and where 
Mathematica places the result of its calculations. The picture shows the input and output of Example 1. 
(The display on a Macintosh computer will look slightly different.)

EXAMPLE 1 Add 2 and 3.
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Notice that the kernel has assigned “In[1]” to the input expression and “Out[1]” to the output. This 
enables you to keep track of the order in which the kernel evaluates instructions. These labels are impor-
tant because the order of evaluation does not always correspond to the physical position of the instruction 
within the notebook. In this book, however, we shall not include “In” and “Out” labels in our examples.

In working out the examples and problems in this book, you may find that your answers do not agree 
with the answers given in the text. This may occur if you have defined a symbol to have a specific value. 
For example, if x has been defined as 3, all occurrences of x will be replaced by 3. You should clear the 
symbol (see Section 1.5) and try the problem again. All examples and problems assume that symbols have 
been cleared prior to execution.

You can work on several different notebooks in a single Mathematica session. However, if you are using 
only one kernel, changes to symbols in one notebook will affect identical symbols in all notebooks.

There are times when you may wish to evaluate only part of an expression. To do this, select the 
portion of the expression you wish to evaluate. Then press [CTRL] + [SHIFT] + [ENTER] on a PC or 
[COMMAND] + [RETURN] on a Mac.

EXAMPLE 2 Suppose we wish only to perform the multiplication in the expression 2  ∗  3  +  5. 
First select 2 * 3:

2  3 + 5

 Then press [CTRL] + [SHIFT] + [ENTER] (PC) or [COMMAND] + [RETURN] (Mac).

6 + 5

A semicolon (;) at the end of a Mathematica command will suppress output. This is useful in long sequences of 
calculations when only the final answer is important.

EXAMPLE 3 Suppose we wish to define a = 1, b = 2, c = 3 and then display their sum. Here are two ways to write 
this problem.

 a = 1 a = 1;

 b = 2 b = 2;

 c = 3 c = 3;

 a + b + c a + b + c

 1 6

 2

 3

 6

Occasionally you may introduce an instruction that takes an excessively long time to execute, or you 
may inadvertently create an infinite loop. To abort a calculation, go to Evaluation ⇒ Abort Evaluation. 
Alternatively, you may press [ALT] + [ . ] to abort ([COMMAND] + [ . ] on the Macintosh). On the rare 
occasion when this does not work, you will have to terminate the kernel by going to Evaluation ⇒ Quit 
Kernel ⇒ Local. However, by doing so, you will lose all your defined symbols and values. Your Math-
ematica notebook will not be lost, however, so they can easily be restored.

As with all computer software, there are times when Mathematica will crash completely. The only 
remedy is to close Mathematica and reload it. On rare occasions, you may have to reboot your computer. 
In either event, your notebook changes will be lost. It is therefore extremely important to back up your 
notebook often!

Finally, there may be times when you wish to include comments within your Mathematica commands. 
Anything written within (* and *)is ignored by the Mathematica kernel.

EXAMPLE 4

12 + (* these words will be ignored by the kernel *) 3

15

*
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SOLVED PROBLEMS

 1.1 Multiply 12 by 17 and then add 9.

SOLUTION

12 * 17 + 9

213

 1.2 Multiply the 12 by 17 in Problem 1.1, but do not add the 9.

SOLUTION

12  17 + 9  ← Select 12 * 17 with the mouse.

Press [CTRL] + [SHIFT] + [ENTER] or [COMMAND] + [RETURN] on a Mac.

204 + 9

 1.3 The following program is an infinite loop. Execute it and then abort the evaluation.

 x = 1;
 While[x > 0, x = x + 1]

SOLUTION

x = 1;

While[x > 0, x = x + 1]

[ALT] +  . 

$Aborted

 1.4 Multiply 17.2 by 16.3 and then add 4.7.

SOLUTION

17.2 * 16.3 + 4.7

285.06

 1.5 Multiply 17.2 by the sum of 16.3 and 4.7.

SOLUTION

17.2 * (16.3 + 4.7) 

361.2

 1.6 Compute the sum of 2 x + 3, 5 x + 9, and 4 x + 2.

SOLUTION

(2 x + 3) + (5 x + 9) + (4 x + 2)

14 + 11 x

1.3 Mathematica Quirks

Mathematica is case sensitive.

For example, Integrate and integrate are different. All Mathematica-defined symbols, commands 
and functions begin with a capital letter. Some symbols, such as FindRoot, use more than one capital 
letter. To avoid conflicts, it is a good idea for all user-defined symbols to begin with a lowercase letter.

Different brackets are used for different purposes.

• Square brackets are used for function arguments: Sin[x] not Sin(x).

*
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• Round brackets are used for grouping: (2 + 3)∗ 4 means add 2 + 3 first, then multiply by 4. Never 
type [2 + 3]* 4.

• Curly brackets are used for lists: {1, 2, 3, 4}. More about lists in Chapter 3.

Use E, not e, for the base of the natural logarithm.

Since every Mathematica symbol begins with a capital letter, the base of the natural logarithm is E. This 
causes a bit of confusion, so be careful. Similarly, I (not i) is the imaginary unit. The symbols  and  
from the Basic Math Input palette may be freely used if desired.

Polynomials are not written in “standard” form.

Mathematica writes polynomials with the constant term first and increasing powers from left to right. 
Thus, the polynomial x2 + 2 x – 3 would be converted to –3 + 2 x + x2. To see the expression in a more 
conventional format, the command TraditionalForm may be used.

 TraditionalForm[expression] prints expression in a traditional mathematical format.

EXAMPLE 5 Evaluate the sum of x2 + 3, 2 x + 5, and x3 + 2 and express the answer using TraditionalForm.

(x2 + 3)+(2 x + 5)+(x3 + 2)

10 + 2 x + x2 + x3

TraditionalForm[(x2 + 3)+(2 x + 5)+(x3 + 2)]

x3 + x2 + 2 x + 10

SOLVED PROBLEMS

 1.7 Compute 81  using the Sqrt function. What happens if you do not use a capital “S”?

SOLUTION

Sqrt[81]

9

sqrt[81]

sqrt[81] ← Mathematica does not recognize the (undefined) symbol sqrt.

 1.8 Use parentheses to multiply the sum of 2 and 3 by the sum of 5 and 7. What happens if you use square 
brackets?

SOLUTION

(2 + 3)(5 + 7)

60

[2 + 3][5 + 7]

Syntax õ sntxb : Expression cannot begin with "[2+3][5+7]".

Syntax õ tsntxi : "[2+3]" is incomplete; more input is needed.

Syntax õ sntxi : Incomplete expression; more input is needed.

 1.9 Use the Sin function to compute sin(π/2). What happens if you use round parentheses?

SOLUTION

Sin[Pi/2]  or  Sin[o/2]

1

Sin(Pi/2)

π Sin
2

Mathematica thinks you want to multiply 
the symbol Sin by π and divide by 2.

Click on the + to reveal the error.



CHAPTER 1  Getting Acquainted6

1.10 Alexis typed [4 + 1] * [6 + 2] during a Mathematica session. Why didn’t she get an answer 
of 40?

SOLUTION

Square brackets cannot be used for grouping. Round parentheses must be used. 

1.11 Why didn’t Ariel get an answer of 3 when she typed sqrt[9]?

SOLUTION

Mathematica functions must begin with a capital letter. 

1.12 Why didn’t Lauren get an answer of 1 when she typed Cos(0)?

SOLUTION

Square brackets, not round parentheses, must be used to contain arguments of functions.

1.4 Mathematica Gives Exact Answers
Mathematica is designed to work as a mathematician works: with 100% precision. You do not get the 
10- or 12-digit numerical approximation a calculator would give, but instead get a symbolic math-
ematical expression.

EXAMPLE 6

12

2 3

EXAMPLE 7 

1/3 + 3/5 – 5/7 + 2/11

463
1115

EXAMPLE 8

o + o

2 π

EXAMPLE 9

-1



SOLVED PROBLEMS

1.13 Simplify 2 8 18+ + .

SOLUTION

2 8 18 Sqrt[2] + Sqrt[8] + Sqrt[18]or+ +

6 2
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1.14 Compute the sum of the reciprocals of 3, 5, 7, 9, and 11.

SOLUTION

1
3
+ 1
5
+ 1
7
+ 1
9
+ 1
11

 or 1/3 + 1/5 + 1/7 + 1/9 + 1/11

3043
3465

1.15 Compute the square root of π exactly using the Sqrt function.

SOLUTION

Sqrt[Pi] 

π  ← This is the only way to represent the square root of π exactly.

1.16 Multiply 8  by 2 .

SOLUTION

8 2  or Sqrt[8] * Sqrt[2] 

4

1.17 Simplify 3 12 27 48+ + +  leaving your answer in radical form.

SOLUTION

3 + 12 + 27 + 48

10 3

1.5 Mathematica Basics
In this section we discuss some of the simpler concepts within Mathematica. Each will be explained in 
greater detail in a subsequent chapter. 

Symbols are defined using any sequence of alphanumeric characters (letters, digits, and certain special 
characters) not beginning with a digit. Once defined, a symbol retains its value until it is changed, cleared, 
or removed.

Arithmetic operations are performed in the obvious manner using the symbols +, –, ∗, 
and /. Exponentiation is represented by a caret, ^, so x^y means xy. Just as in algebra, a missing symbol 
implies multiplication, so 2a is the same as 2∗a. Be careful, however, when multiplying two symbols, 
since ab represents the single symbol beginning with a and ending with b. To multiply a by b you 
must separate the two letters with ∗ or × (on the Basic Math Input palette) or a space: a ∗ b, a × b, 
or a b .

EXAMPLE 10

a = 2
b = 3
c = a + b

2

3

5

Notice that the result of each calculation is displayed. This is sometimes annoying, and can be sup-
pressed by using a semicolon (;) to the right of the instruction.
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EXAMPLE 11 

a = 2;
b = 3;
c = a + b

5

Operations are performed in the following order: (a) exponentiation, (b) multiplication and division, (c) addition
and subtraction. If the order of operations is to be modified, parentheses, ( ), must be used. Be careful not to use [ ] 
or { } for this purpose.

EXAMPLE 12 

2 + 3 * 5

17

(2 + 3) * 5

25

Each symbol in Mathematica represents something. Perhaps it is the result of a simple numerical calculation or it 
may be a complicated mathematical expression. 

EXAMPLE 13 

a = 3;

b = x + 1
2x + 3

;
2

Here, a is a symbol representing the numerical value 3 and b is a symbol representing an algebraic expression.
 
If you ever forget what a symbol represents, simply type ? followed by the symbol name to recall its 

definition.

EXAMPLE 14 (continuation of Example 13)

?a

Global`a

a = 3

?b

Global`b

b x
x

= 1+
3+2

2

To delete a symbol so that it can be used for a different purpose, the Clear or the Remove command 
can be used. 

 Clear[symbol] clears symbol’s definition and values, but does not clear its attributes, messages, or 
defaults. symbol remains in Mathematica’s symbol list. Typing symbol =. will also clear the definition 
of symbol. 

 Remove[symbol] removes symbol completely. symbol will no longer be recognized unless it is 
redefined. 

You may have noticed that when you begin to type the name of a symbol, it appears with a blue font until 
it is recognized as a Mathematica command or symbol (possibly user-defined) having some value. Then it 
turns black. If the symbol is cleared or removed, all instances of the symbol turn blue once again. 

Parentheses, brackets, and braces remain purple until completed with a matching mate. Errors caused 
by having two left parentheses, but only one right parenthesis, for example, can be conveniently spotted. 
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EXAMPLE 15 (continuation of Example 13)

Clear[a]

 ?a  â ?a recalls information about the symbol a.

 Global`a

Remove[b]

 ?b

 Information õ notfound : Symbol b not found. 

      (Clicking on  gives more information about the error.)

The N command allows you to compute a numerical approximation. 

 N[expression] gives the numerical approximation of expression to six significant digits (Mathematica’s 
default). 

 N[expression, n] attempts to give an approximation accurate to n significant digits. 

A convenient shortcut is to use //N to the right of the expression being approximated. Thus, 
expression//N is equivalent to N[expression]. // can be used for other Mathematica commands 
as well. 

 expression //Command is equivalent to Command[expression]. 

Another shortcut is to type a decimal point anywhere in the expression. This will cause Mathematica to 
evaluate the expression numerically.

EXAMPLE 16 

1
2
+ 1
3
- 1
5

19
30

1
2
+ 1
3
- 1
5.

 ← Note the decimal point after the 5.

0.633333

EXAMPLE 17

N[o] or o //N
3.14159

N[π, 50]
3.1415926535897932384626433832795028841971693993751

The Mathematica kernel keeps track of the results of previous calculations. The symbol % returns the 
result of the previous calculation, %% gives the result of the calculation before that, %%% gives the result of 
the calculation before that and so forth. Using % wisely can save a lot of typing time. 

EXAMPLE 18 To construct π π π+ + , we could type: Sqrt[Pi+Sqrt[Pi+Sqrt[Pi]]]. A less 
confusing way of accomplishing this is to type

Sqrt[Pi]; ← The semicolon suppresses the output of the intermediate calculations.

Sqrt[Pi + %];

Sqrt[Pi + %]

π π π+ +
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Using the Basic Math Input palette, we can type

ππ

ππ

ππ

;

+ % ;

+ %

π π π+ +

SOLVED PROBLEMS

1.18 Define a = 3, b = 4, and c = 5. Then multiply the sum of a and b by the sum of b and c. Print only 
the final answer.

SOLUTION

 a = 3; 

b = 4;

c = 5;

(a + b) * (b + c)

63

1.19 Let a = 1, b = 2, and c = 3 and add a, b, and c. Then clear a, b, and c from the kernel’s memory and 
add again.

SOLUTION 

a = 1; 

b  =  2;

c  =  3;

a  +  b  +  c

6

Clear[a,b,c]

a  +  b  +  c

a  +  b  +  c

1.20 Obtain a 25-decimal approximation of e, the base of the natural logarithm.

SOLUTION

N[E, 26] or N[, 26]  ← 26 significant digits gives 25 decimal places.

2.7182818284590452353602875

1.21 (a) Express 
1
7

2
13

3
19

1
23+ − +  as a single fraction.

 (b) Obtain an approximation accurate to 15 decimal places.

SOLUTION

1/7 + 2/13 – 3/19 + 1/23 

7249
39767

N[%,15]

0.182286820730757
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1.22 Compute 968  (a) exactly and (b) approximately to 25 significant digits.

SOLUTION

968  or Sqrt[968] 

22 2

N[%, 25] 

31.11269837220809107363715

1.23 Multiply 12 by 6. Then multiply 15 by 7. Then use % and %% to add the two products.

SOLUTION

12 * 6

72

15 * 7
105

% + %%
177

1.24 Compute 1
1

1
1

1
1

1
1
2

+
+

+
+

 

SOLUTION

1 + 1
2

3
2

1 + 1
%

5
3

1 + 1
%

8
5

1 + 1
%

13
8

1.25 Compute the value of 1 1 1 1 1 1 2 2 2 2+ + + + +( ( ( ( ) ) ) ) .

SOLUTION

1 + 1
2

1 + %^2
5

1 + %^2
26

1 + %^2
677

1 + %^2
458 330
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1.6 Cells
Cells are the building blocks of a Mathematica notebook. Cells are indicated by brackets at the right-hand 
side of the notebook. (Most likely you have already noticed these brackets and were wondering what they 
meant.) Cells can contain sub-cells, which may in turn contain sub-sub-cells, and so forth.

The kernel evaluates a notebook on a cell-by-cell basis, so if you have several instructions within a 
single cell, they will all be executed with a single press of the [ENTER] key.

EXAMPLE 19

a = 1 + 2

b = 2 + 7

c = a + b

⎤

⎦

⎥
⎥
⎥
⎥

 ← All three lines are contained within a single cell. [ENTER] is pressed only once.

3

9 

12

A new cell can be formed by moving the mouse until the cursor becomes horizontal, and then clicking. 
A horizontal line will appear across the screen to mark the beginning of the new cell. Existing cells can 
be divided by clicking on the menu Cell ⇒ Divide Cell. The cell will be divided into two cells, the break 
occurring at the point where the cursor is positioned. As a shortcut, you can divide a cell by pressing 
(simultaneously) [SHIFT] + [CTRL] + [D] .

Cells can be combined (merged) by selecting the appropriate cell brackets (a vertical black 
line should appear) and then clicking on Cell ⇒ Merge Cells. Alternatively, you can press 
[SHIFT] + [CTRL] + [M] .

To avoid extremely long notebooks, cells can be closed (or compressed) by double-clicking on the cell 
bracket. The bracket will change appearance, looking something like a fish hook. Double-clicking a second 
time will open the cell.

There are different types of cells for different purposes. Only input cells can be fed to the kernel for 
evaluation. Text cells are used for descriptive purposes. Other cell types such as Title, Subtitle, Section, 
Subsection, etc. can be found by clicking on the menu Format ⇒ Style. The cell type can also be seen 
and changed using a drop-down box located in a toolbar at the top of your notebook. If you do not see the 
toolbar, go to Window ⇒ Show Toolbar to display it.

SOLVED PROBLEMS

1.26 Let a = 2 x + 3 and b = 5 x + 6. Then compute a + b. 
 (a) Place each instruction in a separate cell and execute them individually.
 (b) Place all three instructions in a single cell and execute them simultaneously.

SOLUTION

This is what the output looks like after execution:

(a) a = 2 x + 3

b = 5 x + 6

]
]
⎤

⎦
⎥
⎥

]
]
⎤

⎦
⎥

3 + 2x

6 + 5x ⎥⎥

]
]
⎤

⎦
⎥
⎥

a + b

9 + 7x

   (b) a = 2 x + 3

b = 5 x + 6

a + b

⎤

⎦

⎥
⎥
⎥

]3 + 2 x

6 +  5 x

9 + 7 x

]
]

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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1.27 Let a = 2 x + 3 y + 4 z, b = x + 3 y + 5 z, and c = 3 x + y + z. Compute the sum of a, b, and c. Place four 
lines within a single cell and execute, printing only the final result.

SOLUTION

a = 2x + 3y + 4z;

b = x + 3y + 5z;

c = 3x + y + z;

a + b + c

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

]

⎤

⎦

⎥

6 x + 7 y + 10z

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥

1.7 Getting Help
There are many sources of help in Mathematica. First and foremost is the Documentation Center (as 
shown in the following figure) available from the Help menu. There you will find all available commands 
grouped by topic, or you can search for the help you need by typing in a few keywords. The Function 
Navigator contains a listing of all the functions available in Mathematica arranged by topic, and the entire 
Mathematica manual may be accessed by going to the Virtual Book. 

The help files contain numerous examples that you may want to explore. Feel free to make any changes 
in the help files without fear of modifying their content. These files are protected and your changes will 
not be permanent.

If you know the name of the command you want, you can use a question mark, ?, followed by the name 
of the command to determine its syntax. More extensive information about the command, including attributes 
and options, can be obtained using ??. Or you can type the name of the command, place the cursor within its 
name, and then press F1. You will be taken to a page with a complete description and illustrative examples.
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Occasionally, when you make an error, Mathematica will beep or the cell will change color. If you are 
not sure what you did to cause this, you can get a clue by going to Help ⇒ Why The Beep? or Help ⇒ 
Why The Coloring?

EXAMPLE 20 Suppose you know that the command Plot graphs a function, but you cannot remember its 
syntax.

?Plot

Plot[  f, {x, xmin, xmax}] generates a plot of f as a function of x from xmin to xmax.
Plot[{ f1, f2,...}, {x, xmin, xmax}] plots several functions fi. 

If information is needed about attributes or optional settings (and their defaults), ?? can be used.

??Plot

Plot[  f, {x, xmin, xmax}] generates a plot of f as a function of x from xmin to xmax. 
Plot[{  f1, f2,...}, {x, xmin, xmax}] plots several functions fi. 

Attributes[Plot]={HoldAll,Protected}

                                                                        1   Options[Plot]={AlignmentPoint → Center, AspectRatio →
 GoldenRatio

,
 

 Axes → True, AxesLabel → None,AxesOrigin → Automatic,AxesStyle → {}, 
 Background → None,BaselinePosition → Automatic, BaseStyle → {}, 
 ClippingStyle → None, ColorFunction → Automatic, ColorFunctionScaling → True,
 ColorOutput → Automatic, ContentSelectable → Automatic, 
 DisplayFunction  $DisplayFunction, Epilog → {}, 
 Evaluated → System`Private`$Evaluated, EvaluationMonitor → None, 
 Exclusions → Automatic, ExclusionsStyle → None, Filling → None, 
 FillingStyle → Automatic, FormatType  TraditionalForm, Frame → False,
 FrameLabel → None, FrameStyle → {},FrameTicks → Automatic, 
 FrameTicksStyle → {}, GridLines → None, GridLinesStyle → {}, 
 Imagemargins → 0., ImagePadding → All, ImageSize → Automatic, 
 LabelStyle → {}, MaxRecursion → Automatic, Mesh → None, 
 MeshFunctions → {#1 &}, MeshShading → None, MeshStyle → Automatic, 
 Method → Automatic, PerformanceGoal  $PerformanceGoal, 
 PlotLabel → None, PlotPoints → Automatic,PlotRange → {Full, Automatic}, 
 PlotRangeClipping → True, PlotRangePadding → Automatic, 
 PlotRegion → Automatic, PlotStyle → Automatic, 
 PreserveImageOptions → Automatic, Prolog → {}, RegionFunction → (True &),
 RotateLabel → True, Ticks → Automatic, TicksStyle → {}, 
 WorkingPrecision → MachinePrecision}

Options can also be obtained using the Options command. This is useful if you want to specify an option but 
cannot remember its name.

EXAMPLE 21 

Options[Solve]

{InverseFunctions → Automatic, MakeRules → False, Method → 3, Mode → Generic,
    Sort → True, VerifySolutions → Automatic, WorkingPrecision → ∞ }

Very often you may remember part of a symbol name, but not the whole name. If you know the 
beginning is “Arc,” for example, type in the part you know and then press [CTRL] + [K]. This will 
generate a menu of all commands and functions beginning with Arc. Then click on the one you want. 
If you are using a Macintosh computer, use [COMMAND] + [K]. (The [COMMAND] key is the key 
with the apple on it.) 
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EXAMPLE 22 Type Arc and then press [CTRL] + [K] or [COMMAND] + [K] .

Another way of determining symbol names is to use ? together with wildcards. The character “  * ” acts 
as a “wildcard” and takes the place of any sequence of characters. Wildcards can be used anywhere, at the 
beginning, middle, or end of a symbol.

EXAMPLE 23 Output may vary depending upon your version of Mathematica

(a) Find all commands beginning with “Inv.” 

?Inv* 
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(b) Find all commands ending with “in.” 

? *in

(c) Find all commands with “our” in the middle.

? *our* 

Wildcards can also be used to determine which symbols have been used thus far by the kernel. Typing ?` *  returns 
a list of all symbols that have been defined during your Mathematica session. The character ` (backquote) stands for 
global—you want a list of all global symbols. (See the appendix for a discussion of global symbols.)

EXAMPLE 24 Note: The results of this example may be slightly different on your computer, depending upon the 
symbols you have defined.

a = 3;

b2xy = 4;

xyz7 = 5;

?` * 

Global`

a b2xy xyz7

Clear["` * "] will clear all global symbols. Remove["`*"] will remove all global symbols.

EXAMPLE 25

Remove["`*"]

?` *       ← Check to see if any symbols remain.

Remove õ rmnsm : There are no symbols matching "`*".
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SOLVED PROBLEMS

1.28 Obtain basic information about the Mathematica command Simplify.

SOLUTION

? Simplify

Simplify[expr] performs a sequence of algebraic and other transformations on expr, and returns the 
simplest form it finds. 

Simplify[expr, assum] does simplification using assumptions. 

1.29 Obtain extended information about the Mathematica command Simplify including default settings 
for options.

SOLUTION

?? Simplify

Simplify[expr] performs a sequence of algebraic and other transformations on expr, and returns the 
simplest form it finds.

Simplify[expr, assum] does simplification using assumptions. 

Attributes[Simplify]={Protected}

Options[Simplify]={Assumptions   $Assumptions,
ComplexityFunction → Automatic,ExcludedForms → {},TimeConstraint → 300,
TransformationFunctions → Automatic,Trig → True}

1.30 Obtain help on the Mathematica command Factor and then factor x3 – 6 x2 + 11 x – 6.

SOLUTION

?Factor

Factor[ poly] factors a polynomial over the integers.
Factor[ poly, Modulus → p] factors a polynomial modulo a prime p. 
Factor[ poly, Extension → {a1, a2,...}] factors a polynomial allowing coefficients that are rational combinations 

of the algebraic numbers ai. 

Factor[x3 – 6 x2 + 11 x – 6] 

( –3 + x)( –2 + x)( –1 + x)

1.31 Find all Mathematica commands beginning with “Abs.” 

SOLUTION

?Abs*

1.32 Find all Mathematica commands beginning with “Si” and ending with “al.”

SOLUTION

?Si*al
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1.33 Find all Mathematica commands beginning with “Fi.”

SOLUTION

?Fi* 

1.34 Find all Mathematica commands beginning with “Fi” and ending with “t.”

SOLUTION

?Fi*t

Once a package is loaded you can get a list of the functions it contains by using the Names command.

1.8 Packages
There are many specialized functions and procedures that are not loaded when Mathematica is initially 
invoked. Rather, they must be loaded separately from files in the Mathematica directory on the hard drive. 
These files are of the form filename .m.

EXAMPLE 26 A map of the world can be obtained from the command WorldPlot which is located in the 
package WorldPlot`. To load this command, simply type (note the ` at the end)

 WorldPlot` or Needs["WorldPlot`"]

The appropriate command can then be accessed.

 WorldPlot[World]
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EXAMPLE 27 (Continuation of Example 26)

Names["WorldPlot`*"]

{Africa, Albers, Asia, ContiguousUSStates, Equirectangular, Europe,
  LambertAzimuthal, LambertCylindrical, Mercator, MiddleEast, Mollweide,
 NorthAmerica, Oceania, Orthographic, RandomColors, RandomGrays, ShowTooltips,
 Simple, Sinusoidal, SouthAmerica, ToMinutes, USData, USStates, World,
  WorldBackground, WorldBorders, WorldClipping, WorldCountries, WorldData,
  WorldDatabase, WorldFrame, WorldFrameParts, WorldGraphics, WorldGrid,
  WorldGridBehind, WorldGridStyle, WorldPlot, WorldPoints, WorldProjection,
  WorldRange, WorldRotatedRange, WorldRotation, WorldToGraphics}

EXAMPLE 28 The package Calendar` includes some interesting calendar functions.

Calendar`

Names["Calendar`*"]

{Calendar, CalendarChange, DateQ, DayOfWeek, DaysBetween, DaysPlus, 
  EasterSunday, EasterSundayGreekOrthodox, Friday, Gregorian, Islamic, Jewish,
 JewishNewYear, Julian, Monday, Saturday, Sunday, Thursday, Tuesday, Wednesday}

?DaysBetween

DaysBetween[{year1, month1, day1}, {year2, month2, day2}] gives the number of days between the dates 
{year1, month1, day1} and {year2, month2, day2}. 

DaysBetween[{year1, month1, day1, hour1, minute1, second1}, {year2, month2, day2, hour2, minute2, second2}] 
gives the number of days between the given dates. 

DaysBetween[{2007,8,3},{2008,12,5}]

490

SOLVED PROBLEMS

1.35 The function DayOfWeek appears in the package Calendar` and gives the day of the week of 
any date in the calendar. Load the package, obtain help to determine its syntax, and then determine 
which day of the week January 1, 2000, was.

SOLUTION

Calendar`

? DayOfWeek

DayOfWeek[{year, month, day}] gives the day of the week on which the given date {year, month, day} 
occurred.

DayOfWeek[{year, month, day, hour, minute, second}] gives the day of theweek for the given date. 

DayOfWeek[{2000, 1, 1}]

Saturday

1.36 The package Combinatorica` contains functions in combinatorics and graph theory. One of 
these is KSubsets, which lists all subsets of size k of a given set. Load the package and execute 
Ksubsets[{1,2,3,4,5},3].

SOLUTION

Combinatorica`

KSubsets[{1, 2, 3, 4, 5}, 3]

{{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, 
 {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}}
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1.9 A Preview of What Is to Come
If you have just purchased your copy of Mathematica, you probably cannot wait to give it a test run. 
The following examples are a collection of problems for you to try. What follows are some basic 
commands. To keep things simple, options have been omitted and Mathematica’s defaults are used 
exclusively. We will discuss modifications to these commands in subsequent chapters, but for now, 
just have fun!

EXAMPLE 29 Obtain a 50 significant digit approximation to π .

N[ π , 50] or N[Sqrt[Pi], 50]

1.7724538509055160272981674833411451827975494561224

EXAMPLE 30 Solve the algebraic equation x3 – 2 x + 1 = 0.

Solve[x3
 
– 2 x + 1  0] or  Solve[x^3 – 2 x + 1  0]

{x 1}, x 1
2
-1- 5 , x 1

2
1+ 5→ → ( ){ } → ( ){ }}{ }

EXAMPLE 31 Express (x + 1)10 in traditional polynomial form.

Expand[(x + 1)10] //TraditionalForm

x x x x x x x x10 9 8 7 6 5 4 310 45 120 210 252 210 120+ + + + + + + ++ + +45 10 12x x

EXAMPLE 32 What is the 1000th prime?

Prime[1000]

7919

EXAMPLE 33 The function ElementData gives values of chemical and physical properties of elements. Among 
the properties included are AtomicWeight and AtomicNumber, whose definitions are self-explanatory. Compute 
the atomic weight and atomic number of titanium. (Note the quotation marks.) 

ElementData["Titanium","AtomicWeight"]

47.867

ElementData["Titanium","AtomicNumber"]

22

EXAMPLE 34 Plot the graph of y = sin x from 0 to 2 π.

Plot[Sin[x],{x, 0, 2 o}]

1 2 3 4 5 6

–1.0

–0.5

0.5

1.0
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EXAMPLE 35 Sketch the graphs of y = sin x, y = sin 2x, and y = sin 3x, 0 ≤ x ≤ 2π, on one set of axes.

Plot[{Sin[x],Sin[2 x],Sin[3 x]},{x,0,2 o}]  

1 2 3 4 5 6

–1.0

–0.5

0.5

1.0

EXAMPLE 36 Sketch the three-dimensional surface defined by z x y e x y= + − +( ) ( )2 23 2 2
.

Plot3D[(x2 + 3 y2)–(x2 + y2),{x,–3,3},{y,–3,3}]  or

Plot3D[(x^2 + 3 y^2)* Exp[–(x^2 + y^2)],{x,–3,3},{y,–3,3}]

–2

0

2

–2

0

2

0.0

0.5

1.0

Click on the graph and drag the mouse to view the graph from any viewpoint.
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Basic Concepts

2.1 Constants
Mathematica uses predefined symbols to represent built-in mathematical constants. 

 Pi or o is the ratio of the circumference of a circle to its diameter. 
 E or  is the base of the natural logarithm.

Both Pi and E are treated symbolically and do not have values, as such. However, they may be 
approximated to any degree of precision.

EXAMPLE 1 N[o, 500] will produce a 500 significant digit approximation to π (499 decimal places).

N[o,500]

3.1415926535897932384626433832795028841971693993751058209749445923078164062
862089986280348253421170679821480865132823066470938446095505822317253594081
284811174502841027019385211055596446229489549303819644288109756659334461284
756482337867831652712019091456485669234603486104543266482133936072602491412
737245870066063155881748815209209628292540917153643678925903600113305305488
204665213841469519415116094330572703657595919530921861173819326117931051185
480744623799627495673518857527248912279381830119491

 Degree is equal to Pi/180 and is used to convert degrees to radians. 
 GoldenRatio has the value ( ) /1 5 2+  and has a special significance with respect to Fibonacci 

series. It is used in Mathematica as the default width-to-height ratio of two-dimensional plots. 
 Infinity or Ç is a constant with special properties. For example, Ç + 1 = Ç.
 EulerGamma is Euler’s constant and is approximately 0.577216. It has applications in integration 

and in asymptotic expansions. 
 Catalan is Catalan’s constant and is approximately 0.915966. It is used in the theory of combinato-

rial functions. 

EXAMPLE 2 How much is ∞ + ∞ ?

Ç + Ç
∞

SOLVED PROBLEMS

 2.1 Approximately how many radians are in 90 degrees?

SOLUTION

90 Degree //N ← expression//N is the same as N[expression]

1.5708

CHAPTER 2
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 2.2 Show that GoldenRatio satisfies the algebraic equation x2 – x – 1 = 0.

SOLUTION

x = GoldenRatio;

x
2
 – x – 1 //N

0.

 2.3 What happens if Zachary tries to subtract ∞ from ∞?

SOLUTION

Ç – Ç

∞õ indet : Indeterminate expression –∞ + ∞ encountered. 

Indeterminate

 2.4 Compute a 20 decimal place approximation to e, the base of the natural logarithm.

SOLUTION

N[E,21] or N[, 21]

2.71828182845904523536

2.2 “Built-In” Functions
In this section we discuss some of the more commonly used functions Mathematica offers. Because of 
the vast number of functions available, no attempt is made toward completeness. Additional functions are 
discussed in detail in later chapters.

Standard mathematical functions can be accessed by name or by clicking on their symbol in a Mathematica 
palette. For example, the square root of a number can be obtained using either the function Sqrt or, 
alternatively, by using the  symbol from the Basic Math Input palette. Remember that the argument 
of a function must be contained within square brackets, [ ].

 Sqrt[x] or x  gives the non-negative square root of x. 

EXAMPLE 3

Sqrt[1521] or 1521

39

Higher order roots can be computed by recalling that x xn n=
1

. The symbol  on the 
Basic Math Input palette may also be used. Notice that higher order roots of negative numbers are given 
in a special format.

EXAMPLE 4 The cube root of 8 is given directly, but the cube root of –8 is given in terms of −13 .

8^(1/3) or 83

2

(–8)^(1/3) or –83

2 (–1)1/3

EXAMPLE 5

N[ 2 ]
1.41421

N[ 2 ,50]
1.4142135623730950488016887242096980785696718753769

Ò
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The function that returns the absolute value of x, |x | , is Abs.

 Abs[x] returns x if x ≥ 0 and –x if x < 0. 

The function Abs can also be applied to complex numbers. If z is the complex number x + y , Abs[z] 
returns its modulus, x +y2 2 . 

EXAMPLE 6

Abs[5]
5

Abs[–5]
5

Abs[5 + 12‰]
13

It is sometimes useful to have a function that determines the sign of a number.

 Sign[x] returns the values –1, 0, 1 depending upon whether x is negative, 0, or positive, 
respectively.

EXAMPLE 7

Sign[–27.5]
–1

Sign[0]
0

Sign[6.254]
1

The factorial of a positive integer, n, represented n! in mathematical literature, is the product of the 
integers 1, 2, 3, … , n. By definition, 0! = 1. For non-integer values of n, n! is defined by Γ(n+1) where Γ 
is Euler’s gamma function.

 Factorial[n] or n! gives the factorial of n if n is a positive integer and Γ(n + 1) if n has a non-
integer positive value.

EXAMPLE 8

5!
120

0!
1

Factorial[3.5]
11.6317

Mathematica has a built-in random number generator. This is a useful function in probability theory and 
statistical analysis, e.g., random walks and Monte Carlo methods.

 Random[ ] gives a uniformly distributed real pseudorandom number in the interval [0, 1]. 
 Random[type] returns a uniformly distributed pseudorandom number of type type, which is either 
Integer, Real, or Complex. Its values are between 0 and 1, in the case of Integer or Real, 
and are contained within the square determined by 0 and 1+i, if type is Complex. 

 Random[type, range] gives a uniformly distributed pseudorandom number in the interval or rect-
angle determined by range. range can be either a single number or a list of two numbers such as 
{a,b} or {a + b I, c + d I}. A single number, m, is equivalent to {0,m}.

 Random[type, range, n] gives a uniformly distributed pseudorandom number to n significant 
digits in the interval or rectangle determined by range.
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Mathematica also offers the functions RandomReal, RandomInteger, and RandomComplex to 
generate pseudorandom numbers.

 RandomReal[ ] returns a pseudorandom real number between 0 and 1.
 RandomReal[xmax] returns a pseudorandom real number between 0 and xmax.
 RandomReal[{xmin, xmax}] returns a pseudorandom real number between xmin and 
xmax.

 RandomReal[{xmin, xmax}, n] returns a list of n pseudorandom real numbers between xmin 
and xmax. 

 RandomReal[{xmin, xmax}, {m, n}] returns an m × n list of pseudorandom numbers between 
xmin and xmax. This extends in a natural way to lists of higher dimension. (See Chapter 3 for a 
complete discussion of lists.)

The definitions of RandomInteger and RandomComplex are similar to RandomReal and may be 
looked up in the Documentation Center.

 RandomSample[{e1,e2,...,en}, k] gives a pseudorandom sample of k of the ei. 
 RandomSample[{e1, e2,...,en}] gives a pseudorandom permutation of the list of ei.

Any random number generator produces its output from an algorithm based upon an initial value, called a 
seed. Mathematica allows you to introduce a seed using the function SeedRandom. 

 SeedRandom[n] initializes the random number generator using n as a seed. This guarantees that 
sequences of random numbers generated with the same seed will be identical.

 SeedRandom[ ] initializes the random number generator using the time of day and other attributes 
of the current Mathematica session. 

EXAMPLE 9 (Your answers will be different from those shown.)

Random[Integer]  ← Returns 0 or 1 with equal probability.
0

Random[Real] ← Returns a 6 signifi cant digit real number between 0 and 1.

0.386297

Random[Complex] ← Returns a complex number in the square whose opposite vertices
0.420851 + 0.382187   are 0 and 1+.

Random[Real,5] ← Returns a real number uniformly distributed in the interval [0,5].
1.83872

Random[Real,{3,5}] ← Returns a real number uniformly distributed in the interval [3,5].
3.95386

Random[Real,{3,5},10] ← Returns a real number uniformly distributed in the interval [3,5] to
4.014673296  10 signifi cant digits.

Random[Integer,{1,10}] ← Returns an integer between 1 and 10 with equal probability 1/10.
7  

Random[Complex,{2+I,5+6 I}] ← Returns a complex number in the rectangle whose opposite
2.61319 + 4.30869   vertices are the complex numbers 2+ and 5+6.

RandomReal[{3, 5}]
3.62039

RandomInteger[{3, 10}, 20]
{6, 5, 7, 5, 3, 7, 10, 4, 9, 7, 5, 9, 8, 5, 4, 10, 4, 3, 9, 3}

RandomSample[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, 5]
{2, 8, 3, 1, 10}
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A positive integer is prime if it is divisible only by itself and 1. For technical reasons, 1 is not considered 
prime; the smallest prime is 2.

 Prime[n] returns the nth prime. 
 RandomPrime[n] returns a pseudorandom prime number between 2 and n.
 RandomPrime[{m, n}] returns a pseudorandom prime number between m and n.
 RandomPrime[{m, n}, k] returns a list of k pseudorandom primes, each between m 

and n.

EXAMPLE 10 Find the 7th prime.

Prime[7]
17

RandomPrime[{7, 47}]
29

RandomPrime[{7, 47}, 10]
{31, 29, 41, 47, 43, 13, 31, 17, 37, 7}

The Fibonacci numbers are defined by 

 f1 = 1, 

 f2 = 1, 

fn = fn–2 + fn–1  n ≥ 3

Thus, the first few Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, …

 Fibonacci[n] returns the nth Fibonacci number. 

EXAMPLE 11 

Fibonacci[7]

13

There are three Mathematica functions that convert real numbers to nearby integers.

 Round[x] returns the integer closest to x. If x lies exactly between two integers
(e.g., 5.5), Round returns the nearest even integer.

 Floor[x] returns the greatest integer which does not exceed x. This is sometimes known as the 
“greatest integer function” and is represented in many textbooks by ⎣x⎦.

 Ceiling[x] returns the smallest integer not less than x. Many textbooks represent this by ⎡x⎤.

EXAMPLE 12 

Round[5.75]
6

Floor[5.75]
5

Ceiling[5.75]
6

A decimal number can be broken up into two parts, the integer portion (number to the left of the decimal 
point) and the fractional portion.

 IntegerPart[x] gives the integer portion of x (decimal point excluded).
 FractionalPart[x] gives the fractional portion of x (decimal point included).

Observe that IntegerPart[x]+ FractionalPart[x]= x.
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EXAMPLE 13 

IntegerPart[4.67]
4

FractionalPart[4.67]
0.67

IntegerPart[4.67] + FractionalPart[4.67]
4.67

If m and n are positive integers, there exist unique integers q and r such that 

m = qn + r with 0 ≤ r < n

This result is known as the Division Algorithm. q is called the quotient and r is the remainder. The 
Mathematica functions Quotient and Mod return the quotient and remainder, respectively.

 Quotient[m, n] returns the quotient when m is divided by n.
 Mod[m, n] returns the remainder when m is divided by n.

EXAMPLE 14 

Quotient[17, 3]
5

Mod[17, 3]
2

Suppose a and b are two integers. If there exists an integer, k, such that a = kb, we say that b divides a. 
Alternatively, a is a multiple of b.

Let m and n be two integers. If b divides both m and n, we say that b is a common divisor of m and n. 
The largest common divisor of m and n is called their greatest common divisor (GCD).

If a is a multiple of both m and n, we say a is a common multiple of m and n. The smallest common 
multiple of m and n is called their least common multiple (LCM).

 GCD[m, n] returns the greatest common divisor of m and n. 
 LCM[m, n] returns the least common multiple of m and n.

The functions GCD and LCM extend to more than two arguments.

EXAMPLE 15 Find the greatest common divisor and least common multiple of 24, 40, and 48.

GCD[24, 40, 48]
8

LCM[24, 40, 48]
240

The Fundamental Theorem of Arithmetic guarantees that every positive integer can be factored into 
primes in a unique way.

 The function FactorInteger[n] gives the prime factors of n together with their respective 
exponents. 

EXAMPLE 16 

FactorInteger[2  381  400]

{{2, 3} ,{3, 5}, {5, 2}, {7, 2}}

The prime factors of 2,381,400 are 2, 3, 5, and 7 with exponents, respectively, 3, 5, 2, 2. In other 
words, 2,381,400 = 23355272. The result of this operation produces a nested sequence of lists. (A list is a 
Mathematica object, enclosed within braces, { }, which will be discussed in detail in Chapter 3.)
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In order to estimate computational efficiency, it is useful to be able to determine how long an operation 
or sequence of operations takes to execute.

 Timing[expression] evaluates expression, and returns a list of time used, in seconds, together with 
the result obtained. 

Timing counts only the CPU time spent in the Mathematica kernel. It does not include overhead time 
spent in the front end.

EXAMPLE 17 How long does it take the kernel to compute the ten billionth prime?

Timing[Prime[10  000  000  000]]

{2.953,252 097 800 623}

Of course, the actual time taken will vary, depending upon the speed of the CPU.

Logarithms and exponential functions to any base can be computed using the function Log.

 Log[x] represents the natural logarithm. If a base, b, other than e is required, the appropriate form 
is Log[b, x]. 

 The function Exp[x] is the natural exponential function. Other equivalent forms are E^x and Ex. 
Lowercase e cannot be used, but the special symbol  from the Basic Math Input palette may be 
used instead. Exponential functions to the base b are computed by b^x or bx.

EXAMPLE 18 Compute ln 100, the natural logarithm of 100.

Log[100]
Log[100]

Log[100]//N
4.60517

EXAMPLE 19 Compute log2100.

Log[2, 100]

Log[100]
Log[2]

    ← This is the exact value of log2100, expressed in terms of natural logarithms.

Log[2, 100]//N

6.64386

EXAMPLE 20 To compute a numerical approximation of e2, we can write

Exp[2]//N or E2//N or 2//N

7.38906

 The six basic trigonometric functions, sine, cosine, tangent, secant, cosecant, and cotangent, are 
represented in Mathematica by Sin, Cos, Tan, Sec, Csc, and Cot, respectively. 

Mathematica assumes the arguments of trigonometric functions to be in radians. Problems involving 
degrees must first be converted to radians if trigonometric functions are involved. For this purpose, one 
can use the built-in constant, Degree, whose value is π/180. The symbol °, located on the Basic Math 
Input palette, may be used as well.

EXAMPLE 21 60° is equivalent to π/3 radians. To compute its sin using radian measure, we write

Sin
3
ππ⎡

⎣⎢
⎤
⎦⎥ or Sin[Pi/3]

3
2

Observe that Mathematica always gives exact answers. 
Approximations are supplied only when requested.
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If we wish to compute its sin using degree measure, we can type

Sin[60 Degree] or Sin[60 ç]

3
2

Care must be taken with trigonometric powers. The square of sin x in trigonometric form is traditionally 
written sin2 x, but Mathematica will accept only Sin[x]2 or Sin[x]̂ 2. 

EXAMPLE 22 Compute the square of sin 60°.

Sin[60o]2 or Sin[60 Degree]̂ 2

3
4

 The inverse trigonometric functions are ArcSin, ArcCos, ArcTan, ArcSec, ArcCsc, and 
ArcCot. However only the principal values, expressed in radians, are returned by these functions.

EXAMPLE 23

ArcSin[1]
π
2

ArcCos[Cos[3π]]
π

Hyperbolic functions are combinations of exponential functions which have interesting mathematical 
properties. There are six hyperbolic functions. The three basic ones are

sinh cosh tanhx
e e

x
e e

x
e e
e e

x x x x x x

x= − = + = −
+

− − −

−2 2 xx

The other three, sech x, csch x, and coth x, are reciprocals, respectively, of cosh x, sinh x, and tanh x. 

 The Mathematica representations of the six hyperbolic functions are Sinh, Cosh, Tanh, Sech, 
Csch, and Coth.

EXAMPLE 24 Compute a numerical approximation to sinh 2. 

Sinh[2]//N

3.62686

 The inverse hyperbolic functions are represented by ArcSinh, ArcCosh, ArcTanh, ArcSech, 
ArcCsch, and ArcCoth. 

Because Cosh and Sech are not one-to-one, ArcCosh and ArcSech return only positive values for 
real arguments.

EXAMPLE 25 

ArcSinh[–2] //N
–1.44364

ArcCosh[2] //N
1.31696

One special command is worthy of mention at this time:

 Print[expression] prints expression, followed by a line feed.
 Print[expression1, expression2, . . . ] prints expression1, expression2, . . . followed by a single 

line feed.

Cos[3o]= –1 but the principal value of 
ArcCos[–1] is o.
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At first glance it may seem that Print is a redundant command, as simply typing the name of any 
object will reveal its value. However, it has a useful purpose (e.g., see loops in Section 2.8).

EXAMPLE 26

Print["This prints a line of text."]

This prints a line of text.

EXAMPLE 27

a = 1; b = 2; c = 3; d = 4; e = 5;

Print[a + b, b + c, c + d, d + e, e + a]

35796

Mathematica includes a class of functions ending in the letter Q:

AlgebraicIntegerQ LegendreQ PositiveDefi niteMatrixQ
AlgebraicUnitQ LetterQ PossibleZeroQ
ArgumentCountQ LinkConnectedQ PrimePowerQ
ArrayQ LinkReadyQ PrimeQ
AtomQ ListQ QuadraticIrrationalQ
CoprimeQ LowerCaseQ RootOfUnityQ
DigitQ MachineNumberQ SameQ
DistributionDomainQ MatchLocalNameQ SquareFreeQ
DistributionParameterQ MatchQ StringFreeQ
EllipticNomeQ MatrixQ StringMatchQ
EvenQ MemberQ StringQ
ExactNumberQ NameQ SyntaxQ
FreeQ NumberQ TensorQ
HermitianMatrixQ NumericQ TrueQ
HypergeometricPFQ OddQ UnsameQ
InexactNumberQ OptionQ UpperCaseQ
IntegerQ OrderedQ ValueQ
IntervalMemberQ PartitionsQ VectorQ
InverseEllipticNomeQ PolynomialQ 

These functions are used to test for certain conditions and return a value of True or False. 
Their precise syntax can be determined from the Help menu or by using ? as illustrated in the next 
examples.

EXAMPLE 28

?PrimeQ

PrimeQ[expr] yields True if expr is a prime number, and yields False otherwise. 

PrimeQ[5]
True

PrimeQ[6]
False

EXAMPLE 29 

?PolynomialQ

PolynomialQ[expr, var] yields True if expr is a polynomial in var, and yields False otherwise.
PolynomialQ[expr, {var1,...}] tests whether expr is a polynomial in the vari. 
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PolynomialQ[x y + x + y, x]2
 

True

PolynomialQ[x y + x + y, y]2
 

False

SOLVED PROBLEMS

 2.5 Compute numerical approximations to the square root and cube root of 10.

SOLUTION

10  //N or Sqrt[10] //N
3.16228

103  //N or 10^(1/3) //N

2.15443

 2.6 Compute numerical approximations to the square root and cube root of 10 accurate to 20 significant 
digits.

SOLUTION

N 10, 20⎡⎣ ⎤⎦
3.1622776601683793320

N 10, 203⎡⎣ ⎤⎦
2.1544346900318837218

 2.7 Compute 3 2+  and 3 2−  to 50 significant digits. Then compute their product.

SOLUTION

a = N 3 + 2,50⎡⎣ ⎤⎦
3.1462643699419723423291350657155704455124771291873

b = N 3– 2,50⎡⎣ ⎤⎦
0.31783724519578224472575761729617428837313337843343

a*b
1.0000000000000000000000000000000000000000000000000

 2.8 The binomial coefficient C n k n
k n k

( , ) !
!( )!= − . Use this definition to compute C(10,4).

SOLUTION

10!
4!(10-4)!  or Factorial[10]/(Factorial[4] * Factorial[10 – 4])

210

 2.9 A fair die has six faces, numbered 1 through 6, and each occurs with equal probability. Simulate four 
tosses of a fair die.

SOLUTION

(Your answers will be different from those shown here.)

Random[Integer, {1, 6}]

Random[Integer, {1, 6}]

Random[Integer, {1, 6}]
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Random[Integer, {1, 6}]

6
1
5
3

2.10 Find a 15 significant digit pseudorandom real number between π and 2π.

SOLUTION

(Your answer will be different from that shown here.)

Random[Real,{π, 2 π}, 15] 

4.13129131207734

2.11 What is the 27th Fibonacci number?

SOLUTION

Fibonacci[27]

196  418

2.12 Show that there is no prime between 157 and 163.

SOLUTION

Prime[37] ← We determine this by experimentation.
157

Prime[38]
163

Since 157 and 163 are consecutive primes, there is no prime between them.

2.13 What is the integer closest to 159  ?

SOLUTION 

Round[Sqrt[159]] or 159 //Round

13

2.14 Between what two consecutive integers does ( )π 2 51+  lie?

SOLUTION

Floor[( +1)2 5ππ ]
151  729

Ceiling[( +1)2 5ππ ]
151  730

The number ( )π 2 51+  lies between 151,729 and 151,730.

2.15 Compute the value of ⎡x⎤ – ⎣x⎦ first using x = 17 and then using x = π.

SOLUTION

x=17;

Ceiling[x] – Floor[x]
0

x = Pi;

Ceiling[x] – Floor[x]

1

⎡x⎤ – ⎣x⎦ always equals 0 when x is an integer 
and 1 when x is not an integer.



CHAPTER 2  Basic Concepts 33

2.16 What are the greatest common divisor and least common multiple of 5355 and 40425?

SOLUTION

GCD[5355, 40425]
105

LCM[5355, 40425]

2 061 675

2.17 Show that 15, 16, and 30 are relatively prime (integers are relatively prime if they have no common 
factor other than 1). 

SOLUTION

GCD[15, 16, 30]

1

Since their GCD = 1, their only common factor is 1. Therefore, they are relatively prime.

2.18 A theorem from number theory says that the product of the GCD and LCM of two numbers is always 
equal to the product of the numbers. Verify this using the numbers 74613 and 85085.

SOLUTION

a = 74 613;

b = 85 085;

GCD[a, b]* LCM[a, b]

6 348 447 105

a * b

6 348 447 105

Obviously, the products are identical.

2.19 Show that 156,875,438,767 is not prime and factor.

SOLUTION

PrimeQ[156 875 438 767]

False

FactorInteger[156 875 438 767]

{{53,1},{2 959 913 939,1}}

156,875,438,767 is equal to the product of primes 53 and 2,959,913,939.

2.20 How long did it take Mathematica to factor 156,875,438,767 in the previous problem?

SOLUTION

Timing[FactorInteger[156 875 438 767]] 

{0.011 ,{{53, 1}, {2 959 913 939, 1}}}

It took approximately 0.011 seconds. (This time will vary from computer to computer.)

2.21 Compute the natural logarithm of e5.

SOLUTION

Log[5] or Log[E^5] or Log[Exp[5]]

5
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2.22 Compute the common logarithm (base 10) of e5. What is its numerical approximation?

SOLUTION

Log[10, 5] or Log[10, E^5] or Log[10, Exp[5]]

5
Log[10]

% //N
2.17147

2.23 If Jacob starts with one cent and his money doubles every day, how much money will he have, to the 
penny, after 30 days?

SOLUTION

N 2 /10030[ ]
1.07374 × 107

If we want to get the amount to the penny, we will need 10 significant digits.

amount = N[2 /100,10]30

1.073741824 × 107

To see this in a more traditional format, the function AccountingForm can be used.

AccountingForm[amount]

10737418.24

We can group the digits into blocks of 3 and separate them with commas using the option DigitBlock

AccountingForm[amount, DigitBlock ã 3]

10,737,418.24

2.24 What is the exact value of sin 15°? Compute a 20 decimal place approximation.

SOLUTION

Sin[15 Degree] or Sin[15ç]

–1 + 3
2 2

N[%, 20]

0.25881904510252076235

2.25 Select a random number, x, between 0 and 1 and compute sin2 x + cos2 x.

SOLUTION (Your value of x will be different from that shown here.)

x = Random[ ]

0.427468

Sin[x]2
 
+ Cos[x]2

1.

2.26 Find a number between −π/2 and π/2 whose sin is 1/2.

SOLUTION

ArcSin[1/2] 
π
6

Recall from trigonometry that 
sin2 x + cos2 x = 1 for all x.
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2.27 Select a random number, x, between 0 and 1 and compute cosh2 x – sinh2 x. 

SOLUTION (Your value of x will be different from that shown here.)

x = Random[]
0.991288

Cosh[x]2 – Sinh[x]2

1.

2.28 Obtain an alternate representation of tanh(ln x).

SOLUTION

Tanh[Log[x]] //TraditionalForm

x
x

2

2
1
1

−
+

2.29 Approximately how many radians are there in one degree?
Approximately how many degrees are there in one radian?

SOLUTION

N[Degree]
0.0174533

N[1/Degree]
57.2958

2.30 How much is ∞ + 100,000?

SOLUTION

Ç + 100 000
∞

2.31 What is the square root of the complex number 3+4i?

SOLUTION

3+4  or Sqrt[3 + 4 I]

2 + 

2.32 The number of permutations of n objects taken k at a time is P n k n
n k

( , ) !
( )!= − . How many permutations 

of 20 objects taken 10 at a time are there?

SOLUTION

n = 20;

k = 10;

n!/(n – k)! or Factorial[n]/Factorial[n – k]

670 442 572 800

2.33 Between what two consecutive integers does the natural logarithm of 100,000 lie?

SOLUTION

Floor[Log[100 000]]

11

Ceiling[Log[100 000]]

12

ln 100,000 lies between 11 and 12.

Hyperbolic functions have properties similar to trigonometric 
functions: cosh2 x – sinh2 x  = 1 for all x.

Degree is a Mathematica constant which 
represents the number of radians in one degree. 
1/Degree represents the number of degrees 
in one radian.


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2.34 What is the quotient and remainder if 62,173,467 is divided by 9,542?

SOLUTION

Quotient[62 173 467, 9542]

6515

Mod[62 173 467, 9542]

7337

2.35 Find the greatest common divisor and least common multiple of 1,001 and 1,331.

SOLUTION

GCD[1001, 1331]

11

LCM[1001, 1331]

121 121

2.36 How long does it take your computer to find the prime factorization of 10! ?

SOLUTION

FactorInteger[10!] //Timing

{0.016, {{2, 8}, {3, 4}, {5, 2}, {7, 1}}}

The factorization is 28345271; times will vary depending on the speed of your CPU.

2.37 Find an algebraic expression for cos sin−
+( )( )1

1

2

2
x

x .

SOLUTION

Cos ArcSin x
x +1

2

2
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

1– x
(1+x )

4

2 2

2.38 Is 15,485,863 prime?

SOLUTION

PrimeQ[15 485 863]

True

2.3 Basic Arithmetic Operations
As we have seen, basic arithmetic operations such as addition are performed by inserting an operation 
symbol between two numbers. Thus, the sum of 3 and 5 is obtained by typing 3 + 5. However, in more 
advanced applications it is sometimes useful to represent these operations as functions. Towards this end, 
Mathematica includes the following:

 Plus[a, b,...] computes the sum of a, b, . . . Plus[a, b] is equivalent to a + b. 
 Times[a, b,...] computes the product of a, b, . . . Times[a, b] is equivalent to a * b.
 Subtract[a, b] computes the difference of a and b. Only two arguments are permitted. 
Subtract [a, b] is equivalent to a – b.

 Divide[a, b] computes the quotient of a and b. Only two arguments are permitted. 
Divide[a, b] is equivalent to a/b.

 Minus[a] produces the additive inverse (negative) of a. Minus[a] is equivalent to –a. 
 Power[a, b] computes ab, Power[a, b, c] produces ab

c , etc.
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EXAMPLE 30

Plus[2, 3, 4]
9

Times[2, 3, 4]
24

Power[2, 3, 4]
2 417 851 639 229 258 349 412 352

In order to see the way in which Mathematica handles functions internally, the command FullForm 
is quite useful.

 FullForm[expression] exhibits the internal form of expression.

EXAMPLE 31

FullForm[a + b + c]

Plus[a, b, c]

FullForm[a – b]

Plus[a, Times[–1, b]]

FullForm[(a * b)^ c]

Power[Times[a, b], c]

FullForm may be used for any Mathematica function, not only arithmetic operators.

EXAMPLE 32

FullForm[Sin[x^3]^2]
Power[Sin[Power[x,3]],2]

In addition to the standard operational symbols discussed previously, there are a few additional com-
mands that are useful in special situations. (Note: In order for the following to work, x and y must have 
numerical values.)

 Increment[x] or x ++ increases the value of x by 1 but returns the old value of x.
 Decrement[x] or x –– decreases the value of x by 1 but returns the old value of x.
 PreIncrement[x] or ++ x increases the value of x by 1 and returns the new value of x.
 PreDecrement[x] or –– x decreases the value of x by 1 and returns the new value of x.
 AddTo[x,y] or x += y adds y to x and returns the new value of x.
 SubtractFrom[x,y] or x –= y subtracts y from x and returns the new value of x.
 TimesBy[x,y] or x * = y multiplies x by y and returns the new value of x.
 DivideBy[x,y] or x /= y divides x by y and returns the new value of x.

The next two examples illustrate the various addition commands. The commands for subtraction, 
multiplication, and division are similar.

EXAMPLE 33

x = 3;  x = 3;

x ++  ++ x

3 ← The old value of x is returned. 4 ← The new value of x is returned.

x  x

4 ←Τthe actual value of x is 4. 4 ← The actual value of x is 4.

x ++ is equivalent to the sequence
   x 
   x = x + 1;

++x is equivalent to the statement
   x = x + 1
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EXAMPLE 34

x = 3; y = 4; x = 3; y = 4;

x + y  x += y

7 ← The sum is returned. 7 ← The sum is returned.

x  x

3 ← x remains unchanged. 7 ← The new value of x is 7.

y  y

4 ← y remains unchanged. 4 ← y remains unchanged.

SOLVED PROBLEMS

2.39 How does Mathematica evaluate the expression a bc d+ / ?

SOLUTION

FullForm[a + b * c/d]
Plus[a,Times[b, c, Power[d, –1]]]

2.40 How is the function Minus[x]treated internally in Mathematica?

SOLUTION

FullForm[Minus[x]] 
Times[–1, x]

2.4 Strings
A string is an (ordered) sequence of characters. Strings have no numerical value and are often used as labels 
for tables, graphs, and other displays.

In Mathematica, a string is enclosed within quotation marks. Thus "abcde" is a string of five characters. 
Do not confuse "abcde" with abcde, as the latter is not a string.

Mathematica comes equipped with a number of string manipulation commands.

 StringLength[string] returns the number of characters in string.
 StringJoin[string1, string2,...] or string1 <> string2 <> ... concatenates two or more 

strings to form a new string whose length is equal to the sum of the individual string lengths.
 StringReverse[string] reverses the characters in string. 

StringDrop eliminates characters from a string. There are five forms of this command.

 StringDrop[string, n] returns string with its first n characters dropped.
 StringDrop[string, –n] returns string with its last n characters dropped.
 StringDrop[string, {n}] returns string with its nth character dropped.
 StringDrop[string, {–n}] returns string with the nth character from the end dropped.
 StringDrop[string, {m, n}] returns string with characters m through n dropped.

StringTake returns characters from a string. Its format is similar to StringDrop.

 StringTake[string, n] returns the first n characters of string.
 StringTake[string, –n] returns the last n characters of string. 
 StringTake[string, {n}] returns the nth character of string.
 StringTake[string, {–n}] returns the nth character from the end of string.
 StringTake[string, {m, n}] returns characters m through n of string.

x + = y is equivalent to the statement 
x = x + y
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EXAMPLE 35 In this example we define string = "abcdefg". The output is shown to the right of the command. 
(Please observe the difference between the Mathematica symbol String and the user-defined symbol string.)

 string = "abcdefg" abcdefg

 string <> "hijklmnop" abcdefghijklmnop

 StringLength[string] 7

 StringReverse[string] gfedcba

 StringDrop[string, 2] cdefg

 StringDrop[string, –2] abcde

 StringDrop[string, {2}] acdefg

 StringDrop[string, {–2}] abcdeg

 StringDrop[string, {2, 5}] afg

 StringTake[string, 2] ab

 StringTake[string, –2] fg

 StringTake[string, {2}] b

 StringTake[string, {–2}] f

 StringTake[string, {2, 5}] bcde

StringInsert allows you to insert characters within existing strings.

 StringInsert[string1, string2, n] yields a string with string2 inserted starting at position n 
in string1.

 StringInsert[string1, string2, –n] yields a string with string2 inserted starting at the nth 
position from the end of string1.

 StringInsert[string1, string2, {n1, n2,...}] inserts a copy of string2 at each of the posi-
tions n1, n2, . . . of string1.

StringReplace allows you to replace part of a string with another string.

 StringReplace[string, string1 ã newstring1] replaces string1 by newstring1 whenever it 
appears in string.

 StringReplace[string, {string1 ã newstring1, string2 ã newstring2, . . .}] replaces string1 
by newstring1, string2 by newstring2, . . . whenever they appear in string.

 StringPosition[string, substring] returns a list of the start and end positions of all occurrances 
of substring within string. (Lists are discussed in detail in Chapter 3.)

EXAMPLE 36

string1 = "abcdefg";

string2 = "123";

StringInsert[string1,string2, 3]

ab123cdefg

StringInsert[string1, string2, –3]

abcde123fg

StringInsert[string1, string2, {1, 3, 5, 7}]

123ab123cd123ef123g

StringReplace[string1, "ab" ã "AB"]

ABcdefg

StringReplace[string1, {"ab" ã "AB", "fg"  ã "FG"}]

ABcdeFG
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EXAMPLE 37

string = "abcxabcxxabcxxxabc";

StringLength[string]

18

StringPosition[string, "abc"]

{{1, 3}, {5, 7}, {10, 12}, {16, 18}}

2.5 Assignment and Replacement
All programming languages must have the ability to make assignments in order to transfer the result of a 
calculation to a symbol which can be recalled for later use. Mathematica offers two types of assignment 
and there is often confusion as to which one to use in a given situation.

 lhs = rhs is an immediate assignment in which rhs is evaluated at the time the assignment is 
made.

 lhs  rhs is a delayed assignment in which rhs is evaluated each time the value of lhs is called.

In many situations both assignments produce identical results. There are, however, a few instances 
where one must be careful. The following examples use ideas that are discussed in later chapters. They are 
self-explanatory, however, and will be easily understood. 

EXAMPLE 38 When defining functions recursively,  must be used. For example,

f[0]= 1;

f[n_] n f[n–1]

produces n factorial. Since Mathematica cannot compute f[n] until the value of n is specified, the delayed assignment,  
,must be used. Using = causes recursion errors.

f[5]

120

f[10]

3 628 800

EXAMPLE 39 When defining piecewise functions, one must use . For example, 

g[x_] x2 /; x ê 0 ← /; is a conditional. Assignment will be made only if x ≥ 0.

g[x_] – x2 /; x < 0

g[3]

9

g[–3]

–9

Using = would cause trouble, as Mathematica cannot determine which branch should be taken until a 
value of x is supplied.

EXAMPLE 40 You may think that the  assignment is more general and can be safely used in any given situation. 
This is true to a certain extent, but there are times when one should use =. As an extreme, but reasonable, example, 
let us define

F[x_]: t Exp[t] Sin[t] t
0

x

= ∫

Each time a value of F is computed, Mathematica performs several “integration by parts” evalu-
ations. Now imagine that many different values of F  are needed, for example in the instruction 


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Plot[F[x],{x,0,4}]. This plots F[x] from 0 to 4 using many points. Every time the value of F is 
computed, the integral is evaluated—from scratch—applying integration by parts each time. The result is 
a lengthy delay in displaying the graph. Using = causes the graph to be displayed more quickly.

F[x_]:= t Exp[t] Sin[t] t
0

x

∫
 

F[x_]= t Exp[t] Sin[t] t
0

x

∫ ;

Plot[F[x], {x,0,1}]//Timing Plot[F[x], {x,0,1}]//Timing

{16.203, }

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

0.6

{0.016, }

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

0.6

Note the significant difference in time required to plot this function.

Often, you will want to evaluate an expression without assigning a value to a symbol. This can be done 
with the ReplaceAll (/.) replacement operator.

 expression /. rule applies a rule or list of rules to each subpart of expression.

EXAMPLE 41 Suppose we want to evaluate x2 + 5x + 6 when x = 3, but do not want to assign a value to x. 

Clear[x]

x2 + 5x + 6 /. x ã 3

30

?x

Global `x

(x is left undefined)

/. can also be used to replace an expression by another expression. Several replacements can be made 
at the same time if braces are used.

EXAMPLE 42

2 x + 3 +(2 x + 3) /. 2 x + 3 3 y + 52 →

3 y + 5 + (3 y + 5)2

EXAMPLE 43

x + y2 /. {y ã x, x ã y}

x +y2

SOLVED PROBLEMS

2.41 The Mathematica command Expand[expression], which is discussed in Chapter 7, expands 
expression algebraically. Define two symbols, a and b, as Expand[(x + 1)^3], using = and , 
respectively. Then let x = u + v and compute a and b.

 
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SOLUTION

a = Expand[(x + 1)^3]

1 + 3 x + 3 x2 + x3 ← Expansion occurs immediately.

b  Expand[(x + 1)^3] ← Expansion does not occur until b is called.

x = u + v;

a

1 + 3 (u + v)+3 (u + v)2 + (u + v)3     ← u + v replaces x after expansion.

b

1 + 3 u + 3 u2 + u3 + 3 v + 6 u  v + 3 u2  v + 3 v2 + 3 u v2 + v3 ←  u + v replaces x before expansion.

2.42 The command Together, which is discussed in Chapter 7, combines the sum or difference of 
two or more fractions into one fraction. Define two symbols, y and z, as Together[a+b] using, 
respectively, = and  . Then let a = 1/x and b = 1/(x+1)and compute y and z.

SOLUTION

y = Together[a + b]

a + b ← At this point a and b are not fractions so Together does nothing.

z  Together[a + b]

a = 1/x;

b = 1/(x + 1);

y

1
x
+ 1
1+x

  ←  Since Together was executed prior to the introduction 
of the fractions, the result is the sum of a and b.

z

1+2x
x(1+x)

  ←  Together is executed after the fractions are introduced so 
the fractions are combined into one.

2.43 The Mathematica command Factor[expression] attempts to factor the algebraic expression, 
expression. Type a = Factor[poly] and b  Factor[poly]. Then let poly = x2 + 2x + 1. 
Compute a and b and explain the difference in output.

SOLUTION

a = Factor[poly];

b  Factor[poly];

poly = x2 + 2 x + 1;

a

1 + 2 x + x2

b

(1 + x)2

 Since a is computed before poly is defined, its value is the factored form of the symbol poly, which 
is just poly. Then poly is replaced by x2 + 2 x + 1. On the other hand, b is not evaluated until 
called in the next to last line, so Mathematica factors the polynomial.

2.44 Replace x with x2 + 2x + 3 in the expression x2 + 5x + 6.

SOLUTION

x2  
+

 
5

 
x

 
+

 
6  /.  

x
 →  

x2  
+

 
2

 
x

 
+

 
3 

6  +5(3  +  2  x  +  x2)+(3  +  2  x  +  x2)2 
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2.45 Replace y with x + 1 and z with x + 2 in the expression (x + y + z)2.

SOLUTION

(x + y + z)2 /. {y → x + 1, z → x + 2}

(3 + 3 x)2 

2.6 Logical Relations
Do not confuse = with , a “logical” equality. lhs  rhs is True if and only if lhs and rhs have the 
same value; otherwise it is False. Logical equalities are used extensively in connection with equation 
solving (Chapter 6).

Other logical relations are available. The following list summarizes them.

 Equal[x, y] or x  y is True if and only if x and y have the same value.
 Unequal[x, y] or x!= y or x ≠ y is True if and only if x and y have different values.
 Less[x, y] or x < y is True if and only if x is numerically less than y.
 Greater[x, y] or x > y is True if and only if x is numerically greater than y.
 LessEqual[x, y] or x <= y or x ≤ y is True if and only if x is numerically less than y or equal 

to y.
 GreaterEqual[x, y] or x >= y or x ≥ y is True if and only if x is numerically greater than y 

or equal to y.

Note that Equal and Unequal can be used for comparing both numerical and certain non-numerical quan-
tities, while Less, Greater, LessEqual, and GreaterEqual are strictly numerical comparisons.

EXAMPLE 44

1  2 1 != 2 1 <= 2 a + a  2a

False True True True

22 2 != 2 2 <= 2 a < a

True False True a < a

Mathematica also includes the following logical operations:

 And[p, q] or p && q or p ∧ q is True if both p and q are True; False otherwise. 
 Or[p,q ] or p || q or p ∨ q is True if p or q (or both) are True; False otherwise.
 Xor[p, q] is True if p or q (but not both) are True; False otherwise.
 Not[p] or !p or ¬p is True if p is False and False if p is True.
 Implies[p, q] or p ⇒ q is False if p is True and q is False; True otherwise. 

Note: ⇒ can be obtained with the key sequence [ ESC ], [ = ], [ > ], [ ESC ].

Logical expressions can be compared using LogicalExpand. 

 LogicalExpand[expression] applies the distributive laws for logical operations to expression 
and puts it into disjunctive normal form.

EXAMPLE 45 Use Mathematica to verify the distributive law: p∧(q∨r) = (p∧q)∨(p∧r).

lhs = p && (q || r);

rhs = (p && q)||(p && r);

lhs  rhs

(p && (q || r))(p && q || p && r)

LogicalExpand[lhs] LogicalExpand[rhs]

True

No conclusion can be drawn since 
a is undefined.
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SOLVED PROBLEMS

2.46 Use Mathematica to verify De Morgan’s laws:
¬ ( p ∧ q )  =  ¬ p ∨ ¬ q and ¬ ( p ∨ q )  =  ¬ p  ∧ ¬ q  

SOLUTION

LogicalExpand[! (p && q)] LogicalExpand[!p || ! q] 

True

LogicalExpand[! (p || q)] LogicalExpand[! p && ! q]

True

2.47 Show that ((p ∧ q) ∨ (p ∧ ¬q)) ∨ ((¬p ∧ q) ∨ (¬p ∧ ¬q)) is a tautology.

SOLUTION

LogicalExpand[((p && q) || ( p &&!q)) || ((!p && q)||(!p && !q))]

True

2.7 Sums and Products
Sums and products are of fundamental importance in mathematics, and Mathematica makes their computa-
tion simple. Unlike other computer languages, initialization is automatic and the syntax is easy to apply, 
particularly if the Basic Math Input palette is used. Any symbol may be used as the index of summation. 
(i is used in the following description.) Negative increments are permitted wherever increment is 
used.

 Sum[a[i],{i,imax}] or a[i]
i=1

imax

∑  evaluates the sum ai
i

i

=
∑

1

max

 Sum[a[i],{i,imin,imax}] or a[i]
i=imin

imax

∑  evaluates the sum ai
i i

i

=
∑

min

max

 Sum[a[i],{i,imin,imax, increment}] evaluates the sum ai
i i

i

=
∑

min

max

 in steps of increment. 
Summation continues as long as i ≤ imax.

EXAMPLE 46 To compute the sum of the squares of the first 20 consecutive integers, we can type

Sum[i^2, {i,1,20}] or i2
i=1

20

∑
2870

EXAMPLE 47 Compute the sum 1
15

1
17

1
19

1
51+ + + +. . . .

Sum[1/i, {i,15,51,2}] 

63 501 391 475 806 044 193
96 845 140 757 687 397 075

 NSum has the same syntax as Sum and works in a similar manner to yield numerical approximations.

EXAMPLE 48 Approximate the sum 1
15

1
17

1
19

1
51+ + + +. . . .

NSum[1/i, {i, 15, 51, 2}] 

0.6557

The limits of a sum can be infinite. Mathematica uses sophisticated techniques to evaluate infinite 
summations.

Note: Even though Mathematica allows the form 
Sum[i^2,{i,20}], the use of the initial index, 1, 
is recommended for clarity.



CHAPTER 2  Basic Concepts 45

EXAMPLE 49 Compute 1
1

1
4

1
9

1
16+ + + ⋅⋅ ⋅+

Sum[1/i^2,{i, 1, Infi nity}] or 1
i2

i=1
∑

π 2

6

Double sums can be computed using the following syntax or, more conveniently, by clicking twice on 
the ∑ symbol in the Basic Math Input palette. The syntax extends in a natural way to triple sums, qua-
druple sums, and so forth.

 Sum[a[i,j],{i,imax},{j,jmax}] or a[i, j]
j=1

jmax

i=1

imax

∑∑  evaluates the sum ai j
j

jmax

i

imax

,
==

∑∑
11

 Sum[a[i,j],{i,imin,imax},{j,jmin,jmax}] or a[i, j]
j=jmin

jmax

i=imin

imax

∑∑  evaluates the sum

 ai j
j jmin

jmax

i imin

imax

,
==
∑∑

 Sum[a[i,j],{i,imin,imax,i_increment},{j,jmin,jmax, j_increment}] evaluates

 the sum ai j
j jmin

jmax

i imin

imax

,
==
∑∑  in steps of i_increment and j_increment. 

 NSum, with identical syntax, returns numerical approximations to each of the sums described in 
Sum.

EXAMPLE 50 Compute the value of  

1
1

1
2

1
3

1
4

2
1

2
2

2
3

2
4

3
1

3
2

3
3

3
4+ + +( ) + + + +( ) + + + +( )

Sum[i/j,{i,1,3},{j,1,4}]  or  i
j

j=1

4

i=1

3

∑∑
25
2

Just as Sum computes sums, the Mathematica function Product computes products. Its syntax is 
much the same as Sum.

 Product[a[i],{i,imax}] or a[i]
i=1

imax

∏  evaluates the product ai
i

imax

=
∏

1

 Product[a[i],{i,imin, imax}] or a[i]
i=imin

imax

∏  evaluates the product ai
i imin

imax

=
∏

 Product[a[i],{i,imin,imax,increment}] evaluates the product ai
i imin

imax

=
∏  in steps of 

increment. 
 NProduct, with identical syntax, returns numerical approximations to each of the products 

described in Product.

Multiple products are also easily computed. The syntax for a double product is listed in the following, 
but the concept extends to triple products and higher.

 Product[a[i,j],{i,imax},{j,jmax}] or a[i, j]
j=1

jmax

i=1

imax

∏∏  evaluates the product 

ai j
j

jmax

i

imax

,
==

∏∏
11

 Product[a[i,j],{i,imin,imax},{j,jmin,jmax}] or a[i, j]
j=jmin

jmax

i=imin

imax

∏∏  evaluates the

 product ai j
j jmin

jmax

i imin

imax

,
==
∏∏

 Product[a[i,j],{i,imin,imax,i_increment},{j,jmin,jmax, j_increment}]

 evaluates the product ai j
j jmin

jmax

i imin

imax

,
==
∏∏  in steps of i_increment and j_increment. 
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EXAMPLE 51 Compute the product of the consecutive integers 4 through 9.

Product[i, {i, 4, 9}] or i
i=4

9

∏
60  480

EXAMPLE 52 The binomial coefficient C n k n
k n k

( , ) !
!( )!= −  can be expressed as n

k
n
k

n
k

n k( ) −
−( ) −

−( ) − +( )1
1

2
2

1
1. . .  

for more efficient computation. Use this representation to compute C(10, 4).

n = 10;

k = 4;

Product[(n – i)/(k – i), {i, 0, k – 1}] or n-i
k-i

i=0

k-1

∏
210

SOLVED PROBLEMS

2.48 Compute the sum of the first 25 prime numbers.

SOLUTION

Sum[Prime[k], {k, 1, 25}] or Prime[k]
k=1

25

∑
1060

2.49 Compute the square root of the sum of the squares of the integers 15 through 30, inclusive.

SOLUTION

Sqrt[Sum[k^2, {k, 15, 30}]] or k2

k=15

30

∑
6 10

2.50 Compute the infinite sum 1 1
2

1
4

1
8

1
16+ + + + + . . .

SOLUTION

Sum[1/2^i, {i, 0, Infinity}] or 1
2i

i=0

∞

∑
2

2.51 Compute the sum 1
2

2
3

3
4

99
100+ + + ⋅ ⋅ ⋅ +

SOLUTION

i
i+1

i=1

99

∑
264 414 864 639 329 557 497 913 717 698 145 082 779 489
2 7788 815 009 188 499 086 581 352 357 412 492 142 272

2.52 Obtain a general formula for the sum of squares of the consecutive integers 1 through n.

SOLUTION

Sum[k^2, {k, 1, n}] or k2

k=1

n

∑
1
6
(n)(1+n)(1+2n)   ← Mathematica has “memorized” these standard formulas.

2.53 Compute the product of the first 20 Fibonacci numbers.

SOLUTION

Fibonacci[i]
i=1

20

∏  or Product[Fibonacci[i], {i, 1, 20}]

9  692  987  370  815  489  224  102  512  784  450  560  000
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2.54 Compute the product of the natural logarithms of the integers 2 through 20. Obtain an approximation 
to 20 significant digits.

SOLUTION

N[Product[Log[i], {i, 2, 20}], 20]

1.3632878207490815857 × 106

2.55 Compute the sum 1 1 1
2 1 1

2
1
3 1 1

2
1
3+ +( ) + + +( ) + + + + +. . . . . . + 11

20( )
SOLUTION

Sum[1/j, {i, 1, 20}, {j, 1, i}] or 1
j

j=1

i

i=1

20

∑∑
41 054 655
739 024

2.56 Compute a numerical approximation of 1 1
2 1 1

2
1
3 1 1

2
1
3+( ) + +( ) + +. . . + . . . + 1

10(( )  

SOLUTION

NProduct[Sum[1/j, {j, 1, i}], {i, 2, 10}] or 1
j

j=1

i

i=2

10

∑∏  //N

1871.44

2.8 Loops
Often you may need to repeat an operation or sequence of operations several times. Although Mathematica 
offers the ability to compute sums and products conveniently using the Sum and Product commands, 
there are times when your work may require the use of looping techniques. Mathematica offers three basic 
looping functions: Do, While, and For.

 Do[expression,{k}] evaluates expression precisely k times.
 Do[expression,{i, imax}] evaluates expression imax times with the value of i changing from 
1 to imax in increments of 1.

 Do[expression,{i, imin, imax}] evaluates expression with the value of i changing from 
imin to imax in increments of 1.

 Do[expression,{i, imin, imax, increment}] evaluates expression with the value of i 
changing from imin to imax in increments of increment.

 Do[expression,{i, imin, imax}, {j, jmin, jmax}] evaluates expression with the value 
of i changing from imin to imax and j changing from jmin to jmax in increments of 1. The 
variable i changes by 1 for each cycle of j. This is known as a nested Do loop.

 Do[expression, {i, imin, imax, i_increment}, 
              {j, jmin, jmax, j_increment},...] 

 forms a nested Do loop allowing for incrimination values other than 1.

The last two forms of the command may be extended to three or more variables.

EXAMPLE 53

Do[Print["This line will be repeated 5 times."], {5}]

This line will be repeated 5 times.
This line will be repeated 5 times.
This line will be repeated 5 times.
This line will be repeated 5 times.
This line will be repeated 5 times.

EXAMPLE 54 This example computes the sum of consecutive odd integers from 5 to 25. (Of course, the Sum 
command is more convenient.)

mysum = 0; 
Do[mysum = mysum + k, {k, 5, 25,2}]
mysum
165

←  Initialization of mysum. This step is important. 
It is not needed if the command Sum is used.
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EXAMPLE 55 This example computes the sum of all fractions whose numerators and denominators are positive 
integers not exceeding 5.

fracsum = 0;

Do[fracsum = fracsum + i/j, {i,1,5},{j,1,5}]

fracsum

137
4

 While[condition, expression] evaluates condition, then expression, repetitively, until condition 
is False.

If expression consists of multiple statements, they are separated by semicolons.

EXAMPLE 56

n = 1; While[n < 6, Print[n]; n ++]

1
2
3
4
5

 For[initialization, test, increment, expression] executes initialization, then repeatedly evaluates 
expression, increment, and test until test becomes False.

After initialization, the order of evaluation is test, expression, and then increment. The For loop 
terminates as soon as test gives False. If initialization, test, increment, or expression consists of multiple 
statements, they are separated by semicolons.

EXAMPLE 57 

For[i = 1, i ≤ 5, i ++, Print[i]]

1
2
3
4
5

Although it is not a loop, the If instruction is often used in conjunction with other loop commands.

 If[condition, true, false] evaluates condition and executes true if condition is True and executes 
false if condition is False.

 If[condition, true] evaluates condition and executes true if condition is True. If condition is 
False no action is taken and Null is returned.

 If[condition,, false] evaluates condition and executes false if condition is False. If condition 
is True no action is taken and Null is returned. (Note the double comma.)

 If[condition, true, false, neither] evaluates condition and executes true if condition is True, ex-
ecutes false if condition is False, and executes neither if condition is neither True nor False.

EXAMPLE 58 

If[2  2,Print["TRUE"],Print["FALSE"],Print["NEITHER"]]

TRUE

If[2  3, Print["TRUE"],Print["FALSE"],Print["NEITHER"]]

FALSE

If[7, Print["TRUE"],Print["FALSE"],Print["NEITHER"]]

NEITHER

n = n+1 may be used in place of  n++
See page 37.

7 is neither True nor False.
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The next example, which separates primes from non-primes, illustrates how the If instruction can be used in a 
Do loop.

EXAMPLE 59

Do[If[PrimeQ[k], Print[k], Print["    ", k]], {k, 1, 20}]
 1
2
3
 4
5
 6
7
 8
 9
 10
11
 12
13
 14
 15
 16
17
 18
19
 20

SOLVED PROBLEMS

2.57 Compute 10! using a Do loop.

SOLUTION

factorial = 1; 

n = 10;

Do[factorial = factorial* k, {k, n}]

factorial

3 628 800

2.58 Compute 10! using a While loop.

SOLUTION

factorial = 1;

n = 10;

While[n > 0, factorial = factorial * n; n --]

factorial

3 628 800

2.59 Compute 10! using a For loop.

SOLUTION

For[factorial = 1; n = 1, n ≤ 10,n++, factorial = n * factorial]

factorial

3 628 800
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2.60 Print all numbers from 1 to 20 which are not multiples of 2, 3, or 5.

SOLUTION

Do[If[Mod[k,2] ñ 0 && Mod[k,3] ñ 0 && Mod[k,5] ñ 0, Print[k]],{k,1,20}]
or

Do[If[Mod[k,2]  0 || Mod[k, 3] 0 || Mod[k, 5]  0 ,, Print[k]], {k, 1, 20}]
1
7
11
13
17
19

2.61 For each number k from 1 to 10, print half the number if k is even and twice the number if k is odd.

SOLUTION

Do[If[EvenQ[k], Print[k/2], Print[2 k]], {k, 1, 10}]
2
1
6
2
10
3
14
4
18
5

2.9 Introduction to Graphing 
The graph of a function offers tremendous insight into the function’s behavior and can be of great value 
in the solution of problems in mathematics. Mathematica offers some very powerful graphics commands 
that are remarkably easy to implement. Although there is a vast array of options available for customization 
of output, in this section we deal only with the most rudimentary forms using Mathematica’s defaults. A 
more detailed discussion of graphics commands appears in Chapters 4 and 5.

The Plot command plots a two-dimensional graph of a function.

 Plot[f[x], {x, xmin, xmax} plots a two-dimensional graph of the function f(x) on the interval 
xmin ≤ x ≤ xmax.

 Plot[{f[x],{g[x]}, {x, xmin, xmax}]plots two functions on one set of axes. This extends 
in a natural way to three or more functions.

EXAMPLE 60 Plot the graph of y = x2 on the interval –5 ≤ x ≤ 5.

Plot[x2, {x, –5, 5}] 

–4 –2 2 4

5

10

15

20

25
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EXAMPLE 61 Plot the functions y = x2 and y = 2x + 10, –5 ≤ x ≤ 5, on the same set of axes. 

Plot[{x2, 2 x + 10},{x, –5, 5}] 

–4 –2 2 4

5

10

15

20

25

SOLVED PROBLEMS

2.62 Sketch the graphs of y = x2, y = x3, and y = x 4, 0 ≤ x ≤ 1, on the same set of axes.

SOLUTION

Plot[{x2, x3, x4},{x, 0, 1}]

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

2.63 Sketch the graphs of the functions y = –x, y = x, and y = x sin x on the interval –6π ≤ x ≤ 6π on one 
set of axes.

SOLUTION

Plot[{x, –x, x Sin[x]},{x, –6π, 6π}]

–15 –10 –5 5 10 15

–15

–10

–5

5

10

15
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2.64 Sketch the graphs of the functions y x y x y x
x

= − = = ( )2 2 2 1, , sinand  on the interval [–.02, .02] on one 
set of axes.

SOLUTION

Plot[ –x , x , x Sin[1/x], x, –.02, .02 ]{ { }2 2 2

–0.02 –0.01 0.01 0.02

–0.0004

–0.0002

0.0002

0.0004

2.10 User-Defined Functions
Suppose we want to define a function, f, of a single variable. If x is the independent variable, we write

f[x_] = . . . . .
or f[x_] . . . . .

where the right-hand side of the definition tells Mathematica how to compute the value of f for a given value 
of x. All legitimate Mathematica operations, including references to built-in functions, are acceptable.

Note the underscore immediately to the right of the x on the left-hand side of the definition. This is 
crucial. It is the only way Mathematica knows that x is a “dummy” variable and can be replaced by any 
expression, numerical or symbolic.

EXAMPLE 62

f[x_]= x2 + x3; 

f[2]

12

f[2 x]

4 x2 + 8 x3

f[Exp[x]]

2x + 3x

f[k]

λ2 + λ3 

A “piecewise” function can be defined using the /; conditional. Simply put, 

f[x_] expression /; condition

assigns f[x] the value expression if and only if condition is true. Note: In this application, the  assignment 
must be used.
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EXAMPLE 63 We define the function f x
x x

x x
( ) =

≤

− >

⎧
⎨
⎪

⎩⎪

2 2

8 2 2

if

if
f[x_]x2 /; x  Ä  2

f[x_]8 – 2x /; x > 2

f[–4]

16

f[4]

0

Plot[f[x], {x, 0, 4}]

1 2 3 4

1

2

3

4

Functions are sometimes defined recursively. One or several values of the function are specified and 
later values are defined in terms of their predecessors. 

EXAMPLE 64 The Fibonacci sequence can be defined recursively by defining f(1) = 1, f(2) = 1, and 
f(n) = f(n – 2) + f(n – 1) for n ≥ 3. We will compute the 35th Fibonacci number using this definition.

f[1]= 1;

f[2]= 1;

f[n_]  f[n – 2]+ f[n – 1]

f[35]

9  227  465

You may have noticed a long pause in the calculation of this number. To see this more precisely, we will 
time the operation. (Your times may be slightly different, depending upon your computer.)

f[35]//Timing

{49.422,9 227 465}

Intermediate calculations have not been stored. Each computation of f[n] necessitates the compu-
tation of f[n–2] and f[n–1], each of which causes all values of f down to f[3] to be computed. 
Since each intermediate value of f is computed recursively based upon the values of f[1] and f[2], 
the result is that it takes an extremely large number of iterations to compute f[35]. To eliminate this 
problem, we can store each value of f in memory as it is computed. The values can then be recalled 
almost instantaneously.

Note the use of  here. This is important. Experiment 
and see what happens if = is used.
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EXAMPLE 65 

f[1] = 1;

f[2] = 1;

f[n _]  f[n] = f[n – 2] + f[n – 1]

f[35]//Timing

{0., 9 227  465}

Functions of two or more variables can be defined in an analogous manner. The syntax is self-explanatory.

EXAMPLE 66 EXAMPLE 67

f[x_, y_] = x2 + y3; g[x_, y_, z_] = x + y * z;

f[2, 3] g[2, 3, 4]

31 14

f[3, 2]

17

SOLVED PROBLEMS

2.65 Define f(x) to be the polynomial x5 + 3x4 – 7x2 + 2 and compute f(2).

SOLUTION

f[x_]
 
=

 
x5  

+
 
3x4 

–
 
7x2  

+
 
2

2  –  7x2 +  3x4 +  x5

f[2]

54

2.66 Let f x

x x

x x

x x

( ) =

− ≤

< ≤

− >

⎧

⎨
⎪⎪

⎩

if

if

if

0

0 3

18 3 3

2

⎪⎪
⎪

 Sketch the graph of f(x) for –6 ≤ x ≤ 6.

SOLUTION

f[x_]  –x /; x ≤ 0

f[x_]  x2 /; 0 < x ≤ 3

f[x_]  18 – 3x /; x > 3

Plot[f[x], {x, –6, 6}]

←  This causes Mathematica  to store each f[n] value.  
Type ?f after computing f[35] to confirm this.

–6 –4 –2 2 4 6

2

4

6

8
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2.67 If f(x) is defined on an interval [a, b], the periodic extension of f with period T = b – a is the function 
F such that 

F x
f x a x b

f x T
( )

( )

( )
=

≤ ≤

−

⎧
⎨
⎪

⎩⎪

if

otherwise

 Let f(x) = x2 if  –1 ≤ x ≤ 1. Plot the periodic extension of f with period 2 from x = 0 to x = 10.

SOLUTION

f[x_]= x2;

F[x_] f[x]/; –1 ≤ x ≤ 1
F[x_] F[x–2]/; x > 1

Plot[F[x],{x, 0, 10}]

2.68 Define the function f(n): 

f

f

f

f n f n f n f n

( )

( )

( )

( ) ( ) ( ) ( )

1 1

2 2

3 3

3 2 3

=

=

=

= − + − + −

⎧⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪ ≥if n 4

 
 Compute f(20).

SOLUTION

Clear[f]

f[1]= 1;

f[2]= 2;

f[3]= 3;

f[n_] f[n]= f[n – 3]+ f[n – 2]+ f[n – 1];

f[20]

101 902

2.69 Define a function that represents the distance from the point (x, y) to (3, 4) and compute the value of 
the function at the point ( 5, –3).

SOLUTION

f[x_, y_]= (x – 3) + (y – 4) ;2 2

f[5, –2]

2 10

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0
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2.70 Define a function that represents the distance between the points (x1, y1) and (x2, y2) and use it to 
compute the distance from (2, 3) to (8, 11).

SOLUTION

d[x1_, y1_, x2_, y2_]= (x2 – x1) + (y2 – y1)2 22;  

d[2, 3, 8, 11]

10

2.71 The area enclosed by a triangle whose sides have length a, b, and c is given by Heron’s formula:

K s s a s b s c= − − −( )( )( )

 where s a b c= + +
2 . Express the area of a triangle as a function of a, b, and c and compute the area 

of the triangle whose sides are (a) 3, 4, 5 and (b) 5, 9, 12

SOLUTION

s = a + b +c
2

;

k[a_, b_, c_]= s (s – a)(s – b)(s – c);

k[3, 4, 5]

6

k[5, 9, 12]

4 26

2.11 Operations on Functions
If f and g are two functions with the same domain, D, we define their sum, difference, product, and quotient 
pointwise, that is, 

 (f + g )(x) = f(x) + g(x)  for all x in D
 (f – g )(x) = f(x) – g(x) for all x in D
 (fg)(x) = f(x) g(x) for all x in D
 (f/g)(x) = f(x)/g(x) for all x in D for which g(x) ≠ 0

If x is a number in the domain of g such that g(x) is in the domain of f, we define the composite 
function fog:

 (fog)(x) = f(g(x) ) 

The function go f  can be defined in a similar manner. The following example illustrates how to construct 
these functions.

EXAMPLE 68

f[x_]= x ;

g[x_]= x2 + 2 x + 3;

h1[x_]= f[x]+ g[x]

3+ x + 2 x + x2

h2[x_]= f[x]– g[x]

-3+ x -2 x - x2

h3[x_]= f[x]g[x]

x(3+ 2 x + x )2
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h4[x_]= f[x]/g[x]

x
3+ 2 x + x2

h5[x_]= f[g[x]]

3+ 2 x + x2

h6[x_]= g[f[x]]

3+ 2 x + x

The composition of two or more functions can be accomplished with the Composition command. 
Note that Composition is a functional operation and as such, its arguments are functions, f, not 
f[x].

 Composition[f1, f2, f3, ...] constructs the composition f1 o f2 o f3...

EXAMPLE 69 

f[x_] = x ;

g[x_] = x2 + 2 x + 3;

h1 = Composition[f, g];

h1[x]

3+ 2 x + x2

h2 = Composition[g, f];

h2[x]

3+ 2 x + x

If we wish to compute the composition of a function with itself we could, of course, use Composition[f, f], 
Composition[f, f, f], and so forth. A more convenient tool is Nest or NestList.

 Nest[f, expression, n] applies f to expression successively n times.
 NestList[f, expression, n] applies f to expression successively n times and returns a list of 

all the intermediate calculations from 0 to n. (Lists are discussed in detail in Chapter 3.)

EXAMPLE 70 

f[x_]= x2;

Nest[f, x, 5]

x32

NestList[f, x, 5]

{x, x2, x4, x8, x16, x32}

Nest[f, 2 x + 3, 5]

(3 + 2 x)32

NestList[f, 2 x + 3, 5]

{3 + 2 x, (3 + 2 x)2, (3 + 2 x)4, (3 + 2 x)8, (3 + 2 x)16, (3 + 2 x)32}

EXAMPLE 71 The function Framed[symbol] draws a frame around symbol. We can use Nest and NestList 
to show the effect of repetitive framing.
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Nest[Framed,x,10] 

SOLVED PROBLEMS

2.72 If f(x) = sin x + 2 cos x and g(x) = 2 sin x – 3 cos x, construct (  f + g) (x), (  f – g) (x), (  f g) (x), and 
(  f /g) (x) and evaluate them at π /2.

SOLUTION

f[x_]= Sin[x]+ 2 Cos[x];

g[x_]= 2 Sin[x]– 3 Cos[x];

h1[x_]= f[x]+ g[x]

–Cos[x]+ 3 Sin[x]

h2[x_]= f[x]– g[x]

5 Cos[x]– Sin[x]

h3[x_]= f[x] g[x]

(2 Cos[x]+ Sin[x])(–3 Cos[x]+ 2 Sin[x])

h4[x_]= f[x]/g[x]

2Cos[x] + Sin[x]
–3Cos[x] + 2Sin[x]

h1[π/2]
3

h2[π/2]
–1

h3[π/2]
2

h4[π/2]
1
2

2.73 Let f x x( ) = +1 . Compute (  fofofofof )(x).

SOLUTION

f[x_]= 1+x ;

Nest[f, x, 5]

1+ 1+ 1+ 1+ 1+x

NestList[Framed,x,10]
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2.74 Let f x
x

( ) = +
1

1
. Let f x f f f xn

n

( ) ( ... )( )= o o o
1 24 34

. Evaluate f x f x f x f x f x( ), ( ), ( ), ( ), ( )and2 3 4 5 . Then evaluate

  f f f f( ), ( ), ( ), , ( )1 1 1 12 3 20. . . .  What do you observe? Convert to a decimal form and approximate 
lim ( )
n

nf
→∞

1 .

SOLUTION

f[x_]= 1
1+x

NestList[f, x, 5]

x, 1
1+x

, 1

1+ 1
1+x

, 1

1+ 1

1+ 1
1+x

, 1

1+ 1

1+ 1

1+ 1
1+x

, 1

1+ 11

1+ 1

1+ 1

1+ 1
1+x

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

NestList[f, 1, 20]

1,1
2
,2
3
,3
5
,5
8
, 8
13
,13
21
,21
34
,55
89
, 89
144

,144
2333

,233
377

,377
610

,610
987

, 987
1597

,1597
2584

,25584
4181

,4181
6765

, 6765
10 946

,10 946
17 711{ }

The numerators (and denominators) appear to be terms of the Fibonacci sequence.

NestList[f, 1, 20] //N

{1.,0.5,0.666667,0.6,0.625,0.615385,0.619048,0.617647,0.618182,0.617978,
 0.618056,0.618026,0.618037,0.618033,0.618034,0.618034,0.618034,
 0.618034,0.618034,0.618034,0.618034}

The numbers appear to be approaching a limit of approximately 0.618034.

2.75 If x is an approximation to a , it can be shown that 1
2 x a

x
+( )  is a better approximation. (This is a

 special case of Newton’s method.) Use NestList to observe the first 10 approximations obtained 
in computing 3 , starting with x = 100.

SOLUTION

a = 3;

f[x_]= 1
2
x + a

x
;( )

NestList[f, 100, 10] // N

{100., 50.015, 25.0375, 12.5787, 6.40858, 3.43835, 2.15543, 1.77363, 
  1.73254, 1.73205, 1.73205}
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Lists

3.1 Introduction
Lists are general objects that contain collections of other objects. In reading this chapter you will see that 
lists are used for a variety of applications. Therefore, Mathematica offers an extensive collection of list 
manipulation commands.

The objects within a list are contained within curly brackets, {}. Alternatively, the List command 
may be used to define a list.

 List[elements] represents a list of objects. elements represents the members of the list separated 
by commas. List[elements] is equivalent to {elements}.

{1, 2, 3, 4} is a list of numbers.  List[1, 2, 3, 4] represents the same list.

EXAMPLE 1

List[a, b, c, d]

{a, b, c, d} ← List[a, b, c, d] is equivalent to {a, b, c, d}.

Lists can be given symbolic names so they can be easily referenced. Any operation performed on a list 
will be performed on each element of the list.

EXAMPLE 2

list = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

1/list

1, , , , , , , , ,1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

1

10{ }
list2

{1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

list

{1, 2, 3, 2, 5, 6, 7, 2 2, 3, 10}

If two or more lists contain the same number of elements, new lists can be created using standard 
operations.

EXAMPLE 3

list1 = {1, 2, 3, 4, 5};

list2 = {2, 3, 2, 3, 2};

list1 + list2
{3, 5, 5, 7, 7}

When executing these instructions, care must be taken 
to use a lowercase l in list to avoid conflict with the 
Mathematica command List.

CHAPTER 3
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list1 * list2
{2, 6, 6, 12, 10}

list1/list2

1
2
,
2
3
,
3
2
,
4
3
,
5
2{ }

list1list2

{1, 8, 9, 64, 25}

The following list commands are simple but extremely useful:

 Total[list] gives the sum of the elements of list.
 Accumulate[list] returns a list having the same length as list containing the successive partial 

sums of list. 
 Max[list] returns the largest number in  list.
 Min[list] returns the smallest number in  list.

EXAMPLE 4

list = {1, 2, 3, 4, 5}

Total[list]
15

Accumulate[list]
{1, 3, 6, 10, 15}

Max[list]
5

Min[list]
1

SOLVED PROBLEMS

 3.1 Construct a list of the factorials of the integers 1 through 10.

SOLUTION

list = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

list!
{1, 2, 6, 24, 120, 720, 5040, 40  320, 362  880, 3  628  800}

 3.2 Construct a list of the first ten positive integer powers of 2.

SOLUTION

list = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

2list

{2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}

 3.3 Construct a list whose elements are the sum of the squares of the first five positive integers added to 
their respective cubes.

SOLUTION

list = (1, 2, 3, 4, 5}

list2 + list3 or list^2 + list^3
{2, 12, 36, 80, 150}
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 3.4 Define list1 = {1, 3, 5, 7, 9} and list2 = {2, 4, 6, 8, 10}. Construct a list whose five 
elements are the products of the entries of the two lists.

SOLUTION

list1 = {1, 3, 5, 7, 9};

list2 = {2, 4, 6, 8, 10};

list1 * list2
{2, 12, 30, 56, 90}

3.2 Generating Lists
The most common lists are lists of equally spaced numbers. The Range command allows convenient 
construction. The values of m, n, and d in the following description need not be integer valued. Negative 
values are acceptable as well.

 Range[n]  generates a list of the first n consecutive integers. 
 Range[m, n] generates a list of numbers from m to n in unit increments. 
 Range[m, n, d] generates a list of numbers from m through n in increments of d. 

EXAMPLE 5

Range[10]
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Range[5, 10]
{5, 6, 7, 8, 9, 10}

Range[25, 5, –2]
{25, 23, 21, 19, 17, 15, 13, 11, 9, 7, 5}

Range[1/3, 1, 1/12]

1
3
, 5
12
, 1
2
, 7
12
, 2
3
, 3
4
, 5
6
, 11
12
, 1{ }

Range[1, 2, .1]
{1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.}

Lists with more complicated structures can be constructed with the Table command. There are several 
different forms. 

 Table[expression, {n}] generates a list containing n copies of the object expression.
 Table[expression, {k, n}] generates a list of the values of expression as k varies from 1 to n.
 Table[expression, {k, m, n}] generates a list of the values of expression as k varies from m 

to n.
 Table[expression, {k, m, n, d}] generates a list of the values of expression as k varies from 
m to n in steps of d.

EXAMPLE 6

Table["Mathematica", {10}]

{Mathematica, Mathematica, Mathematica, Mathematica, Mathematica,  

  Mathematica, Mathematica, Mathematica, Mathematica, Mathematica}

Table[k2,{ k, 10}] 
{1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

Table[1/k,{k, 5, 13}]

1
5
, 1
6
, 1
7
, 1
8
, 1
9
, 1
10
, 1
11
, 1
12
, 1
13{ }

Table[ k ,{k, 5, 13, 2}]

5, 7, 3, 11, 13{ }
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The command Array is useful for defining sequences.

 Array[f, n] generates a list consisting of n values, f[1], f[2],  . . . , f[n]. 
 Array[f, n, r] generates a list consisting of n values, f[i], starting with f[r], i.e., 
f[r], f[r + 1], . . . , f[r + n – 1]. 

EXAMPLE 7

Clear[f]

Array[f, 7]
{f[1], f[2], f[3], f[4], f[5], f[6], f[7]}

Array[f,7,3]
{f[3], f[4], f[5], f[6], f[7], f[8], f[9]}

EXAMPLE 8

f[x_] = x2 + x + 1;

Array[f, 7]
{3, 7, 13, 21, 31, 43, 57}

Array[f, 7, 3]
{13, 21, 31, 43, 57, 73, 91}

Array[f, 7, 0]
{1, 3, 7, 13, 21, 31, 43}      ← The fi rst element is f[0].

Array[f, 7, –2]      ← Negative values are allowed in the third position only.

{3, 1, 1, 3, 7, 13, 21} 

Nested lists are lists that contain lists. For example, 

{{1, 2, 3, 4}, {2, 3, 4, 5}, {3, 4, 5, 6}}

is a nested list of depth two, consisting of three lists, each of which is a list of four integers.  
Nested lists can be generated using the Table and Array commands. All indices have unit increments.

 Table[expression,{m},{n}] generates a two-dimensional list, each element of which is the 
object expression. 

 Table[expression,{i, mi, ni},{j, mj, nj}] generates a nested list whose values are 
expression, computed as j goes from mj to nj and as i goes from mi to ni. The index j varies most 
rapidly. 

 Array[f,{m, n}] generates a nested list consisting of an array of m elements, each of which is an 
array of n elements, whose values are f[i,j] as j goes from 1 to n and i goes from 1 to m. Here 
f is a function of two variables. The second index varies most rapidly.

 Array[f,{m, n},{r, s}] generates a nested list consisting of an array of m elements, each of 
which is an array of n elements. The first element of the first sublist is f[r, s]. 

Each of the previous descriptions extends in a natural way to lists of greater depth.

EXAMPLE 9

Table["Mathematica", {3}, {4}]
{{Mathematica, Mathematica, Mathematica, Mathematica},
   {Mathematica, Mathematica, Mathematica, Mathematica},
   {Mathematica, Mathematica, Mathematica, Mathematica}}

EXAMPLE 10

Table[i + j, i, 1, 3 , j, 1, 5 ]{ } { }

{{2, 3, 44, 5, 6 , 3, 4, 5,} {

i=1
j=1,2,3,4,5

1 2444 3444 6, 7 , 4, 5, 6, 7} {

i=2
j=1,2,3,4,5

1 2444 3444 ,, 8}}
i=3
j=1,2,3,4,5

1 2444 3444
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Table[i + j, i, 1, 5 , j, 1, 3 ]{ } { }

{{2, 3, 44 , 3, 4, 5} { }

i=1
j=1,2,3

i=2
j=1,2,3

1 24 34 1 24 344 1 24 34, 4, 5, 6 , 5, 6, 7{ } { }

i=3
j=1,2,3

i=4
j==1,2,3

i=5
j=1,2,3

, 6, 7, 8{ }}1 24 34 1 24 34

EXAMPLE 11

Clear[f]

Array[f,{3, 4}]
{{f[1,1], f[1,2], f[1,3], f[1,4]}, 
  {f[2,1], f[2,2], f[2,3], f[2,4]}, 
  {f[3,1], f[3,2], f[3,3], f[3,4]}}

EXAMPLE 12

f[x_, y_] = x2 + 3 y

Array[f, {3, 4}]
{{4, 7, 10, 13},{7, 10, 13, 16},{12, 15, 18, 21}}

Array[f, {4, 3}]
{{4, 7, 10},{7, 10, 13},{12, 15, 18},{19, 22, 25}}

Array[f, {4, 3}, {0, 0}]
{{0, 3, 6}, {1, 4, 7}, {4, 7, 10}, {9, 12, 15}}

Often it will be convenient to construct lists of letters and other characters. 

 Characters[string] produces a list of characters in string. 
 CharacterRange["char1", "char2"] produces a list of characters from char1 to char2, based 

upon their standard ASCII values (assuming an American English alphabet). 

EXAMPLE 13

Characters["Mathematica"] 

{M, a, t, h, e, m, a, t, i, c, a}

EXAMPLE 14 

CharacterRange["a","e"]
{ a , b , c , d , e }

CharacterRange[" " ," ~ "]
{ , !, \, #, $, %, &, ‘, (,), *, +, ,, –, ., /, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, :, ;, <, =, >, ?, @, 

A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, [, \\, ], ^, _, `, a, b, 

c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, {, |, }, ~}

Even though the output of Characters and CharacterRange appears to be individual char-
acters, in actuality they are strings of length 1. By Mathematica’s convention, quotation marks are not 
printed. 

EXAMPLE 15

digits = CharacterRange["0"," 9"]
{0, 1, 2, 3, 4, 5, 6,  7, 8, 9}    ←  These are not numbers but strings of characters of length 1.

FullForm[digits]
List["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]
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SOLVED PROBLEMS

 3.5 Construct a list of the positive multiples of 7 that do not exceed 100.

SOLUTION 1

Range[7, 100, 7]
{7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98}

SOLUTION 2

Table[7 k,{k, 1, 14}]
{7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98}

 3.6 Construct a list of the first ten prime numbers.

SOLUTION 1

Table[Prime[k], {k, 1, 10}]
{2, 3, 5, 7, 11, 13, 17, 19, 23, 29}

SOLUTION 2

Array[Prime, 10]
{2, 3, 5, 7, 11, 13, 17, 19, 23, 29}

SOLUTION 3

Prime[Range[10]]
{2, 3, 5, 7, 11, 13, 17, 19, 23, 29}

 3.7 Construct a list of the reciprocals of the first ten even integers.

SOLUTION 1

Table[1/k, {k, 2, 20, 2}]

1
2
, 1
4
, 1
6
, 1
8
, 1
10
, 1
12
, 1
14
, 1
16
, 1
18
, 1
200{ }

SOLUTION 2

1
Range[2,20,2]

1
2
, 1
4
, 1
6
, 1
8
, 1
10
, 1
12
, 1
14
, 1
16
, 1
18
, 1
200{ }

 3.8 Construct a list of five objects, each of which is a list consisting of six integers. The first list is to contain 
the first six multiples of 2, the second, multiples of 3, the third, multiples of 4, and so forth.

SOLUTION 1

Table[i * j, {i, 2, 6}, {j, 1, 6}]
{{2, 4, 6, 8, 10, 12},{3, 6, 9, 12, 15, 18}, {4, 8, 12, 16, 20, 24}, 
 {5, 10, 15, 20, 25, 30}, {6, 12, 18, 24, 30, 36}}

SOLUTION 2

Array[Times, {5, 6}, {2, 1}]  
{{2, 4, 6, 8, 10, 12},{3, 6, 9, 12, 15, 18}, {4, 8, 12, 16, 20, 24}, 
 {5, 10, 15, 20, 25, 30}, {6, 12, 18, 24, 30, 36}}

Times[x, y]= x * y
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 3.9 Let p(x) = x2 – 8x + 10. Construct a list of values of p(x) for x = 1, 2, 3, . . . , 10. 

SOLUTION 1

p[x_] = x2 – 8 x + 10;

Array[p, 10]
{3, –2, –5, –6, –5, –2, 3, 10, 19, 30}

SOLUTION 2

p[x_] = x2 – 8 x + 10;

p[Range[10]]
{3, –2, –5, –6, –5, –2, 3, 10, 19, 30}

3.10 Approximate the sum of the square roots of the first 100 positive integers.

SOLUTION

Total[Sqrt[Range[100]]]  //N
671.463

3.3 List Manipulation 

 Length[list] returns the length of list, i.e., the number of elements in list. 
 First[list] returns the element of list in the first position. 
 Last[list] returns the element of list in the last position. 

EXAMPLE 16

list = {a, b, c, d, e, f, g};

Length[list]
7

First[list]
a

Last[list]
g

The function Part returns individual elements of a list.

 Part[list, k]  or  list[[k]] returns the kth element of list.
 Part[list, –k]  or  list[[–k]] returns the kth element from the end of list. 

Note: Part[list, 1] and  Part[list, –1] are equivalent to First[list] and  Last[list], 
respectively.

EXAMPLE 17 

list = {a, b, c, d, e, f, g};

Part[list, 1] or list[[1]]
a

Part[list, 3] or list[[3]]
c

Part[list, –3]   or list[[–3]]
e

Part[list, –1] or list[[–1]]
g

Lists may be nested. The elements of a list may themselves be lists.
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EXAMPLE 18

list = {{a, b, c, d}, {e, f, g, h}, {i, j, k, l}};

First[list]
{a, b, c, d}

Last[list]
{i, j, k, l}

list[[2]]
{e, f, g, h}

Since list[[2]] is itself a list, its third entry, for example, can be obtained as list[[2]][[3]] 
(the third entry of the second list). For convenience, this can be represented as list[[2, 3]] or 
Part[list, 2, 3].  Part[Part[list, 2], 3]can also be used, but is somewhat clumsy.

 Part[list, m, n] or list[[m, n]] returns the nth  entry of the mth element of list, provided 
list has depth at least 2.

This command extends to lists of depth greater than 2 in a natural way provided the Part specification 
does not exceed the depth of the list.

EXAMPLE 19

list = {{a, b, c, d}, {e, f, g, h}, {i, j, k, l}};

list[[2]][[3]]
g

list[[2, 3]]
g

Part[list, 2, 3]
g

Part[Part[list, 2], 3]
g

Lists can be modified several different ways. If list is any list of objects,

 Rest[list] returns list with its first element deleted.  
 Take[list, n] returns a list consisting of the first n elements of list. 
 Take[list, {n}] returns a list consisting of the nth element of list.
 Take[list, –n] returns a list consisting of the last n elements of list. 
 Take[list, {–n}] returns a list consisting of the nth element from the end of list. 
 Take[list, {m, n}] returns a list consisting of the elements of list in positions m through n 

inclusive. 
 Take[list, {m, n, k}] returns a list consisting of the elements of list in positions m through n in 

increments of k. 

EXAMPLE 20

list = {a, b, c, d, e, f, g};

Rest[list]
{b, c, d, e, f, g}

Take[list, 3]
{a, b, c}

Take[list, –3]
{e, f, g}

Take[list, {3}]
{c}
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Take[list, {–3}]
{e}

Take[list, {2, 5}]
{b, c, d, e}

Take[list, {1, 5, 2}]
{a, c, e}

Elements can be deleted from a list by using the Delete command.

 Delete[list, n] deletes the element in the nth position of list. 
 Delete[list, –n] deletes the element in the nth position from the end of list.
 Delete[list, {{p1}, {p2},...}] deletes the elements in positions p1,  p2, ... 

EXAMPLE 21

list = {a, b, c, d, e, f, g};

Delete[list, 3]
{a, b, d, e, f, g}

Delete[list, –3]
{a, b, c, d, f, g}

Delete[list,{{2}, {5}, {6}}]
{a, c, d, g}

Delete can also be used for lists of greater depth.

 Delete[list,{p, q}] deletes the element in position q of part p.
 Delete[list,{{p1, q1},{p2, q2}, . . .] deletes the elements in position q1 of part p1, 

position q2 of  part p2, . . .

This command extends in a natural way to lists of greater depth.

EXAMPLE 22

list = {{ 1, 2, 3}, {4, 5}, {6, 7, 8, 9}};

Delete[list, 2]
{{1, 2, 3},{6, 7, 8, 9}}

Delete[list, {3, 2}]
{{1, 2, 3}, {4, 5}, {6, 8, 9}}    ←  The second element of the third sublist is deleted.

Delete[list, {{1, 2}, {3, 3}}]
{{1, 3}, {4, 5}, {6, 7, 9}}            ←  The second element of the fi rst sublist and the third element of 

the third sublist are deleted.

The function Drop is similar to Delete and allows a little more flexibility.

 Drop[list,  n] returns list with its first n objects deleted. 
 Drop[list, –n] returns list with its last n objects deleted. 
 Drop[list, {n}] returns list with its nth object deleted. 
 Drop[list, {–n}] returns list with the nth object from the end deleted. 
 Drop[list, {m, n}] returns list with objects m through n deleted. 
 Drop[list, {m, n, k}] returns list with objects m through n in increments of k deleted. 

Note: Drop[list, {n}] is equivalent to Delete[list, n] and Drop[list, {–n}] is equivalent to 
Delete[list, –n].

EXAMPLE 23

list = {a, b, c, d, e, f, g};

Drop[list, 2]
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{c, d, e, f, g}

Drop[list, –2]
{a, b, c, d, e}

Drop[list, {2}]
{a, c, d, e, f, g}

Drop[list, {–2}]
{a, b, c, d, e, g}

Drop[list, {2, 4}]
{a, e, f, g}

Drop[list, {1,7,2}]
{b, d, f} 

There are a variety of list functions that allow elements to be inserted into a list.

 Append[list, x] returns list with x inserted to the right of its last element. 
 Prepend[list, x] returns list with x inserted to the left of its first element. 
 Insert[list, x, n] returns list with x inserted in position n. 
 Insert[list, x, –n] returns list with x inserted in the nth  position from the end. 

If list has a depth of 2, the following form can be used to insert elements:  

 Insert[list, x,{m, n}] returns list with x inserted in the nth position of the mth entry in the outer 
level.

This command extends in a natural way to lists of greater depth.

EXAMPLE 24

list = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

Append[list, x]
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, x}

Prepend[list, x]
{x, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Insert[list, x, 4]
{1, 2, 3, x, 4, 5, 6, 7, 8, 9, 10}

Insert[list, x, –4]
{1, 2, 3, 4, 5, 6, 7, x, 8, 9, 10}

EXAMPLE 25

list = {{1, 2, 3}, {4, 5}, {6, 7, 8, 9}};

Insert[list, x, {3, 2}]
{{1, 2, 3},{4, 5},{6, x, 7, 8, 9}}

Objects in a list can be replaced by other objects using ReplacePart.

 ReplacePart[list, x, n] replaces the object in the nth position of list by x. 
 ReplacePart[list, x, –n] replaces the object in the nth position from the end by x.

ReplacePart can also be invoked using the following syntax, which allows a bit more flexibility:

 ReplacePart[list, i → new] replaces the ith part of list with new.
 ReplacePart[list, {i1 → new1,i2 ã  new2,...,in→  newn}] replaces parts  i1, i2,...,in 

with  new1, new2 , . . ., newn, respectively.
 ReplacePart[list,{{i1},{i2},...,{in}} →  new] replaces all elements in positions 
i1, i2,...,in with new.
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If list has a depth of 2, the following form can be used to replace elements:  

 ReplacePart[list, {i, j} → new] replaces the element in position j of the ith outer level 
entry with new.

 ReplacePart[list, {i1, j1} →  new1, {i2, j2} ã  new2, ...,{in, jn} →  newn] replaces the 
entries in positions jk of entry ik in the outer level with newk.

 ReplacePart[list, {{i1, j1}, {i2, j2}, ...,{in, jn}} ã  new] replaces all entries in posi-
tions jk of entry ik in the outer level with new.

This command extends in a natural way to lists of greater depth.

EXAMPLE 26

list = Range[10]
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

ReplacePart[list, x, 7]
{1, 2, 3, 4, 5, 6, x, 8, 9, 10}

ReplacePart[list,  x, –7]
{1, 2, 3, x, 5, 6, 7, 8, 9, 10}

ReplacePart[list, 2 ã x] 
{1, x, 3, 4, 5, 6, 7, 8, 9,10}

ReplacePart[list,{2 ã  x, 4 ã  y, 7 ã  z}]
{1, x, 3, y, 5, 6, z, 8, 9,10}

ReplacePart[list,{{3},{5},{7}} ã  x] 
{1, 2, x, 4, x, 6, x, 8, 9,10}

EXAMPLE 27

list = {{a, b, c}, {d, e}, {f, g, h, i, j}};

ReplacePart[list, {3, 2} ã  x]
{{a, b, c}, {d, e}, {f, x, h, i, j}}

ReplacePart[list, {{1, 3} ã  x, {3, 2} ã  y}]
{{a, b, x}, {d, e}, {f, y, h, i, j}}

ReplacePart[list,{{1,2} , {2, 1}, {3, 4}} ã  x] 
{{a, x, c}, {x, e}, {f, g, h, x, j}}

Lists can be rearranged using Sort and Reverse.

 Sort[list] sorts list in increasing order. Real numbers are ordered according to their numerical 
value. Letters are arranged lexicographically, with capital letters coming after lowercase letters. 

 Reverse[list] reverses the order of the elements of list. 

EXAMPLE 28

list = {1, 5, –3, 0, 2.5};

Sort[list]
{–3, 0, 1, 2.5, 5}

EXAMPLE 29

list = {z, x, Y, w, X, y, Z, W};

Sort[list]
{w, W, x, X, y, Y, z, Z}

EXAMPLE 30

list = {a, b, c, d, e, f, g};



CHAPTER 3  Lists 71

Reverse[list]
{g, f, e, d, c, b, a}

Cycling of lists is made possible by use of the functions RotateLeft and RotateRight.

 RotateLeft[list] cycles each element of list one position to the left. The leftmost element is 
moved to the extreme right of the list. 

 RotateLeft[list, n] cycles the elements of list precisely n positions to the left. The leftmost n 
elements are moved to the extreme right of the list in their same relative positions. If n is negative, 
rotation occurs to the right. 

 RotateRight[list] cycles each element of list one position to the right. The rightmost element is 
moved to the extreme left of the list. 

 RotateRight[list, n] cycles the elements of list precisely n positions to the right. The rightmost 
n elements are moved to the extreme left of the list in their same relative positions. If n is negative, 
rotation occurs to the left. 

EXAMPLE 31

list = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

RotateLeft[list]
{2, 3, 4, 5, 6, 7, 8, 9, 10, 1}

RotateLeft[list, 3]
{4, 5, 6, 7, 8, 9, 10, 1, 2, 3}

RotateLeft[list, –3]
{8, 9, 10, 1, 2, 3, 4, 5, 6, 7}

RotateRight[list]
{10, 1, 2, 3, 4, 5, 6, 7, 8, 9}

RotateRight[list, 3]
{8, 9, 10, 1, 2, 3, 4, 5, 6, 7}

RotateRight[list, –3]
{4, 5, 6, 7, 8, 9, 10, 1, 2, 3}

Lists can be concatenated using Join.

 Join[list1, list2] combines the two lists list1 and list2 into one list consisting of the elements from 
list1 and list2. 

Join makes no attempt to eliminate repetitive elements. However, repetition can be conveniently 
eliminated with the Union command (see Section 3.4).
Join can be generalized in a natural way to combine more than two lists.

EXAMPLE 32 

list1 = {1, 2, 3, 4, 5};

list2 = {3, 4, 5, 6, 7};

Join[list1, list2]
{1, 2, 3, 4, 5, 3, 4, 5, 6, 7}

Nested lists, which are very common, can have a complicated structure. There are a few Mathematica 
commands that can help you understand and manipulate them.

 Depth[list] returns one more than the number of levels in the list structure. Raw objects, i.e., objects 
that are not lists, have a depth of 1. 

 Level[list, {levelspec}] returns a list consisting of those objects that are at level levelspec of 
list. 

 Level[list, levelspec] returns a list consisting of those objects that are at or below level levelspec 
of list. 
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EXAMPLE 33

Depth[x]

1  ← x is not a list.

Depth[{x}]
2

Depth[{{x}}]
3

EXAMPLE 34 

list = {1, {2, {3, 4, 5}}};

Depth[list]
4

Level[list, {1}]
{1, {2, {3, 4, 5}}}

Level[list, {2}]
{2, {3, 4, 5}}

Level[list, {3}]
{3, 4, 5}

Level[list, 3]
{1, 2, 3, 4, 5, {3, 4, 5}, {2, {3, 4, 5}}}

 Flatten[list] converts a nested list to a simple list containing the innermost objects of list. 
 Flatten[list, n] flattens a nested list n times, each time removing the outermost level. The depth 

of each level is reduced by n or to a minimum level of 1. 
 FlattenAt[list, n] flattens the sublist which is at the nth position of the list by one level. If n is 

negative, Mathematica counts backward, starting at the end of the list. 

EXAMPLE 35

list = {1, {2, 3}, {4, 5, {6}}, {7, {8, {9, 10}}}}

Flatten[list]
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Flatten[list, 1]
{1, 2, 3, 4, 5, {6}, 7, {8, {9, 10}}}

Flatten[list, 2]
{1, 2, 3, 4, 5, 6, 7, 8, {9, 10}}

FlattenAt[list, 3]
{1, {2, 3}, 4, 5, {6}, {7, {8, {9, 10}}}}    ← Only the third sublist of list is flattened one level.

FlattenAt[list, –3]
{1, 2, 3, {4, 5, {6}}, {7, {8, {9, 10}}}}

Flatten converts a nested list into a simpler list. Partition takes simple lists and converts them 
into nested lists in a very organized and convenient way.

 Partition[list, k] converts list into sublists of length k. If list contains k n + m elements, where 
m < k, Partition will create n sublists and the remaining m elements will be dropped.

 Partition[list, k, d] partitions list into sublists of length k, offsetting each sublist from the 
previous sublist by d elements. In other words, each sublist (other than the first) begins with the 
d+1st element of the previous sublist.

Note that  Partition[list, k] is equivalent to Partition[list, k, k]. 
Partition is a very convenient command for generating tables and matrices. Only the simplest 

forms of the command have been described. The reader, if interested, is urged to investigate other forms 
in Mathematica’s Documentation Center.

4 – 1 = 3. This tells us that list contains lists within lists within 
itself. Note that Depth always returns one more than the actual 
number of levels in the list. This is for technical reasons dealing with 
the structure of Mathematica commands. For now, just remember 
that the number of levels is always 1 less than Depth.
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EXAMPLE 36

list = Range[12]
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

Partition[list, 4]
{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}

Partition[list, 5]
{{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}}

Partition[list,5, 1]
{{1, 2, 3, 4, 5}, {2, 3, 4, 5, 6}, {3, 4, 5, 6, 7}, {4, 5, 6, 7, 8},{5, 6, 7, 8, 9}, 

    {6, 7, 8, 9, 10}, {7, 8, 9, 10, 11}, {8, 9, 10, 11, 12}}

Partition[list, 5, 2]
{{1, 2, 3, 4, 5}, {3, 4, 5, 6, 7}, {5, 6, 7, 8, 9}, {7, 8, 9, 10, 11}}

Partition[list, 5, 3]
{{1, 2, 3, 4, 5}, {4, 5, 6, 7, 8}, {7, 8, 9, 10, 11}}

SOLVED PROBLEMS

3.11 The Mathematica function IntegerDigits returns a list containing the digits of an integer. How 
many digits are there in 100! and what is the 50th digit from the left and from the right?

SOLUTION

list = IntegerDigits[100!]
{9, 3, 3, 2, 6, 2, 1, 5, 4, 4, 3, 9, 4, 4, 1, 5, 2, 6, 8, 1, 6, 9, 9, 2, 3, 8, 8, 5, 6, 
   2, 6, 6, 7, 0, 0, 4, 9, 0, 7, 1, 5, 9, 6, 8, 2, 6, 4, 3, 8, 1, 6, 2, 1, 4, 6, 8, 5, 9, 
   2, 9, 6, 3, 8, 9, 5, 2, 1, 7, 5, 9, 9, 9, 9, 3, 2, 2, 9, 9, 1, 5, 6, 0, 8, 9, 4, 1, 4, 
   6, 3, 9, 7, 6, 1, 5, 6, 5, 1, 8, 2, 8, 6, 2, 5, 3, 6, 9, 7, 9, 2, 0, 8, 2, 7, 2, 2, 3, 
   7, 5, 8, 2, 5, 1, 1, 8, 5, 2, 1, 0, 9, 1, 6, 8, 6, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Length[list]
158

Part[list, 50]  or  list[[50]]
1

Part[list, –50]  or  list[[–50]]
2

3.12 Compute the sum of the digits of the 100th Fibonacci number. 

SOLUTION

We use IntegerDigits (see previous problem).

list = IntegerDigits[Fibonacci[100]]
{3, 5, 4, 2, 2, 4, 8, 4, 8, 1, 7, 9, 2, 6, 1, 9, 1, 5, 0, 7, 5}

Sum[list[[k]], {k, 1, Length[list]] or list[[k]]
k=1

Length[list]

∑   

93

3.13 The command Table[i*j,{i, 3, 10},{j, 2, 7}] generates a nested list of numbers. Add 
the fourth number in the fifth sublist to the third number in the sixth sublist.

SOLUTION

list = Table[i*j,{i, 3, 10},{j, 2, 7}] 
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{{6, 9, 12, 15, 18, 21}, {8, 12, 16, 20, 24, 28}, {10, 15, 20, 25, 30, 35}, 
   {12, 18, 24, 30, 36, 42},{14, 21, 28, 35, 42, 49}, {16, 24, 32, 40, 48, 56},
 {18, 27, 36, 45, 54, 63}, {20, 30, 40, 50, 60, 70}}

list[[5, 4]] + list[[6, 3]]
67      ←35 + 32 = 67

3.14 The Mathematica function RealDigits returns a list containing a list of the digits of an approximate 
real number followed by the number of digits that are to the left of the decimal point. Compute a 15 
significant digit approximation of π and determine the next to the last decimal digit.

SOLUTION

approx = N[Pi,15]
3.14159265358979

list = RealDigits[approx]
{{3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9}, 1}

list[[1, –2]]
7

3.15 Construct a list consisting of the consecutive integers from 1 to 10 followed by the consecutive 
integers from 20 to 30.

SOLUTION 1

Drop[Range[30], {11, 19}]
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}

SOLUTION 2

Join[Range[1, 10], Range[20, 30]]
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}

3.16 Construct a list consisting of the consecutive integers 1 to 10, followed by 99, followed by 11 to 20.

SOLUTION

Insert[Range[20], 99, 11]
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 99, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}

3.17 Construct a list of the integers 1 to 20 in descending order.

SOLUTION 1

Range[20, 1, –1]
{20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}

SOLUTION 2

Range[20]//Reverse   ← This is equivalent to Reverse [Range [20]].
{20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}

3.18 Sort the letters of the word MISSISSIPPI alphabetically.

SOLUTION

list = Characters["MISSISSIPPI"]
{M,I,S,S,I,S,S,I,P,P,I}

Sort[list]
{I, I, I, I, M, P, P, S, S, S, S}
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3.19 Construct a list of numbers from 0 to 2 π in increments of π / 6.

SOLUTION

Range[0, 2o, o/6]

0,
6
,
3
,
2
, 2

3
, 5

6
, , 7

6
, 4

3
, 3

2
,π π π π π π π ππ 5

3
, 11

6
, 2π π π{ }

3.20 Flavius Joseph was a Jewish historian of the first century. He wrote about a group of ten Jews in a 
cave who, rather than surrender to the Romans, chose to commit suicide, one by one. They formed 
a circle and every other one was killed. Who was the lone survivor?

SOLUTION

We number the people 1 through 10 and define a list consisting of these ten integers.

list = Range[10]
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

The first person to go is number 2. We eliminate him by rotating the list one position to the left and drop-
ping his number from the list.

list = Rest[RotateLeft[list]]
{3, 4, 5, 6, 7, 8, 9, 10, 1}

The new list begins with 3 and omits the number 2. To determine the survivor, we repeat the process until 
only one number remains.

list = Rest[RotateLeft[list]]
{5, 6, 7, 8, 9, 10, 1, 3}

list = Rest[RotateLeft[list]]
{7, 8, 9, 10, 1, 3, 5}

list = Rest[RotateLeft[list]]
{9, 10, 1, 3, 5, 7}

list = Rest[RotateLeft[list]]
{1, 3, 5, 7, 9}

list = Rest[RotateLeft[list]]
{5, 7, 9, 1}

list = Rest[RotateLeft[list]]
{9, 1, 5}

list = Rest[RotateLeft[list]]
{5, 9}

list = Rest[RotateLeft[list]]
{5} 

Although it is interesting to see how the list progresses from step to step, the above technique would not 
be appropriate for a long list. A more efficient procedure would involve a simple While loop.

list = Range[10];
While[Length[list] > 1, list = Rest[RotateLeft[list]]]

list
{5}

3.21 Determine which elements are in the highest level of the list
{a, {b, c}, {{d, e}, {f, g}, {{h, i}}, {j, {k, l, m}}}}

SOLUTION

list = {a, {b, c}, {{d, e}, {f, g}, {{h, i}}, {j, {k, l, m}}}};

Depth[list]
5

Number 5 is the survivor.
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Level[list, {4}] ← Remember to subtract 1 to determine the highest level.
{h, i, k, l, m}

3.22 Reduce the depth of the list 
{a, {b, c}, {{d, e}, {f, g}, {{h, i}}, {j, {k, l, m}}}}
by 1 level; by 2 levels.

SOLUTION

list = {a, {b, c}, {{d, e}, {f, g}, {{h, i}}, {j, {k, l, m}}}};

Flatten[list, 1]
{a, b, c, {d, e}, {f, g}, {{h, i}}, {j, {k, l, m}}}

Flatten[list, 2]
{a, b, c, d, e, f, g, {h, i}, j, {k, l, m}}

3.23 Take the list of characters A through X and construct a list with six sublists, each containing four 
distinct letters.

SOLUTION

list = CharacterRange["A", "X"]
{A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X}

Partition[list, 4]
{{A, B, C, D}, {E, F, G, H},{I, J, K, L}, {M, N, O, P}, {Q, R, S, T}, {U, V, W, X}}

3.4 Set Theory 
Sets are represented as lists in Mathematica. Sets are manipulated using the basic list functions  Union, 
Intersection, and Complement.

 Union[list1, list2] combines list1 and list2 into one sorted list, eliminating any duplicate elements. 
Although only two lists are presented in this description, any number of lists may be used. As a spe-
cial case, Union[list] will eliminate duplicate elements in list. 

 Intersection[list1, list2] returns a sorted list of elements common to list1 and list2. If list1 and 
list2 are disjoint, i.e., they have no common elements, the command returns the empty list, {}. 

 Complement[universe, list] returns a sorted list consisting of those elements of universe that are 
not in list. In this context, universe represents the universal set. 

 Complement[universe, list1, list2] returns a sorted list consisting of those elements of 
universe that are not in list1 or list2. This command extends in a natural way to more than 
two sets. 

EXAMPLE 37

list = {a, b, c, a, c, c, c, b, b};

Union[list]
{a, b, c}

EXAMPLE 38

universe = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

list1 = {1, 3, 5, 7};

list2 = {5, 7, 8, 10};

Union[list1, list2]
{1, 3, 5, 7, 8, 10}
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Intersection[list1, list2]
{5, 7}

Complement[universe, list1]
{2, 4, 6, 8, 9, 10}

Complement[universe, list1, list2]
{2, 4, 6, 9}

Using the Basic Math Input palette, the symbols ∪ and ∩ may be used to represent union and intersec-
tion, respectively.

 list1 • list2 is equivalent to Union[list1, list2]. 
 list1 § list2 is equivalent to Intersection[list1, list2]. 

EXAMPLE 39

list1 = {1, 2, 3, 4, 5};

list2 = {3, 4, 5, 6, 7};

list1 • list2
{1, 2, 3, 4, 5, 6, 7}

list1 § list2
{3, 4, 5}

A subset of A is any set, each of whose elements are members of A. The empty set is a subset of every 
set. Including the empty set, a set of n elements has 2n subsets. The set of all subsets of A is called the 
power set of A.

 Subsets[list] returns a list containing all subsets of list, including the empty set, i.e., the power 
set of list. 

There are a number of useful set commands available in the package Combinatorica`. Among them 
are CartesianProduct and KSubsets. 

By definition, the Cartesian product of two sets, A and B, is the set of ordered pairs of elements, the first 
taken from A and the second from B.

 CartesianProduct[list1, list2] returns the Cartesian product of list1 and list2. 
 KSubsets[list, k] returns a list containing all subsets of list of size k. 

EXAMPLE 40

 Combinatorica`  ← This loads the package. See Chapter 1.

list1 = {a, b, c, d};

list2 = {x, y, z};

CartesianProduct[list1, list2]
{{a, x}, {a, y}, {a, z}, {b, x}, {b, y}, {b, z},  {c, x}, {c, y}, 
 {c, z}, {d, x}, {d, y}, {d, z}}

EXAMPLE 41

list = {a, b, c, d};

Subsets[list]
{{}, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, 

 {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}}

 Combinatorica` ← Omit if you have already loaded the package.

KSubsets[list, 3]
{{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}}
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SOLVED PROBLEMS

3.24 Which distinct letters are contained in the word MISSISSIPPI? (Compare with Problem 3.18)

SOLUTION

Union[Characters["MISSISSIPPI"]]
{I, M, P, S}

3.25 Find the union and intersection of the sets {a, b, c, d, e, f, g}, {c, d, e, f, g, h, i}, and {e, f, g, h, i, j, k}. 

SOLUTION

set1 = {a, b, c, d, e, f, g};

set2 = {c, d, e, f, g, h, i};

set3 = {e, f, g, h, i, j, k};

Union[set1, set2, set3]   or   set1 • set2 • set3
{a, b, c, d, e, f, g, h, i, j, k}

Intersection[set1, set2, set3]  or   set1 § set2 § set3
{e, f, g}

3.26 Find all the elements of the set {a, b, c, d, e, f, g} that are not in {a, c, d, e}.

SOLUTION

universe = {a, b, c, d, e, f, g};

set = {a, c, d, e};

Complement[universe, set]
{b, f, g}

3.27 The 20th prime is 71. Find all the numbers not exceeding 71 that are not prime.

SOLUTION

universe = Range[71];

primes = Prime[Range[20]]
{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71}

Complement[universe, primes]
{1, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 
 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60,
 62, 63, 64, 65, 66, 68, 69, 70}

3.28 Construct a list consisting of the consonants of the alphabet. 

SOLUTION

letters = CharacterRange["a", "z"];

vowels = Characters["aeiou"];

consonants = Complement[letters, vowels]

{b, c, d, f, g, h, j, k, l, m, n, p, q, r, s, t, v, w, x, y, z}

3.29 Find all the numbers less than 1000 that are both prime and Fibonacci.

SOLUTION

k = 1; list1 = {};

While[Fibonacci[k] Ä 1000, list1 = Append[list1, Fibonacci[k]]; k++]
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k = 1; list2 = {};

While[Prime[k] Ä 1000, list2 = Append[list2, Prime[k]]; k++]

list1 § list2 
{2, 3, 5, 13, 89, 233}

3.30 Create a list that contains all the subsets of {a, b, c, d, e}. How many subsets are there? 

SOLUTION

letters = {a, b, c, d, e};

Subsets[letters]
{{}, {a}, {b}, {c}, {d}, {e}, {a, b}, {a, c}, {a, d}, {a, e}, {b, c}, {b, d}, {b, e},
 {c, d}, {c, e}, {d, e}, {a, b, c}, {a, b, d},{a, b, e}, {a, c, d}, {a, c, e}, 
 {a, d, e}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e}, {a, b, c, d}, {a, b, c, e}, 
 {a, b, d, e},{a, c, d, e}, {b, c, d, e}, {a, b, c, d, e}} 

Length[%]
32

3.31 Create a list of all the subsets of {a, b, c, d, e} that contain precisely three elements. How many are 
there?

SOLUTION

 Combinatorica`

letters={a, b, c, d, e};

KSubsets[letters, 3]
{{a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e}, {a, d, e}, {b, c, d}, {b, c, e}, 
   {b, d, e}, {c, d, e}}

Length[%]
10

3.5 Tables and Matrices 
Mathematica represents tables and matrices as nested lists. Internally, there is no difference in the way they 
are stored, but they are represented differently using the functions MatrixForm and TableForm. It is 
often more convenient to use //MatrixForm or //TableForm  to the right of the matrix or table 
name.

 MatrixForm[list] prints double nested lists as a rectangular array enclosed within parentheses. 
The innermost lists are printed as rows. Single nested lists are printed as columns enclosed within 
parentheses. 

 TableForm[list] prints list the same way as MatrixForm except the surrounding parentheses 
are omitted.

Matrices and tables can be entered directly as nested lists. A matrix or table having m rows and n columns 
would be a nested list of m sublists, each containing n entries. 

EXAMPLE 42

list = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}};

MatrixForm[list] or list   //MatrixForm

1 2 3 4
5 6 7 8
9 10 11 12

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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TableForm[list] or list   //TableForm

1 2 3 4
5 6 7 8
9 10 11 12

Matrices and tables can also be conveniently entered by going to Insert ⇒ Table/Matrix ⇒ New.

Clicking OK yields an empty grid—use the [TAB] key to cycle from entry to entry.

⎛
⎝⎜

⎞
⎠⎟

EXAMPLE 43

list = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}};

{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}

MatrixForm[list] or list   //MatrixForm

1 2 3 4
5 6 7 8
9 10 11 12

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Two special matrix-generating commands are worth remembering because of their frequency in applica-
tions. These generate a nested list. Use MatrixForm to get a matrix.

 IdentityMatrix[n] produces an n × n matrix with 1s on the main diagonal and 0s elsewhere.
 DiagonalMatrix[list] creates a diagonal matrix whose diagonal entries are the elements 

of list. 
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EXAMPLE 44

IdentityMatrix[3]  //MatrixForm 

1 0 0
0 1 0
0 0 1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

DiagonalMatrix[{1, 2, 3}]  //MatrixForm

1 0 0
0 2 0
0 0 3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Once defined, matrices can be combined using the operations of addition, subtraction, scalar, and matrix 
multiplication. The operation of matrix multiplication is represented by a period (.). Matrices are discussed 
in greater detail in Chapter 12.

EXAMPLE 45

A = 
1 2 3
4 5 6
7 8 9

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

{{1, 2, 3},{4, 5, 6},{7, 8, 9}}

B = 
2 1 5
4 7 2
1 3 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

{{2, 1, 5},{4, 7, 2},{1, 3, 2}}

A + B   //MatrixForm

3 3 8
8 12 8
8 11 11

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

A – B   //MatrixForm

–1 1 –2
0 –2 4
6 5 7

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

3 A   //MatrixForm

3 6 9
12 15 18
21 24 27

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

A.B   //MatrixForm

13 24 15
34 57 42
55 90 69

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

It is useful to remember that if list is a simple list of numbers, list.list yields the sum of their 
squares. The result is printed as a single number without braces.

EXAMPLE 46

list = {1, 2, 3, 4, 5};

list.list

55

The matrix is input using Insert ⇒ Table/Matrix ⇒ New.
Mathematica outputs the matrix as a nested list of numbers.
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Tables are also stored as nested lists, but are represented as tables with TableForm. Although this 
command allows representation of tables of any dimension, we will discuss only one- and two-dimensional 
tables in this book.

EXAMPLE 47

list = {{12, 7, 10}, {105, 205, 7}, {3, 30, 300}};
list//TableForm

12 7 10
105 205 7
3 30 300

 TableForm[list, options] allows the use of various formatting options in determining the appear-
ance of a table.

From Example 47 we can observe that the numbers in a table are, by default, left justified. This can some-
times make the table confusing to read. Justification can be controlled with the TableAlignments option.

• TableAlignments ã Left justifies the columns to the left (default).
• TableAlignments ã Right justifies the columns to the right.
• TableAlignments ã Center centers the columns. 

EXAMPLE 48 

list = {{12,7,10},{105,205,7},{3,30,300}};

TableForm[list, TableAlignments ã Right]
12 7 10

105 205 7
3 30 300

TableForm[list, TableAlignments ã Center]
12 7 10
105 205 7
3 30 300

Row and column headings can be inserted by using the option TableHeadings within the 
TableForm command. The default is TableHeadings ã None.

• TableHeadings ã Automatic produces consecutive integer labels for both rows and 
columns. 

Each row and column of a table can be labeled separately using strings (characters enclosed within 
double quotes) or Mathematica expressions. The general form of this option is

• TableHeadings ã {rowlist, columnlist} 

where rowlist is a list of row labels and columnlist is a list of column labels. If you desire to have row labels 
but not column labels, or column labels but not row labels, simply replace rowlist or columnlist by None. 

EXAMPLE 49 

list = {{a, b, c}, {d, e, f},{g, h, i}};

TableForm[list, TableHeadings ã Automatic]

1 2 3

1 a b c

2 d e f

3 g h i
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EXAMPLE 50

list = {{a, b, c}, {d, e, f},{g, h, i}};

TableForm[list, TableHeadings ã {{"Row1","Row2","Row3"}, 
                                    {"Column1","Column2","Column3"}}]

Column1 Column2 Column3

Row1 a b c

Row2 d e f

Row3 g h i

EXAMPLE 51

list = {{a, b, c}, {d, e, f}, {g, h, i}};
TableForm[list, TableHeadings  ã {{"Row1","Row2","Row3"}, 
                                                {"Column1","Column2","Column3"}},
            TableAlignments ã Center]

Column1 Column2 Column3

Row1    a    b    c

Row2    d    e    f

Row3    g    h    i

EXAMPLE 52

TableForm[list, TableHeadings  ã {None, {"Column1","Column2","Column3"}},
            TableAlignments ã Center]

Column1 Column2 Column3

   a    b    c

   d    e    f

   g    h    i

TableForm[list,TableHeadings ã {{"Row1","Row2","Row3"}, None},
                  TableAlignments ã Center]

Row1 a b c

Row2 d e f

Row3 g h i

TableDirections is an option that determines how the entries of the table should be placed. If list 
represents a two-dimensional nested list, then

• TableDirections ã Column prints the table with the first element of each inner list in the first 
column, the second element of each inner list in the second column, and so forth. (This is the 
default.)

• TableDirections ã Row interchanges the positions of the columns with the rows. 

EXAMPLE 53

list = Array[a, {3, 4}]

{{a[1, 1], a[1, 2], a[1, 3], a[1, 4]}, {a[2, 1], a[2, 2], a[2, 3], a[2, 4]}, 
   {a[3, 1], a[3, 2], a[3, 3], a[3, 4]}}
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TableForm[list, TableDirections ã Column]

a[1, 1]   a[1, 2]   a[1, 3]   a[1, 4]

a[2, 1]   a[2, 2]   a[2, 3]   a[2, 4]

a[3, 1]   a[3, 2]   a[3, 3]   a[3, 4]

TableForm[list, TableDirections ã Row]

a[1, 1]   a[2, 1]   a[3, 1]

a[1, 2]   a[2, 2]   a[3, 2]

a[1, 3]   a[2, 3]   a[3, 3]

a[1, 4]   a[2, 4]   a[3, 4]

By default, Mathematica prints real numbers to a specified number of significant digits. So numbers that 
vary in magnitude will appear to have different formats. The command PaddedForm allows the output 
of a calculation to be precisely formatted.

 PaddedForm[expression, n] prints the value of expression leaving space for a total of n digits. 
This form of the command can be used for integers or real number approximations. Note: The decimal 
point is not counted as a position. 

 PaddedForm[expression, {n, f}] prints the value of expression leaving space for a total of 
n digits, f of which are to the right of the decimal point. The fractional portion of the number is 
rounded if any digits are deleted. 

EXAMPLE 54

a = 123.456789;

PaddedForm[a, 12]

       123.456789 ← 3 spaces to the left of the number.

PaddedForm[a, 20]

                          123.456789 ← 11 spaces to the left of the number.

PaddedForm[a, {20, 3}]

                                 123.457 ← 14 spaces to the left of the number, the third decimal is rounded to 7.

EXAMPLE 55 The following prints a table of values of a polynomial p(x) along with its corresponding 
value of x. First we will print the table using the standard TableForm command.

p[x_] =  x5 –  3 x4 + 2 x3 – 7 x + 12;

list   =  Table[{x, p[x]},{x, –3, 3, .5}];

TableForm[list]

 –3. –507.

 –2.5 –216.594

 –2. –70.

 –1.5 –7.03125

 –1. 13.

 –0.5 15.0313

0. 12.

0.5 8.59375

1. 5.

1.5 0.65625

2. –2.

2.5 6.21875

3. 45.

The elements a[1, 1], a[2, 1], and a[3, 1] form 
the first column.

The elements a[1, 1], a[2, 1], and a[3, 1] form 
the first row.
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Now we use  PaddedForm  to pad the entire table.

PaddedForm[TableForm[list],{10, 6}]

 –3.000000 –507.000000

 –2.500000 –216.594000

 –2.000000 –70.000000

 –1.500000 –7.031000

 –1.000000 13.000000

 –0.500000 15.031000

 0.000000 12.000000

  0.500000 8.594000

 1.000000 5.000000

 1.500000 0.656000

 2.000000 –2.000000

 2.500000 6.219000

 3.000000 45.000000

If we wish to format the individual columns differently for a more customized appearance, we can pad 
the individual entries of the list, rather than the whole table.

list  =  Table[{PaddedForm[x, {5, 1}], PaddedForm[p[x], {10, 3}]}, {x, –3, 3, .5}];

TableForm[list]

 –3.0 –507.000

 –2.5 –216.594

 –2.0 –70.000

 –1.5 –7.031

 –1.0 13.000

 –0.5 15.031

   0.0 12.000

  0.5 8.594

   1.0 5.000

   1.5 0.656

   2.0 –2.000

   2.5 6.219

   3.0 45.000

Spacing between rows and columns can be controlled with TableSpacing. This specifies the number 
of spaces to put between entries in each direction. 

• TableSpacing ã {rowspaces, columnspaces} 

rowspaces specifies the number of blank lines between successive rows of the table; columnspaces speci-
fies the number of blank characters between successive columns.

EXAMPLE 56 

list = {{a, b, c}, {d, e, f}, {g, h, i}};

TableForm[list, TableSpacing ã {0, 0}]

abc  ← No spacing between rows or columns.
def
ghi
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TableForm[list,TableSpacing  ã {1, 3}]

a   b   c ← 1 line between rows, 3 spaces between columns.

d   e   f

g   h   i

TableForm[list,TableSpacing  ã {3, 1}]

a b c                      ← 3 lines between rows, 1 space between columns.

d e f

g h i

Lists can be expressed as single columns with ColumnForm. 

 ColumnForm[list] presents list as a single column of objects.
 ColumnForm[list, horizontal] specifies the horizontal alignment of each row. Acceptable values 

of horizontal are Left (default), Center, and Right. 
 ColumnForm[list, horizontal, vertical] allows vertical alignment of the column. Acceptable 

values of vertical are Above, Center, and Below (default). 

EXAMPLE 57

list = {a, bb, ccc}

ColumnForm[list]
a

bb

ccc

ColumnForm[list, Right]
     a

   bb

 ccc

SOLVED PROBLEMS

3.32 Construct a 3 × 3 matrix whose entries are consecutive integers, increasing as we go to the right and 
down.

SOLUTION

list = Table[3i + j, {i, 0, 2}, {j, 1, 3}]
{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}

list//MatrixForm

1 2 3
4 5 6
7 8 9

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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3.33 The Hilbert matrix is a square matrix whose element in position (i, j) is 1
1i j+ − . Construct the 

Hilbert matrix of order 5.

SOLUTION

a[i_, j_] = 1/(i + j – 1);

hilbert = Array[a,{5, 5}];
hilbert//MatrixForm

1 1
2

1
3

1
4

1
5

1
2

1
3

1
4

1
5

1
6

1
3

1
4

1
5

1
6

1
7

1
4

1
5

1
6

1
7

1
8

1
5

1
6

11
7

1
8

1
9

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

3.34 Construct the 5 × 5 identity matrix.

SOLUTION

IdentityMatrix[5]//MatrixForm

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

3.35 Construct a 5 × 5 matrix having the first five primes as diagonal entries and 0s elsewhere.

SOLUTION

diag = Table[Prime[k],{k, 1, 5}]
{2, 3, 5, 7, 11}

DiagonalMatrix[diag]  //MatrixForm

2 0 0 0 0
0 3 0 0 0
0 0 5 0 0
0 0 0 7 0
0 0 0 0 11

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

3.36 Construct a table having three columns. The first column lists the consecutive integers 1 through 
10 and the second and third columns are their squares and cubes. Label the three columns integers, 
squares, and cubes.

SOLUTION

list = Table[{k, k2, k3},{k, 1, 10}];

TableForm[list, TableHeadings ã {None, {"integers","squares", "cubes"}},
                   TableAlignments ã Right]
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integers squares cubes

                 1                1           1

                 2                4           8

                 3                9        27

                 4             16        64

                 5             25      125

                 6             36      216

                 7             49      343

                 8             64      512

                 9             81      729

              10           100    1000

3.37 If c represents the temperature in degrees Celsius, its corresponding Fahrenheit temperature is   
f c= + °9

5
32 . Construct a labeled table showing, horizontally, the Fahrenheit equivalents of Celsius 

temperatures from 1 to 10 in increments of 1.

SOLUTION 

f= 9
5
c+32

list = Table[{c, PaddedForm[ N[f], {3, 1}]}, {c, 1, 10}]

TableForm[list, TableDirections ã Row, 
    TableHeadings ã {None, {"Celsius", "Fahrenheit"}},
    TableAlignments ã Center]

 Celsius     1     2     3     4     5     6     7     8     9   10

Fahrenheit 33.8 35.6 37.4 39.2 41.0 42.8 44.6 46.4 48.2 50.0

3.38 Construct a table showing the radian equivalents of angles from 0 to 30 in increments of 5.

SOLUTION

list = Table[{deg, N[deg Degree]}, {deg, 0, 30, 5}];

TableForm[list, TableDirections ã Row, 
    TableHeadings ã {None, {"Degrees","Radians"}},     
    TableAlignments ã Center]

Degrees 0 5 10 15 20 25 30

Radians 0 0.0872665 0.174533 0.261799 0.349066 0.436332 0.523599

3.39 If p dollars is invested for t years in a bank account paying an annual interest rate of r compounded 

n times a year, the amount of money after k periods is p r
n

k

1 +( )  dollars. If $1,000 is invested in an 

account paying 6% compounded quarterly, make a table showing how much money has accumulated 
during a three-year period.

SOLUTION

p = 1000; r = .06; n = 4; t = 3;

a[k_]= p (1 + r/n)k ;

list = Table[{k, a[k]}, {k, 1, n * t}]

TableForm[list, TableHeadings ã {None, {"period", "amount"}}]

Degree is a Mathematica constant 
(see Chapter 2).
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 period  amount

 1 1015.

 2 1030.22

 3 1045.68

 4 1061.36

 5 1077.28

 6 1093.44

 7 1109.84

 8 1126.49

 9 1143.39

 10 1160.54

 11 1177.95

 12 1195.62

3.40 If p dollars is invested in a bank account paying a rate of r compounded n times a year, the amount of money 

after t years is p r
n

nt

1 +( )  dollars. If interest is compounded continuously, the amount after t years is pert. If 

$1,000 is invested in an account paying 6% annually, make a table showing how much money is in the account 
at the end of each year for 10 years if interest is compounded quarterly, monthly, daily, and continuously. 

SOLUTION

p = 1000;

r = .06;
a = p(1 + r/4)4 t

;

b = p(1 + r/12)12 t
;

c = p(1 + r/365)365 t
;

d = p Exp[r t];

tt = PaddedForm[t, 2];

aa = PaddedForm[a, {7, 2}];

bb = PaddedForm[b, {7, 2}];

cc = PaddedForm[c, {7, 2}];

dd = PaddedForm[d, {7, 2}];

list = Table[{tt, aa, bb, cc, dd},{t, 1, 10}];

TableForm[list, TableHeadings ã
   {None, {"year"," quarterly","  monthly","   daily","continuously"}}]

 year quarterly monthly daily continuously

 1 1061.36 1061.68 1061.83 1061.84

 2 1126.49 1127.16 1127.49 1127.50

 3 1195.62 1196.68 1197.20 1197.22

 4 1268.99 1270.49 1271.22 1271.25

 5 1346.86 1348.85 1349.83 1349.86

 6 1429.50 1432.04 1433.29 1433.33

 7 1517.22 1520.37 1521.91 1521.96

 8 1610.32 1614.14 1616.01 1616.07

 9 1709.14 1713.70 1715.93 1716.01

 10 1814.02 1819.40 1822.03 1822.12
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3.41 The payment on a monthly mortgage of a dollars  is  
a r

r n

×

− + −

12
1 1 12

12( )
 where n is the number of years the 

 money is borrowed and r is the annual rate of interest. Construct a table showing the monthly 
payments on a 30-year mortgage of $250,000 at rates of 6% to 8% in increments of 25%.

SOLUTION

a = 250 000;

n = 30;

payment=
a r
12

1– 1+ r
12

–12n( )
list = Table[{PaddedForm[r, {4, 4}], 
      PaddedForm[payment, {6, 2}]}, {r, .06, .08, .0025}];

TableForm[list, TableHeadings ã {None, {" rate", "  payment"}}]

  rate payment

 0.0600 1498.88

 0.0625 1539.29

 0.0650 1580.17

 0.0675 1621.50

 0.0700 1663.26

 0.0725 1705.44

 0.0750 1748.04

 0.0775 1791.03

 0.0800 1834.41
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Two-Dimensional Graphics

4.1 Plotting Functions of a Single Variable
Anyone who has ever tried to plot a graph using one of the standard programming languages will appre-
ciate the ease with which graphs can be produced in Mathematica. In many instances, only one simple 
instruction is all that is needed to produce a pictorial representation of a function or a more general rela-
tionship between two variables.

Although Mathematica’s defaults work well in most instances, there are many options available to con-
trol subtleties. We shall describe the more common ones in this section and present a variety of examples 
that illustrate the ease with which graphs may be constructed.

The basic command for drawing the graph of a function is Plot. Although x is used as the independent 
variable in the following description, any symbol may be used in its place. 

 Plot[f[x], {x, xmin, xmax} plots a two-dimensional graph of the function f(x) on the interval 
xmin ≤ x ≤ xmax.

EXAMPLE 1 Plot the parabola f(x) = x2 from –3 to 3.

Plot[x2, {x, –3, 3}]

–3 –2 –1 1 2 3

2

4

6

8

Two functions can be plotted on the same set of axes. Mathematica draws each in a different color.

 Plot[{f[x], g[x]}, {x, xmin, xmax}] plots the graphs of f(x) and g(x) from xmin to 
xmax on the same set of axes. This command can be generalized in a natural way to plot three or 
more functions. 

CHAPTER 4
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EXAMPLE 2 Plot f(x) = x2 and g(x) = 9 − x2 from −3 to 3.

Plot[{x2, 9 – x2}, {x, –3, 3}]

–3 –2 –1 1 2 3

2

4

6

8

When plotting points over a specified interval, Mathematica makes a decision on the range of points to plot 
in order to produce a pleasing graph.  PlotRange is an option that allows the user to override Mathematica’s 
default.

• PlotRange ã Automatic is Mathematica’s default. Any points whose vertical coordinates 
appear to be too large (e.g., outliers) are omitted from the graph. 

• PlotRange ã All forces Mathematica  to plot all points. 
• PlotRange ã {ymin, ymax} plots only those points whose vertical coordinates fall between 
ymin and ymax. 

• PlotRange ã {{xmin, xmax},{ymin, ymax}} plots those points whose horizontal 
coordinates fall between xmin and xmax and whose vertical coordinates fall between ymin 
and ymax. 

EXAMPLE 3

f[x_] 1
(x –3)2

  /; x < 2.9 || x > 3.1

f[x_]  100  /; 2.9 Ä x Ä 3.1

Plot[f[x], {x, 0, 6}] Plot[f[x],{x,0,6},PlotRange ã All]

1 2 3 4 5 6

2

4

6

8

 1 2 3 4 5 6

20

40

60

80

100

The Show command is useful for plotting several graphs simultaneously, particularly when their 
domains are different intervals.

 Show[g1, g2, . . .] plots several graphs on a common set of axes. 
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EXAMPLE 4 Suppose we wish to plot the graph of y = x2 – 9 on the interval [– 4, 4] and the graph of 
y = sin x on the interval [0, 2 π], but wish to plot them on one set of axes. We define two graphics objects, g1 
and g2.

g1 = Plot[x2 – 9, {x, –4, 4}]

–4 –2 2 4

–5

5

g2 = Plot[Sin[x], {x, 0, 2 o}]

1 2 3 4 5 6

–1.0

–0.5

0.5

1.0

Now we apply the Show command. Note how the axes are adjusted to exhibit both graphs:

Show[g1, g2,PlotRange ã All]

–6 –4 –2 2 4 6

–5

5
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You will notice that in defining g1 and g2, each curve was drawn individually on its own axis. To suppress this 
output, a semicolon (;) can be placed at the right side of each plot command.

EXAMPLE 5

g1 = Plot[x2 – 9];

g2 = Plot[Sin[x], {x, 0, 2 o}];

Show[g1, g2, PlotRange ã All]

–6 –4 –2 2 4 6

–5

5

A useful command for drawing multiple graphs is GraphicsArray.

 GraphicsArray[{g1, g2, ...}] plots a row of graphics objects.
 GraphicsArray[{g11, g12, ...},{g21, g22, ...}}] plots a two-dimensional array of 

graphics objects.

EXAMPLE 6

g1 = Plot[x, {x, – 2, 2}];

g2 = Plot[–x, {x, –2, 2}];

g3 = Plot[x2, {x, –2, 2}];

g4 = Plot[–x2, {x, –2, 2}];

GraphicsArray[{g1, g2, g3, g4}]

 

–2 –1 1 2

–2

–1

1

2

–2 –1 1 2

–2

–1

1

2

–2 –1 0 1 2

1
2
3
4

–2 –1 1 2

–4

–3

–2

–1

Only the combined graph is drawn, 
not g1 and g2.
Only the combined graph is drawn, 
not g1 and g2.

Note the use of the semicolon (;) to suppress 
intermediate graphics from being plotted.
Note the use of the semicolon (;) to suppress 
intermediate graphics from being plotted.
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GraphicsArray[{g1, g2},{ g3, g4}]

–2 –1 1 2

–2

–1

1

2

–2 –1 1 2

–2

–1

1

2

–2 –1 10 2

1

2

3

4
–2 –1 1 2

–4

–3

–2

–1

Plot has a variety of options that can be viewed by typing ?? Plot or Options[Plot]. These 
options may be used individually or in conjunction with one another. Some of the more common options 
are described in the remainder of this section.

Since Mathematica obviously cannot plot an infinite number of points, it selects a finite number 
of equally spaced points as “sample” points and uses an adaptive algorithm to construct a smooth-
looking curve. The initial number of points it will use, PlotPoints, is set to 50 by default. If 
the curve “wiggles” excessively, a larger number might be necessary to obtain a smooth-looking 
curve. 

• PlotPoints ã n specifies that an initial number of n sample points should be used in the con-
struction of the graph.

• MaxRecursion ã n specifies that up to n levels of recursion should be made in the adaptive 
algorithm. Recursive subdivision is done only in those places where more samples seem to be needed in 
order to achieve results with a certain level of quality.

When you plot a graph, you will notice that the horizontal and vertical axes are usually not the same 
length. By default, the ratio of vertical axis length to horizontal axis length is 1/GoldenRatio, where 
GoldenRatio = 1 5 2+( )/ . The designers of Mathematica felt that this ratio was the most comfort-
able and pleasing to the eye. It can be changed with the option AspectRatio, which determines the 
height-to-width ratio of the graph.

• AspectRatio ã Automatic computes the aspect ratio from the actual coordinate values of the 
plot.

• AspectRatio ã ratio sets the ratio of height to width to the value ratio.
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EXAMPLE 7

Plot[x2, {x, –5, 5}] Plot[x2, {x, –5, 5}, AspectRatio ã Automatic]

    –4 –2 2 4

5
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15

20

25

    –4 –2 2 4

5

10

15

20

25

EXAMPLE 8 The following command should produce a circle of radius 3 centered at the origin. However, because 
of unequal axis scaling, the graph appears as an ellipse.

Plot[{–Sqrt[9 – x2], Sqrt[9 – x2]}, {x, –3, 3}]

–3 –2 –1 1 2 3

–3

–2

–1

1

2

3

Both axes are scaled 
identically.
Both axes are scaled 
identically.
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We can make the circle appear round by setting AspectRatio ã Automatic.

Plot[{–Sqrt[9 – x2], Sqrt[9 – x2]}, {x, –3, 3}, AspectRatio ã Automatic]

–3 –2 –1 1 2 3

–3

–2

–1

1

2

3

When graphing a function, Mathematica makes a calculated decision where to place the origin. If (0, 0) 
is within the plotting region, the axes will cross at that location. If not, an algorithm decides where the 
axes should cross. This can sometimes lead to a confusing (and misleading) rendering of the function. The 
option AxesOrigin gives control over the placement of the intersection point.

• AxesOrigin ã Automatic is the default. If the point (0, 0) is within, or close to, the plotting 
region, then it is usually chosen as the axis origin.

• AxesOrigin ã {x, y} forces the intersection of the axes to be the point (x, y).

EXAMPLE 9

Plot[5 + x4, {x, 1, 2}]

1.2 1.4 1.6 1.8 2.0

8

10

12

14

16

18

20

The axes intersect at (1, 6). The 
graph is drawn completely, how-
ever, from x = 1 to x = 2.

The axes intersect at (1, 6). The 
graph is drawn completely, how-
ever, from x = 1 to x = 2.
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Plot[5 + x4, {x, 1, 2}, AxesOrigin ã {0, 0}]

0.5 1.0 1.5 2.0

5

10

15

20

When multiple graphs are drawn on the same set of axes, Mathematica distinguishes them by color. 
PlotStyle allows the user to alter the appearance of a graph in other ways using style options.

• PlotStyle ã style if only one style option is used.
• PlotStyle ã {style1,  style2, . . .} if several style options are desired. If more than one graph 

is to be modified, the styles are applied cyclically. 

Some of the more common style options are listed in the following:

• GrayLevel[x] for 0 ≤ x ≤ 1 allows lightening of the image. The closer x is to 1, the lighter the 
image will appear.

EXAMPLE 10

Plot[{Sin[x], Sin[2x], Sin[3x]}, {x, –o, o},
          PlotStyle ã {GrayLevel[0.0], GrayLevel[0.5], GrayLevel[0.8]}]

–3 –2 –1 1 2 3

–1.0

–0.5

0.5

1.0

• Dashing[{r1, r2, . . . , rm}] specifies that the curves are to be drawn dashed with successive 
segments and spaces of lengths r1, r2, … , rm repeated cyclically. Each r value is given as a fraction 
of the total width of the graph. Dashing[r] is equivalent to Dashing[{r, r}] and gives equal 
size dashes and spaces. For convenience, r can be replaced with one of the following: Tiny, Small, 
Medium, or Large.
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• AbsoluteDashing[{d1, d2, . . . , dm}] specifies that the curve is to be drawn dashed, with suc-
cessive segments having absolute lengths d1, d2, … , dm repeated cyclically. AbsoluteDashing[d] 
is equivalent to AbsoluteDashing[{d, d}] and gives equal size dashes and spaces. The absolute 

 lengths are measured in units of printer’s points, equal to 
1
72

 of an inch. For convenience, d can be 

replaced with one of the following: Tiny, Small, Medium, or Large.

EXAMPLE 11

Plot[{x2, 2 x2, 3 x2}, {x, –3, 3}, 
 PlotStyle ã {Dashing[.01], Dashing[.03], Dashing[{.03, .1}]}]

–3 –2 –1 1 2 3

5
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15
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25

• Thickness[r] specifies that the graph is to be drawn with a thickness r. The thickness r is given 
as a fraction of the total width of the graph. The default value for two-dimensional graphs is 0.004. 
For convenience, r can be replaced with one of the following: Tiny, Small, Medium, or Large. 
These yield thicknesses independent of the width of the graph.

• AbsoluteThickness[d] specifies that the graph is to be drawn with absolute thickness d. The 

absolute thickness is measured in units of printer’s points, equal to 
1
72

 of an inch. 

EXAMPLE 12

Plot[{x2, 2 x2, 3 x2}, {x, –3, 3}, 
             PlotStyle ã {Thickness[.005], Thickness[.01], Thickness[.02]}]

–3 –2 –1 1 2 3
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There are several style options that control color.

• Hue[hue] is a color specification. As hue varies from 0 to 1, the corresponding color runs through 
red, yellow, green, cyan, blue, magenta, and back to red again. 
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• Hue[hue, saturation, brightness]specifies colors in terms of hue, saturation, and brightness levels. 
The values of saturation and brightness must be between 0 and 1. 

• Hue[hue, saturation, brightness, opacity]specifies colors in terms of hue, saturation, brightness, 
and opacity levels. The values of saturation, brightness, and opacity must be between 0 and 1. (An 
opacity of 0 represents perfect transparency.)

• RGBColor[red,green,blue] specifies the mixture of red, green, and blue to produce a certain 
color. The values of red, green, and blue must be between 0 and 1. RGBColor[1, 0, 0] produces 
a pure red display, RGBColor[0, 1, 0] produces green, and RGBColor[0, 0, 1] produces 
blue. 

• RGBColor[red, green, blue, opacity] is similar to RGBColor [red, green, blue]. The 
values of red, green, blue, and opacity must be between 0 and 1. (An opacity of 0 represents 
perfect transparency.)

• CMYKColor[cyan, magenta, yellow, black]specifies the mixture of cyan, magenta, yellow, and 
black to produce a certain color. The values of cyan,  magenta, yellow, and black must be between 0 
and 1. CMYKColor is useful when printing colored graphs on paper. 

• CMYKColor[cyan, magenta, yellow, black, opacity] is similar to CMYKColor[cyan, magenta, 
yellow, black]. The values of cyan, magenta, yellow, black, and opacity must be between 0 and 1. (An 
opacity of 0 represents perfect transparency.)

Certain colors can be mentioned by name. Available choices are:

Red Green Blue Black

White Gray Cyan Magenta

Yellow Brown Orange Pink

Purple LightRed LightGreen LightBlue

LightGray LightCyan LightMagenta LightYellow

LightBrown LightOrange LightPink LightPurple

EXAMPLE 13

Plot[{x2, 2 x2, 3 x2}, {x, –3, 3}, PlotStyle  ã {Red, Green, Blue}]

–3 –2 –1 1 2 3
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Mathematica makes it easy to compute the RGB “formula” for custom colors. Simply click on 
Insert ⇒ Color and select the color of your choice. The exact RGB combination for the color selected 
will be placed into your Mathematica notebook at the cursor position.

When plotted, x2, 2 x2, and 3 x2 appear 
red, green, and blue, respectively.
When plotted, x2, 2 x2, and 3 x2 appear 
red, green, and blue, respectively.
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Color selector on a PC.

Color selector on a Macintosh.
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The function ColorData contains a list of predefined colors. Type ColorData["Legacy", 
"Names"] to see an extensive list of named colors. To see the RGB formula, replace "Names" with the 
name of the color within quotes.

EXAMPLE 14 

ColorData["Legacy", "AliceBlue"]

RGBColor[0.941206, 0.972503, 1.]

There are two graphics options that can be used to label graphs. 
PlotLabel specifies an overall label for the graph. 

• PlotLabel ã "description" labels the graph with a title. 

AxesLabel allows one or both axes to be labeled with an appropriate description.

• AxesLabel ã None specifies that neither axis should be labeled. This is Mathematica’s default. 
• AxesLabel ã "label" specifies a label for the y-axis only. 
• AxesLabel ã {"label"} specifies a label for the x-axis only. 
• AxesLabel ã {"x–label","y–label"} specifies labels for both the x- and y-axes. 
• AxesLabel ã Automatic specifies that the independent variable used in the Plot command 

should be printed along the horizontal axis. 

EXAMPLE 15

Plot[Sin[x], {x, 0, 2o}, PlotLabel ã "GRAPH OF Y = SIN X",
   AxesLabel  ã {"Values of x","Values of sin x"}]

1 2 3 4 5 6
Values of x

–1.0

–0.5

0.5

1.0

Values of sin x
GRAPH OF Y = SIN X

PlotLegend is a useful option that can be used to label the graphs in a legend box. It is contained 
within the package PlotLegends`, which must be loaded prior to its use.

• PlotLegend[{"text1","text2", . . .}] attaches text1, text2, . . . to each description specified in 
PlotStyle. 

• LegendPosition ã {a, b} specifies the position for the lower-left corner of the legend box. 
The center of the graphic is position (0, 0) and the longest side of the graphic runs from –1 to 1.

LegendSize determines the size of the legend box.

• LegendSize ã scale scales the size by a factor of scale.  
• LegendSize ã {a, b} uses a and b to determine the size of the legend box. The value 1 corresponds 

to half the length of the longest side of the graphic.  
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LegendOrientation determines the orientation of the legend box. 

• LegendOrientation ã Vertical (default)  prints the descriptions top to bottom. 
• LegendOrientation ã Horizontal prints the descriptions left to right. 

LegendShadow determines the positioning of the shadow of the legend box. 

• LegendShadow ã Automatic is the default. 
• LegendShadow ã None produces no shadow. The legend box is transparent. 
• LegendShadow ã {x_offset, y_offset} moves the shadow to the right or up for positive values 

and to the left or down for negative values.

EXAMPLE 16

PlotLegends`

Plot[{x2, 2 x2, 3 x2}, {x, –3, 3}, PlotStyle ã    {Dashing[{.01}],
       Dashing[{.03}], Dashing[{.03, .08}]}, PlotLegend ã {"x2", "2 x2", "3 x2"}]
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2x2

x2

EXAMPLE 17 

PlotLegends`

Plot[{x2, 2 x2, 3 x2}, {x, –3, 3}, 
    PlotStyle ã {Dashing[{.01}], Dashing[{.03}], Dashing[{.03, .08}]},
     PlotLegend ã {"x2", "2 x2", "3 x2"}, LegendPosition ã {.2, .4}, 
    LegendSize ã .5, LegendOrientation ã Horizontal,
    LegendShadow ã {–.05,.05}]

–3 –2 –1 1 2 3
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CHAPTER 4  Two-Dimensional Graphics104

If desired, graphs can be enclosed within a rectangular frame. Additionally, one or both axes of a graph 
can be suppressed. Frame specifies whether a frame should be drawn around the graph. 

• Frame ã True specifies that a rectangular frame is to be drawn around the graph. 
• Frame ã False specifies that no frame is to be drawn (default). 

Axes specifies whether the axes should be drawn. 

• Axes ã True specifies that both axes will be drawn (default). 
• Axes ã False draws no axes. 
• Axes ã {False, True} draws a y-axis but no x-axis. 
• Axes ã {True, False} draws an x-axis but no y-axis. 

EXAMPLE 18

Plot 1
x +1

, {x, –3, 3}, Frame True, Axes2 →→ →→→→ False⎡
⎣⎢

⎤
⎦⎥

–3 –2 –1 0 1 2 3
0.0
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0.8

1.0

Gridlines specifies that a rectangular grid should be drawn in the graph. 

• GridLines ã None specifies that no grid lines are to be drawn (default). 
• GridLines ã Automatic specifies that the gridline positions are to be chosen by Mathematica. 
• GridLines ã {xlist, ylist} specifies that gridline positions are to be drawn at the specified loca-

tions. xlist and ylist are lists of numbers enclosed within {} or may (individually) be specified as 
Automatic, in which case Mathematica will choose their location. 

EXAMPLE 19 When plotting trigonometric graphs, it is convenient to have vertical grid lines placed at multiples 
of π / 2.

Plot[Sin[x], {x, 0, 2 o}, GridLines ã {{0, o/2, o, 3 o/2, 2 o}, Automatic}]

1 2 3 4 5 6
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Tick marks and corresponding labeling along the axes can be controlled with the option Ticks.  
FrameTicks offers similar options along the edges of a frame when Frame ã True is set. 

• Ticks ã None specifies that no tick marks are to be drawn. The  numerical labeling of the axes is 
suppressed. 

• Ticks ã Automatic specifies that tick marks will be drawn (default). 
• Ticks ã {xlist, ylist} specifies that tick marks will be drawn at the specified locations. xlist and 

ylist are lists of numbers enclosed within {} or may be specified as Automatic. 

EXAMPLE 20 Here are three ways to plot the graph y x
x

=
+
2

2 1
.

Plot
x

x +1
, {x, –3, 3}

2

2
⎡
⎣⎢

⎤
⎦⎥
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Plot
x

x +1
, {x, –3, 3}, Ticks None

2

2 →→⎡
⎣⎢

⎤
⎦⎥

Plot
x

x +1
, {x, –3, 3}, Ticks {{–3, 3}, A

2

2 →→ uutomatic}⎡
⎣⎢

⎤
⎦⎥

–3 3

0.2

0.4

0.6

0.8
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The option Filling will plot a shaded graph. 

• Filling ã Axis fills from the curve to the x-axis.
• Filling ã Top fills from the curve to the top of the plot.
• Filling ã Bottom fills from the curve to the bottom of the plot.
• Filling ã y fills from the curve to value y in the vertical direction.
• Filling ã {m} fills to the mth  curve.
• Filling ã {m ã {n}} fills from the mth curve to the nth curve.
• Filling ã {m ã {y, g}} fills from the mth curve to the value y using style option g.
• Filling ã {m ã {{n}, g}} fills from the mth curve to the nth curve using style option g.

EXAMPLE 21

Plot[1 – x2, {x, –1, 1}, Filling ã Axis]

–1.0 –0.5 0.5 1.0
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0.4

0.6

0.8
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Plot[{1 – x2, 2 – 2 x2},{x, –1, 1}, Filling ã {1 ã {2}}]

–1.0 –0.5 0.5 1.0
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Plot[{1 – x2, 2 – 2 x2, 3 – 3 x2}, {x, –1, 1}, Filling ã {1 ã {2}, 2 ã {3}}]

–1.0 –0.5 0.5 1.0

0.5

1.0

1.5

2.0

2.5

3.0
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EXAMPLE 22

Plot[{1 – x2, 2 – 2 x2, 3 – 3 x2}, {x, – 1, 1},
   Filling ã {1 ã {0, Orange}, 1ã {{2}, Green}, 2 ã {{3}, Yellow}}]

–1.0 –0.5 0.5 1.0

0.5

1.0

1.5

2.0

2.5

3.0

SOLVED PROBLEMS

 4.1 Plot the graph of y xe x= −  from x = 0 to x = 5.

SOLUTION

Plot[x Exp[– x], {x, 0, 5}]

 1 2 3 4 5

0.05

0.10

0.15

0.20

0.25

0.30

0.35

 4.2 Plot f x x( ) | | | |= −1  on the interval [–3, 3].

SOLUTION

Plot[Abs[1 – Abs[x]], {x, –3, 3}]

 –3 –2 –1 1 2 3

0.5

1.0

1.5

2.0
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 4.3 The standard normal curve used in probability and statistics is defined by the function

f x e x( ) = −1
2

1
2

2

π

 Sketch the graph for –3 ≤ x ≤ 3.

SOLUTION

 
f[x_]= 1

2
Exp –1

2
x ;2⎡

⎣
⎤
⎦

Plot[f[x], {x, –3, 3}]

  –3 –2 –1 1 2 3

0.1

0.2

0.3

0.4

 4.4 Plot the graphs y x= sin , y x= 2 sin , and y x= 3 sin  from –2 π to 2 π on the same set of axes.

SOLUTION

Plot[{Sin[x], 2 Sin[x], 3 Sin[x]}, {x, –2 o, 2 o}]

  

–6 –4 –2 2 4 6

–3

–2

–1

1

2

3

 4.5 The graphs of inverse functions are symmetric with respect to the line y = x. Plot the inverse functions 
f x x( ) = 2, 0 ≤ x ≤ 2,  and f x x− =1( ) , 0 ≤ x ≤ 4, as solid curves and the line  y = x  as a dotted line 

and observe the symmetry.
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SOLUTION

g1 = Plot[ x2, {x, 0, 2}];

g2 = Plot[ x, {x, 0, 4}];

g3 = Plot[x, {x, 0, 4}, PlotStyle ã Dashing[{0, 0, .01}]];

Show[g1, g2, g3, AspectRatio ã Automatic, PlotRange ã {{0, 4}, Automatic}]

 1 2 3 4

1

2

3

4

 4.6 Sketch the graphs of y x= 2 , y x= − 2, and y x x= 2 10sin , –2 π ≤ x ≤ 2 π, on a single set of axes 
enclosed by a frame.

SOLUTION

Plot[{x2, –x2, x2 Sin[10 x]}, {x, –2 o, 2 o}, Frame ã True]

 –6 –4 –2 0 2 4 6
–40

–20

0

20

40
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 4.7 The family of Chebyshev polynomials is used in approximation theory and numerical analysis. Mathe-
matica represents these polynomials as ChebyshevT[n, x]. On a single set of axes, using some device 
to distinguish the curves, plot a labeled graph showing the Chebyshev polynomials of degrees 2, 3, and 4.

SOLUTION 1

PlotLegends`

Plot[{ChebyshevT[2, x], ChebyshevT[3, x], ChebyshevT[4, x]}, {x, –2, 2},
    PlotStyle ã {GrayLevel[0], GrayLevel[.4], GrayLevel[.7]},
    PlotLegend ã {"T2", "T3", "T4"}, LegendPosition ã {1,0}]

 

–2 –1 1 2

–10

–5

5

10

15

20

T3

T2

T1

SOLUTION 2

PlotLegends`

Plot[{ChebyshevT[2, x], ChebyshevT[3, x], ChebyshevT[4, x]},
   {x, –2, 2}, PlotStyle ã {Red, Green, Blue},
     PlotLegend ã {"T2", "T3", "T4"}, LegendPosition ã {1, 0}]

4.8 Sketch the graphs of y x= +1 sin , 0 ≤ x ≤ 2 π, y x= +2 sin , 2 π ≤ x ≤ 4π, and y = +3 sin, 4 π ≤ x ≤ 6 π 
on one set of axes.

SOLUTION

g1 = Plot[1 + Sin[x], {x, 0, 2 o}];

g2 = Plot[2 + Sin[x], {x, 2 o, 4 o}];

g3 = Plot[3 + Sin[x], {x, 4 o, 6 o}];

Show[g1, g2, g3, PlotRange ã Automatic]

 5 10 15

1

2

3

4

Color graph not shown.



CHAPTER 4  Two-Dimensional Graphics 111

4.2 Additional Graphics Commands
Standard geometric shapes can be constructed with the Graphics command and viewed with the Show 
command.

 Graphics[ primitive]creates a two-dimensional graphics object.

The following are a few of the more common graphics primitives available in Mathematica:

• Circle[{x, y}, r] creates a circle centered at (x, y) having radius r. 
• Disk[{x, y}, r] creates a disk (filled circle) centered at (x, y) having radius r.
• Point[{x, y}] plots a point at coordinate (x, y). 
• Line[{{x1, y1}, {x2, y2}, ...}] draws lines connecting points (x1, y1), (x2, y2), . . . 
• Rectangle[{x1, y1}, {x2, y2}] creates a filled rectangle having (x1, y1) and (x2, y2) as 

opposite ends of a diagonal. 
• Polygon[{{x1, y1}, {x2, y2}, ...}]constructs a filled polygon having points (x1, y1), 

(x2, y2), . . . as vertices. 
• Text[textstring, {x, y}] prints a string of text centered at position (x, y). TextStyle allows 

you to change the default font and size used in the graph’s text. TextStyle ã {FontFamily ã 
fontname, FontSize ã size} is a simple, but useful, application.

When viewing graphics objects using Show, the default, Axes ã False, causes the object to be 
drawn without axes. If desired, Axes ã True may be included as an option.

EXAMPLE 23

g1 = Graphics[Circle[{0, 0}, 1]];

g2 = Graphics[Line[{{–1, –1}, {–1, 1}, {1, 1}, {1, –1}, {–1, –1}}]];

g3 = Graphics[Polygon[{{–1, 0}, {0, 1}, {1, 0}, {0, –1}}]];

g4 = Graphics[Text["Square in a Circle in a Square", {0, 1.2}, 
             TextStyle ã {FontSize ã 20}]];

Show[g1, g2, g3, g4]

Square in a Circle in a Square

Curves are sometimes defined parametrically, i.e., the x- and y-coordinates of points are defined as two 
independent functions of a third variable. Parametric curves, which are usually more complex in their 
behavior, can be viewed using ParametricPlot.

 ParametricPlot[{x[t], y[t]}, {t, tmin, tmax}] plots the parametric curve 
x = x(t), y = y(t) over the interval  tmin ≤ t ≤ tmax.
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 ParametricPlot[{{x1[t], y1[t]}, {x2[t], y2[t]}, ...}, {t, tmin, tmax}]
plots several sets of parametric equations over  tmin ≤ t ≤ tmax.

EXAMPLE 24

ParametricPlot[{t3 – 2 t, t2 – t}, {t, –2, 2}]

–4 –2 2 4

1

2

3

4

5

6

EXAMPLE 25

x[t_] = Cos[t] – Cos[100 
t]

 
Sin[t];

y[t_] = 2 
Sin[t] –

 
Sin[100

 
t];

ParametricPlot[{x[t], y[t]},{t, 
0,

 
2
 
o}]

–1.0 –0.5 0.5 1.0

–3

–2

–1

1

2

3
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Implicitly defined curves can be plotted with the ContourPlot command. 

 ContourPlot[equation, {x, xmin, xmax}, {y, ymin, ymax}] plots equation by treating 
it as a function in three-dimensional space, and generates a contour of the equation cutting through 
the plane where z equals zero. 

equation must be of the form lhs rhs. Note the double equal sign in the middle.

 ContourPlot[{equation1, equation2,...}, {x, xmin, xmax}, {y, ymin, ymax}] 
plots several implicitly defined curves.  

By default, ContourPlot sets  Axes ã False and Frame ã True. Additional options such as 
Dashing, Graylevel, Thickness, etc. determining the appearance of the graph may be included 
using ContourStyle.  

EXAMPLE 26 Plot the equation x y y y2 2 2 21 4= + −( ) ( )  for –10 ≤ x ≤ 10, –2 ≤ y ≤2.  (Conchoid of Nicomedes.)

ContourPlot[x2 y2(y + 1)2(4 – y2), {x, –10, 10}, {y, –2, 2}, 
      AspectRatio ã Automatic]

–10 –5 0 5 10
–2

–1

0

1

2

ContourPlot[x2 y2(y + 1)2(4 – y2), {x, –10, 10}, {y, –2, 2}, 
    AspectRatio ã Automatic, Axes ã True, Frame ã False]

–10 –5 5 10

–2

–1

1

2

EXAMPLE 27 Plot the equation x y xy3 3 6+ =  for – 4 ≤ x ≤ 4, – 4 ≤ y ≤ 4. (Folium of DeCartes.)

ContourPlot[x3 + y36 x y, {x, –4, 4},{y, –4, 4}, Axes ã True, Frame ã False]

–4 –2 2 4

–4

–2

2

4
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EXAMPLE 28 Plot cos( ) sinx y y x− =  and sin( ) cosx y y x− = , –2 ≤ x ≤ 2, –2 ≤ y ≤ 2 on one set of axes.

ContourPlot[{Cos[x – y]  y Sin[x], Sin[x – y] y Cos[x]}, {x, –2, 2}, {y, –2, 2},

          ContourStyle ã {Dashing[.01], Dashing[.03]}, Axes ã True]

–2 –1 0 1 2
–2

–1

0

1

2

For curves defined in polar coordinates, PolarPlot is available.

 PolarPlot[f[p], {p, pmin, pmax}] generates a plot of the polar equation r f= ( )θ  as θ varies 
from θmin to θmax . 

 PolarPlot[{f1[p], f2[p], ...}, {p, pmin, pmax}] plots several polar graphs on one set 
of axes.

Note: The default aspect ratio for PolarPlot is AspectRatio ã Automatic.

EXAMPLE 29

PolarPlot[3 (1 – Cos[θ]), {p, 0, 2 o}]   (This curve is called a cardioid.)

–6 –5 –4 –3 –2 –1

–4

–2

2

4
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EXAMPLE 30 Plot the three-leaf rose r = sin 3q  inside the unit circle r = 1.

PolarPlot[{1, Sin[3p]}, {p, 0, 2 o}]

–1.0 –0.5 0.5 1.0

–1.0

–0.5

0.5

1.0

SOLVED PROBLEMS

 4.9 Sketch the parabola y = x2 – 9 and a circle of radius 3 centered at the origin.

SOLUTION

g1 = Plot[x – 9,{x,–4,4}];2  

g2   = Graphics[Circle[{0, 0}, 3]];

g3   = Graphics[Text["CIRCLE IN A PARABOLA", {0, 6}, 
 TextStyle ã {FontSize ã 16}]];

Show[g1, g2, g3, AspectRatio ã Automatic]

 

CIRCLE IN A PARABOLA

–4 –2 2 4

–5

5
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4.10 The curve traced by a point on a circle as the circle rolls along a straight line is called a cycloid and 
has parametric equations x r y r= − = −( sin ), ( cos )θ θ θ1  where r represents the radius of the circle. 
Plot the cycloid formed as a circle of radius 1 makes four complete revolutions.

SOLUTION

ParametricPlot[{p – 
Sin[p], 1 

–
 
Cos[p]}, {p, 0, 8 o}, 

              Ticks ã {Automatic, {0, 1, 2}}]

 0 5 10 15 20 25

2

1

4.11 Let P be a point at a distance a from the center of a circle of radius r. (Imagine the point being placed 
on a spoke of a bicycle wheel.) The curve traced by P as the circle rolls along a straight line is called 
a trochoid. Its parametric equations are x r a= −θ θsin , y r a= − cosθ. Sketch the trochoid with 

r = 1, a = 
1
2

 as the circle makes four revolutions. What would the graph look like if r = 1, a = 2 so 
that the point is outside the circle?

SOLUTION

r = 1; a = 1/2;

ParametricPlot[{r  p – a Sin[p], r – a Cos[p]}, {p, 0, 8 o},
 PlotRange ã {Automatic, {0, 2}},
 Ticks ã {Automatic, {0, 1, 2}}]

 0 5 10 15 20 25

1

2

r = 1; a = 2;

ParametricPlot[{r  p – a Sin[p], r – a Cos[p]}, {p, 0, 8 o}]

 
5 10 15 20 25

–1

1

2

3

4.12 A circle of radius b rolls on the inside of a larger circle of radius a. The curve traced out by a fixed 
point initially at (a, 0) is called a hypocycloid and has equations

x a b b a b
b

y a b b a b
b

= − + −( )
= − − −

( )cos cos

( )sin sin

θ θ

θ θθ( )
Sketch the hypocycloid for a = 4, b = 1 (0 ≤ x ≤ 2 π) and then again for a = 8, b = 5 (0 ≤ x ≤ 10 π).

SOLUTION

x[ _]:=(a – b)Cos[ ]+ b Cos a – b
b

y[ _

θθ θθ θθ

θθ

⎡
⎣

⎤
⎦

]]:=(a – b)Sin[ ]– b Sin a – b
b

θθ θθ⎡
⎣

⎤
⎦
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a = 4;

b = 1;

ParametricPlot[{x[θ], y[θ]}, {θ, 0, 2 o}]

 

–4 –2 2 4

–4

–2

2

4

a = 8;

b = 5;

ParametricPlot[{x[θ], y[θ]}, {θ, 0, 10 o}]

 

–5 5

–5

5
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4.13 Sketch the graph defined by the equation y x x2 3 2= −( ), 0 ≤ x ≤ 2, –2 ≤ y ≤ 2.

SOLUTION

ContourPlot[y2  x3(2 – x), {x, 0, 2}, {y, – 2, 2}, Frame ã False, Axes ã True]

 

0.5 1.0 1.5 2.0

–2

–1

1

2

4.14 Sketch the graph of the Tschirnhausen cubic: y x x2 3 23= + , –3 ≤ x ≤ 3, –8 ≤ y ≤ 8.

SOLUTION

ContourPlot[y2  x3 + 3x2, {x, – 3, 3}, {y, – 8, 8}, Axes ã True, Frame ã False]

 

–3 –2 –1 1 2 3

–5

5
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4.15 The polar graph r = q  is called the Spiral of Archimedes. Sketch the graph for 0 ≤ θ ≤ 10 π  and then 
again for –10 π ≤ θ ≤ 10 π .

SOLUTION

PolarPlot[p, {p, 0, 10 o}] PolarPlot[p, {p, –10 o, 10 o}]

 

–20 –10 10 20 30

–30

–20

–10
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20

  

–30 –20 –10 10 20 30

–30

–20

–10
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4.16 The equation r n= sin θ , where n is a positive integer, represents a family of polar curves called 
roses. Investigate the behavior of this family and form a conjecture about how the number of loops 
is related to n.

SOLUTION

g1 = PolarPlot[Sin[2 p], {p, 0, 2 o}, Ticks ã False, PlotLabel ã "n = 2"];

g2 = PolarPlot[Sin[3 p], {p, 0, 2 o}, Ticks ã False, PlotLabel ã "n = 3"];

g3 = PolarPlot[Sin[4 p], {p, 0, 2 o}, Ticks ã False, PlotLabel ã "n = 4"];

g4 = PolarPlot[Sin[5 p], {p, 0, 2 o}, Ticks ã False, PlotLabel ã "n = 5"];

GraphicsArray[{{g1, g2}, {g3, g4}}]

 

n = 2 n = 3

n = 4 n = 5

Conclusion: If n is odd, the rose will have n leaves. If n is even, there will be 2n leaves.



CHAPTER 4  Two-Dimensional Graphics120

4.17 Sketch the cardioid r = −1 cosθ  and the circle r = 1 on the same set of axes.

SOLUTION

PolarPlot[{1 – Cos[θ], 1}, {θ, 0, 2 o}]
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4.3 Special Two-Dimensional Plots
Discrete functions, i.e., functions defined on a discrete set, can be visualized using the special plotting 
function ListPlot. 

 ListPlot[{y1, y2,...}] plots points whose y-coordinates are y1, y2, . . . The x-coordinates 
are taken to be the positive integers, 1, 2, . . . 

 ListPlot[{{x1, y1}, {x2, y2},...}] plots the points (x1, y1), (x2, y2), . . . 

Standard graphics options are permitted. The form of the command would then be

 ListPlot[{y1, y2, ...}, options] or  
 ListPlot[{{x1, y1}, {x2, y2},...}, options] 

The most useful graphics options used with ListPlot are 

• PlotStyle ã PointSize[d]  where d specifies the diameter of the point as a fraction of the 
overall width of the graph. The default value is .008. In addition, the following symbolic forms can 
be used: Tiny, Small, Medium, and Large. These specify point sizes independent of the total width 
of the graphic.

• PlotStyle ã AbsolutePointSize[d]  where d is measured in printer’s points, equal to 
1
72

 
of an inch. 

• PlotMarkers ã Automatic will cause the point markers to take different shapes, e.g., circles, 
squares, diamonds, etc. This is useful when two or more sets of points are to be plotted.

• Filling ã Axis fills the graph vertically to the horizontal axis.
• Filling ã Bottom fills the graph vertically to the bottom of the graph.
• Filling ã Top fills the graph vertically to the top of the graph.
• Filling ã v fills the graph vertically to the value v.



CHAPTER 4  Two-Dimensional Graphics 121

EXAMPLE 31 The following plots a list of the squares of the positive integers 1 through 20.

squares = Table[k2, {k, 1, 20}]; 

ListPlot[squares]

5 10 15 20

100

200

300

400

ListPlot[squares, PlotStyle ã PointSize[.03]]

5 10 15 20

100

200

300

400

EXAMPLE 32

randomintegers = Table[RandomInteger,[{1, 20}], {k, 1, 30}];

ListPlot[randomintegers]

5

5

10

15

10 15 20 25 30

The Table command generates a list of 
30 random integers, each between 1 and 20.
The Table command generates a list of 
30 random integers, each between 1 and 20.
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ListPlot[randomintegers,Filling ã Axis]

5

10

15

5 10 15 20 25 30

 ListLinePlot[{y1, y2,...}] plots points whose y-coordinates are y1, y2, . . . and connects 
them with line segments. The x-coordinates are taken to be the positive integers.

 ListLinePlot[{{x1, y1}, {x2, y2},...}] plots the points (x1, y1), (x2, y2), . . .  and con-
nects them with line segments.

 ListLinePlot[list1, list2, ...] plots multiple lines through points defined by list1, 
list2, . . .

The options for ListPlot may be used for ListLinePlot.  The Filling option may be used to 
create a filled polygon that describes the data.

EXAMPLE 33 (Continuation of Example 32)

ListLinePlot[randomintegers]

15

10

5

5 10 15 20 25 30

ListLinePlot[randomintegers, Filling ã Axis]]

5 10 15
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20 25 30
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Different types of bar graphs can be drawn with Mathematica, using the command BarChart. 

Note: Starting with version 7, BarChart can be found in the Mathematica kernel. If you are using 
version 6, you will find BarChart in the package BarCharts` which must be loaded prior to use. See 
the Documentation Center for appropriate usage.

 BarChart[datalist] draws a simple bar graph. datalist is a set of numbers enclosed within 
braces.

 BarChart[{datalist1, datalist2,...}] draws a bar graph containing data from multiple data 
sets. Each data list is a set of numbers enclosed within braces.

EXAMPLE 34

dataset1 = {1, 2, 3, 4, 5};

dataset2 = {6, 5, 4, 3, 2};

g1 = BarChart[dataset1];

g2 = BarChart[{dataset1, dataset2}];

GraphicsArray[{g1, g2}]
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If a customized look is desired, there are a variety of options that can be invoked. The format of the 
command with options becomes

 BarChart[datalist, options]
 BarChart[{datalist1, datalist2,...}, options]

Some of the more popular options are

• Chartstyle ã g specifies that style option g should be used to draw the bars. Examples of style 
options are GrayLevel, Hue, Opacity, RGBColor, and Colors (Red, Blue, etc.). 

• Chartstyle ã {g1, g2,...} specifies that style options g1, g2, . . . should be used cyclically.
• ChartLayout ã "layout" specifies that a layout of type layout should be used to draw the graph. 

Examples of layouts are "Stacked", in which case the bars are stacked on top of each other rather 
than placed side by side, and "Percentile", which generates a stacked bar chart with the total 
height of each bar constant at 100%.

BarSpacing controls the spacing between bars and between groups of bars. The default is 
BarSpacing ã Automatic which allows Mathematica to control the spacing.

• BarSpacing ã s allows a space of s between bars within each data set. The value of s is measured 
as a fraction of the width of each bar.

• BarSpacing ã   {s, t} allows a space of s between bars within each data set and a value of t 
determines the space between data sets. The values of s and t are measured as a fraction of the width 
of each bar.

In each of the preceding BarSpacing commands, the values of s and t may be replaced by the pre-
defined symbols  None, Tiny, Small, Medium and Large.
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• BarOrigin ã edge controls where the bars originate from. The default value of edge is Bottom. 
Other acceptable values are Top, Left, and Right.

• ChartLabels ã {label1, label2,...} specifies the labeling for each bar corresponding to each 
value in the data list.

EXAMPLE 35

dataset1 = {1, 2, 3, 4, 5};

dataset2 = {6, 5, 4, 3, 2};

g1 = BarChart[{dataset1, dataset2}, ChartLayout ã "Stacked"];

g2 = BarChart[{dataset1, dataset2}, ChartLayout ã "Percentile"];

GraphicsArray[{g1, g2}]
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EXAMPLE 36

dataset = {6, 3, 4, 1, 5};

BarChart[dataset, ChartLabels ã {"Bar1", "Bar2", "Bar3", "Bar4", "Bar5"}]

Bar1 Bar2 Bar3 Bar4 Bar5

1

2

3

4

5
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EXAMPLE 37 

dataset = {6, 3, 4, 1, 5};

g1 = BarChart[dataset];

g2 = BarChart[dataset, BarOrigin ã Top];

g3 = BarChart[dataset, BarOrigin ã Left];

g4 = BarChart[dataset, BarOrigin ã Right];

GraphicsArray[{{g1, g2}, {g3, g4}}]
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Pie Charts may be constructed using the PieChart command. 
Note: Starting with version 7, PieChart can be found in the Mathematica kernel. If you are using 

version 6, you will find PieChart in the package PieCharts` which must be loaded prior to use. See 
the Documentation Center for appropriate usage.

 PieChart[datalist] draws a simple pie chart. datalist is a list of numbers enclosed within braces. 
 PieChart[{datalist1, datalist2,...}] draws a pie chart containing data from multiple data sets. 

Each data set is a list of numbers enclosed within braces.

Similar to BarChart, there are options that can be invoked to enhance the display. The format of the 
command with options becomes

 PieChart[datalist, options]
 PieChart[{datalist1, datalist2,...}, options]

Some of the available options associated with PieChart are

• Chartstyle ã g specifies that style option g should be used to draw the bars. Examples of style 
options are GrayLevel, Hue, Opacity, RGBColor, and Colors (Red, Blue, etc.). 

• Chartstyle ã {g1, g2,...} specifies that style options g1, g2, . . . should be used cyclically.

SectorSpacing determines the spacing between concentric sectors for different data sets and the spac-
ing between sectors within a data set.

• SectorSpacing ã s determines the spacing between concentric sectors for different data lists. 
The value of s is measured as a fraction of the radial width of the sectors.

• SectorSpacing ã {s, t} allows a space of s between sectors corresponding to each data set and 
a space of t between concentric sectors for different data sets. The values of s and t are measured as 
a fraction of the radial width of the sectors.

In each of the preceding SectorSpacing commands, the values of s and t may be replaced by the 
predefined symbols  None, Tiny, Small, Medium and Large.

Note: Clicking on any sector of a pie chart will cause it to shift radially outward by an amount s.

EXAMPLE 38

dataset = {1.5, 3, 4.5, 9};

g1 = PieChart[dataset];

g2 = PieChart[dataset, SectorSpacing ã {Tiny, None}];

GraphicsArray[{g1, g2}]
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EXAMPLE 39

datalist = {1.5, 3, 4.5, 9};

 g1 = PieChart[datalist, ChartLabels ã {"First Sector", "Second Sector",
                   "Third Sector", "Fourth Sector"}]

First sector

Second sector

Third sector

Fourth sector

SOLVED PROBLEMS

4.18 Plot the first 50 prime numbers.

SOLUTION

primelist = Table[Prime[k], {k, 1, 50}];

ListPlot[primelist]
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4.19 Plot the points (0, 0), (2, 7), (3, 5), and (4, 11) and connect them with line segments.

SOLUTION

list = {{0, 0}, {2, 7}, {3, 5}, {4, 11}};   

ListLinePlot[list, PlotMarkers ã Automatic] 
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 4.20 Plot the set of points corresponding to the first ten primes, the first ten Fibonacci numbers, and the first 
ten perfect squares. First plot individual points and then plot them connected with line segments.

SOLUTION

PlotLegends`

list1 = Table[Prime[n], {n, 1, 10}];

list2 = Table[Fibonacci[n], {n, 1, 10}]; 

list3 = Table[n2, {n, 1, 10}];

ListPlot[{list1, list2, list3}, PlotMarkers ã Automatic,
 PlotLegend ã {"Primes", "Fibonacci", "Squares"},
 LegendPosition ã {1,0}]
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ListLinePlot[{list1, list2, list3}, PlotMarkers ã Automatic,
 PlotLegend ã {"Primes", "Fibonacci", "Squares"}, 
 LegendPosition ã {1,0}]
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4.21 The monthly sales for XYZ Corp. (in thousands of dollars) were

JAN FEB MAR APR MAY JUNE JULY AUG SEPT OCT NOV DEC

13.2 15.7 17.4 12.6 19.7 22.6 20.2 18.3 16.2 15.0 12.1 8.6

 Construct a bar graph illustrating this data.

SOLUTION

months = {"Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", 
                      "Oct", "Nov", "Dec"};

salesdata = {13.2, 15.7, 17.4, 12.6, 19.7, 22.6, 20.2, 18.3, 
 16.2, 15.0, 12.1, 8.6};

BarChart[salesdata, ChartLabels ã months]

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
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4.22 Construct a pie chart illustrating the data of the previous problem.

SOLUTION

months = {"Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", 
 "Sep", "Oct", "Nov", "Dec"};

salesdata = {13.2, 15.7, 17.4, 12.6, 19.7, 22.6, 20.2, 18.3, 
           16.2, 15.0, 12.1, 8.6};

PieChart[salesdata, ChartLabels ã months]
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4.4 Animation
Animation effects can be produced quickly and easily through the use of the Animate command. This 
command displays several different graphics images rapidly in succession, producing the illusion of 
movement. The form of the command is

 Animate[expression, {k, m, n, i}]

where  expression is any Mathematica command with parameter k which varies from m to n in increments 
of i (optional; if omitted, i varies continuously from m to  n).

The following example gives an interesting animated description of the behavior of the odd powers of 
xn as n gets larger. 

EXAMPLE 40 

Animate[Plot[xk, {x, –1, 1}, PlotRange ã {–1, 1}, Ticks ã False], {k, 1, 19, 2}]

The speed of the animation and the direction are easily controlled by clicking on the , , and   
buttons. The animation can be paused, using the  button.

To allow the user more control over the animation, the Manipulate command can be used. 
Manipulate works very much the same way as Animate except it allows the user to control the param-
eter directly with a slider.

 Manipulate[expression, {k, m, n, i}]

EXAMPLE 41 

Manipulate[Plot[xk, {x, –1, 1}, PlotRange ã {–1, 1}, Ticks ã False], {k, 1, 19, 2}]

Click here for animation controls
Click here for an
options menu

A convenient way of controlling expressions involving integer parameters is by clicking on “radio 
buttons.” This can be accomplished with the option ControlType ã RadioButton.
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EXAMPLE 42 

Manipulate[Plot[xk, {x, –1, 1}, PlotRange ã {–1, 1}, Ticks ã False],
  {k, 1, 19, 2}, ControlType ã RadioButton]

expression may involve two or more parameters. In this case the form of the command is

 Animate[expression,{k1, m1, n1, i1}, {k2, m2, n2, i2},...]
 Manipulate[expression,{k1, m1, n1, i1}, {k2, m2, n2, i2},...]

Each parameter can be controlled independently (speed, direction, pause).

EXAMPLE 43 

Animate [Plot[a Sin[b x], {x, 0, 2 o}, PlotRange ã {–10, 10}], 
  {a, 0, 10}, {b, 0, 10}]

a

b
10

–10

5

–5

1 2 3 4 5 6

EXAMPLE 44 This animation shows a circle of varying radius whose center varies from (–1, –1) to (1, 1). 
Pause each variable (x, y, r) to see the effect.

Animate[Graphics[Circle[{Sin[x], Cos[y]}, r], Axes ã True,
 PlotRange ã {{–2, 2}, {–2, 2}}], {x, 0, 2 o}, {y, 0, 2 o}, {r, 0, 1}]
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Animate and Manipulate are not limited to the presentation of graphics. We will use these com-
mands in other contexts in later chapters.

SOLVED PROBLEMS

4.23 Construct an animation of the Spiral of Archimedes, r = q  as q  varies from 8 π to 10 π. 

SOLUTION

Animate [PolarPlot[θ, {θ, 0, 8o + e}, Ticks ã False, 
  PlotRange ã {{– 10 o, 10 o}, {–10 o, 10 o}}], {e, 0, 2 o}]
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4.24 Use Manipulate to simulate a point “rolling” along a sine curve from 0 to 2 π.

SOLUTION

First we construct the sine curve.

sincurve = Plot[Sin[x], {x, 0, 2 o}, Ticks ã False]

  

Now we animate the sequence of points as red disks of radii  0.05.

Manipulate[Show[sincurve, Graphics[{Red, Disk[{x, Sin[x]}, 0.05]}], 
 PlotRange ã {{0, 2 o}, {–1, 1}}, 
 AspectRatio ã Automatic], {x, 0, 2 o}].

 

Move the slider to control the movement of the disk.
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Three-Dimensional Graphics

5.1 Plotting Functions of Two Variables
A function of two variables may be viewed as a surface in three-dimensional space. The simplest command 
for plotting a surface is Plot3D. 

 Plot3D[f[x, y], {x, xmin, xmax}, {y, ymin, ymax}] plots a three-dimensional graph 
of the function f[x, y] above the rectangle xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax. 

 Plot3D[{f1[x, y], f2[x, y],...}, {x, xmin, xmax}, {y, ymin, ymax}] plots sev-
eral surfaces on one set of axes.

Mathematica’s default axis orientation is as shown in the figure 
to the right. This is somewhat different from what appears in many 
calculus textbooks. 

EXAMPLE 1

Plot3D[Sin[x – y], {x, – o, o}, {y, – o, o}]

The option PlotPoints specifies the number of points to be used in each direction to produce the 
graph. Unlike two-dimensional graphics, the default for a three-dimensional plot is PlotPoints ã 15. 
This often leads to graphs with ragged surfaces. Increasing PlotPoints will alleviate this condition.

• Plotpoints ã n specifies that n initial sample points should be used in each direction. Additional 
points are selected by adaptive algorithms.

• PlotPoints ã {nx, ny} specifies that nx and ny initial sample points are to be used along the 
x-axis and y-axis, respectively.

CHAPTER 5

z

y

x

2

0

2

2

1 1

1

–2

0

2

–2

0

2

–1.0
–0.5
0.0

0.5

1.0



CHAPTER 5  Three-Dimensional Graphics134

The next example shows how an increase in the value of PlotPoints affects the “smoothness” of 
the resulting graph. 

EXAMPLE 2

f[x_, y_] = x2y2 Exp[ –(x2 + y2)];

Plot3D[f[x, y], {x, –2, 2}, {y, –2, 2}]
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Plot3D[f[x, y], {x, –2, 2}, {y, –2, 2}, PlotPoints ã 40]
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Most of the two-dimensional graphics options discussed in Chapter 4 will work with Plot3D. There 
are a few extra options that are new as well. The most popular ones are:

• Axes ã False will suppress the axes from being drawn. 
• Axes ã {true_or_  false, true_or_  false, true_or_  false}, where true_or_  false is either True or 
False, will determine which axes will be drawn. 

• Boxed ã False will suppress the bounding box containing the graph from being drawn. 
• BoxRatios ã {sx, sy, sz} specifies the ratios of side lengths for the bounding box of the three-

dimensional picture. Mathematica’s default is BoxRatios ã {1, 1, 0.4}. BoxRatios ã 1 is 
equivalent to BoxRatios ã {1, 1, 1}.

• Ticks ã False will eliminate tick marks and corresponding labeling along the axes. 
Ticks ã {true_or_  false, true_or_  false, true_or_  false}, where true_or_  false is either True or 
False, will control ticks on individual axes. 

FaceGrids is an option that draws grid lines on the faces of the bounding box. 

• FaceGrids ã All draws grid lines on all six faces of the bounding box. 
• FaceGrids ã None (default) draws no grid lines. 
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• FaceGrids ã {{x1, y1, z1}, {x2, y2, z2},. . . , {x6, y6, z6}} allows gridlines to be 
drawn on individual faces. Two of the three numbers in each sublist must be 0 and the third ±1 to 
indicate which of the six possible faces will contain grid lines. 

AxesEdge is an option that specifies on which edges of the bounding box axes should be drawn. 

• AxesEdge ã Automatic (default) lets Mathematica decide on which edges axes should be 
drawn. 

• AxesEdge  ã {{y1, z1 }, {x2, z2 }, {x3, y3 }} is where each of the x, y, and z values are either 1 or 
–1, to indicate on which edges of the bounding box the axes are to be drawn. 1 indicates that the axes 
will be drawn on the edge with the larger coordinate value, –1 indicates the smaller coordinate value. 
Any of the three lists {x, y} can be replaced by Automatic, in which case Mathematica decides 
where to place the axis, or None, in which case the axis is not drawn. 

• BoxStyle is an option that specifies how the bounding box is to be drawn. BoxStyle can be set 
to a list of style options such as Dashing, Thickness, GrayLevel, or RGBColor. 

• Mesh is an option that determines whether a mesh should be drawn on the graphic surface. The 
default is Mesh ã True; Mesh ã False or Mesh ã None eliminates the mesh. 

The next example plots the parabolic cylinder z = x2 using different options.

EXAMPLE 3 (Graphs are grouped together for easy comparison.)

Plot3D[x2, {x, –2, 2}, {y, –2, 2}]

Plot3D[x2, {x, –2, 2}, {y, –2, 2}, Mesh ã False]

Plot3D[x2, {x, –2, 2}, {y, –2, 2}, BoxRatios ã 1]

Plot3D[x2, {x, –2, 2}, {y, –2, 2}, FaceGrids ã {{1, 0, 0}, {0, –1, 0}}]

Plot3D[x2, {x, –2, 2}, {y, –2, 2}, AxesEdge ã {{–1, 1}, {1, 1}, {1, –1}}]
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Three-dimensional graphics are generated as a sequence of polygons shaded to create a pleasing three-
dimensional affect. The polygons are drawn opaque so that surfaces behind other surfaces are hidden. The 
following option can be used to draw the surface transparent.

• PlotStyle ã FaceForm[ ] draws the polygons transparent (only the connecting lines are 
drawn) so that all surfaces are visible.

EXAMPLE 4 (Graphs are grouped together for easy comparison.)

Plot3D[1 – y2, {x, –5, 5}, {y, –5, 5}, BoxRatios ã {1, 1, 2}, Boxed ã False,
         Axes ã False]

Plot3D[1 – y2, {x, –5, 5}, {y, –5, 5}, BoxRatios ã {1, 1, 2}, Boxed ã False,
 Axes ã False, PlotStyle ã FaceForm[ ]]

There are many different ways to view a three-dimensional drawing. ViewPoint is an option that 
views the surface from a specified fixed point outside the box that contains it.

• ViewPoint ã {x,y,z} gives the position of the viewpoint relative to the center of the box that 
contains the surface being plotted. The values of x, y, and z may be ∞.

The viewpoint coordinates are scaled in such a way that the longest side of the bounding box is 1. The 
viewpoint must be located outside the bounding box. Generally, the further from the surface the viewpoint 
is selected, the less the distortion.

The default Viewpoint parameters are {1.3, –2.4, 2.0}. In addition, the following symbolic 
forms are permitted. Their meanings are self explanatory.

 ViewPoint ã Above  ViewPoint ã Front ViewPoint ã Left
 ViewPoint ã Below  ViewPoint ã Back  ViewPoint ã Right 

EXAMPLE 5 This example shows the graph of the hyperbolic paraboloid z x y= −2 2 from different viewpoints. 
(Graphs are grouped together for easy comparison.)

Plot3D[x2 – y2, {x, –5, 5}, {y, –5, 5}, BoxRatios ã 1]

Plot3D[x2 – y2, {x, –5, 5}, {y, –5, 5}, BoxRatios ã 1, ViewPoint ã {2, 2, 2}]

Plot3D[x2 – y2, {x, –5, 5}, {y, –5, 5}, BoxRatios ã 1, ViewPoint ã {1.5, –2.6, –1.5}]

Plot3D[x2 – y2, {x, –5, 5}, {y, –5, 5}, BoxRatios ã 1, ViewPoint ã Front]

Plot3D[x2 – y2, {x, –5, 5}, {y, –5, 5}, BoxRatios ã 1, ViewPoint ã Top]

Plot3D[x2 – y2, {x, –5, 5}, {y, –5, 5}, BoxRatios ã 1, ViewPoint ã Right]
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Once plotted, a three-dimensional object can be rotated three-dimensionally by clicking on the object and dragging 
the mouse. Dragging with the [CTRL] , [ALT] , or [OPTION] key depressed allows you to zoom in or out, and 
dragging with the [SHIFT] key depressed allows the graph to be moved horizontally or vertically in your note-
book. Clicking on the object produces a rectangular boundary. Dragging a corner of this rectangle allows you to 
resize the object; dragging near but inside the rectangle allows you to rotate the object two-dimensionally.

Curves and surfaces defined parametrically can be plotted using ParametricPlot3D.

 ParametricPlot3D[{x[t], y[t], z[t]}, {t, tmin, tmax}] plots a space curve in 
three dimensions for tmin ≤ t ≤ tmax.

 ParametricPlot3D[{x[s, t], y[s, t], z[s, t]}, {s, smin, smax}, {t, tmin, tmax}] 
plots a surface in three dimensions.

EXAMPLE 6

ParametricPlot3D[{Cos[t], Sin[t], t/4}, {t, 0, 4o}]
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EXAMPLE 7

ParametricPlot3D[{Sin[s + t], Cos[s + t], s}, {s, – 2, 2}, {t, – 2, 2}]
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Plot3D allows you to plot surfaces expressed by equations in rectangular coordinates. Special 
surfaces, called surfaces of revolution, can be drawn using the command RevolutionPlot3D. (For 
additional options that provide more flexibility, please see SurfaceOfRevolution, which is discussed 
in Section 5.3.)

 RevolutionPlot3D[f[x], {x, xmin, xmax}] plots the surface generated by rotating the 
curve z = f(x) , xmin ≤ x ≤ xmax, completely around the z-axis. 

 RevolutionPlot3D[f[x], {x, xmin, xmax}, {p, pmin, pmax}] plots the surface gen-
erated by rotating the curve z = f(x) , xmin ≤ x ≤ xmax, around the z-axis for θmin ≤ θ ≤ θmax 
where θ is the angle measured counterclockwise from the positive x-axis.

 RevolutionPlot3D[{f[t],g[t]}, {t, tmin, tmax}] generates a plot of the surface 
generated by rotating the curve x = f(t), z = g(t), tmin ≤ t ≤ tmax, completely around the z-axis.

 RevolutionPlot3D[{f[t],g[t]}, {t, tmin, tmax},{p, pmin, pmax}] generates a 
plot of the surface generated by the curve x = f(t), z = g(t), tmin ≤ t ≤ tmax, around the z-axis for 
θmin ≤ θ ≤ θmax where θ is the angle measured counterclockwise from the positive x-axis.

EXAMPLE 8 Sketch the surface of revolution generated when the curve z x= , 0 ≤ x ≤ 4, is rotated about the 
z-axis.

First we draw the two-dimensional generating curve and then the corresponding surface of revolution. (Graphs are 
placed side by side for easy comparison.)

Plot[ x , {x, 0, 4}, AspectRatio ã 1, AxesLabel ã {"x", "z"}]

RevolutionPlot3D[ x , {x,0,4}, BoxRatios ã 1, ViewPoint ã {1, –5, 2}, 
                                       AxesLabel ã {"x", "y", "z"}]
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Cylindrical and spherical coordinate systems are useful for solving problems involving cylinders, 
spheres, and cones. Point P has cylindrical coordinates (r, q, z) where r and q are the polar coordinates of 
the projection of P in the x–y plane. Since the distance from P to the z-axis is r, the surface z = z(r, q ) is a 
surface of revolution.

 RevolutionPlot3D[z[r, p], {r, rmin, rmax}]  generates a plot of the surface z = z(r, q )  
described in cylindrical coordinates for rmin ≤ r ≤ rmax. 

 RevolutionPlot3D [z[r, p], {r, rmin, rmax}, {p, pmin, pmax}] generates a plot 
of the surface z = z(r, q )  for rmin ≤ r ≤ rmax, θmin  ≤  θ ≤  θmax. 
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EXAMPLE 9 In cylindrical coordinates, the equation z = r represents the cone z x y= +2 2 .

RevolutionPlot3D[r,{r,0,1},BoxRatios ã 1]

–1.0
–0.5

0.0

0.5

1.0

–1.0

–0.5

0.0

0.5

1.0

0.0

0.5

1.0

Point P has spherical coordinates (r, q, f) where r is the distance from P to the origin, q  is the angle 
formed by the positive x-axis and the line connecting the origin with the projection of P in the x-y plane, 
and f is the angle formed by the positive z-axis and the line connecting P with the origin. The Mathematica 
command SphericalPlot3D allows the construction of surfaces given in spherical coordinates. 

Special Note: When dealing with spherical coordinates, Mathematica’s convention is to interchange 
the roles of q and f from that which is used in many standard calculus textbooks. The description of the 
command SphericalPlot3D described in the following, although different from the description in 
Mathematica’s documentation files, agrees with these conventions. 

 SphericalPlot3D[q, e, p] generates a complete plot of the surface whose spherical radius, ρ, 
is defined as a function of φ and θ.

 SphericalPlot3D[[q, {e, emin, emax}, {p, pmin, pmax}] generates a plot of the 
surface whose spherical radius, ρ, is defined as a function of φ and θ over the intervals φmin ≤ φ ≤ φmax 
and θmin ≤ θ ≤ θmax.

EXAMPLE 10 In spherical coordinates, r = 1 represents the unit sphere.

SphericalPlot3D[1, {e, 0, o}, {p, 0, 2o}]
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SOLVED PROBLEMS

 5.1 Plot the graph of the function e x y− −2 2
 above the rectangle –2 ≤ x ≤ 2, –2 ≤ y ≤ 2.

SOLUTION

Plot3D[Exp[–x2 – y2], {x, –2, 2}, {y, –2, 2}]
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 5.2 Show the intersection of the two paraboloids f x y x y( , ) = +2 2 and g x y x y( , ) = − −16 2 2 above the square 
−3 ≤ x ≤ 3, −3 ≤ y ≤ 3.

SOLUTION

Plot3D[{x2 + y2, 16 – x2 – y2}, {x, – 3, 3}, {y, – 3, 3}, BoxRatios ã 1]
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 5.3 Obtain a graph of the “saddle-shaped” hyperboloid z x y= −2 2, –5 ≤ x ≤ 5, –5 ≤ y ≤ 5 in a cubic box. 
Draw the graph with and without a surface mesh.

SOLUTION (Graphs are placed side by side for comparison purposes.)

Plot3D[x2 – y2, {x, –5, 5}, {y, –5, 5}, BoxRatios ã 1]

Plot3D[x2 – y2, {x, –5, 5}, {y, –5, 5}, BoxRatios ã 1, Mesh ã False]
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 5.4 Draw the graph of the function f x y x y( , ) sin sin=  for –2 π ≤ x, y ≤ 2 π. Label the x and y axes in 
terms of π.

SOLUTION

Plot3D[Abs[Sin[x]Sin[y]], {x, –2 o, 2 o}, {y, –2 o, 2 o},
 Ticks ã {{–2 o, –o, 0, o, 2 o},{–2 o, –o, 0, o, 2 o}, {0, 1}}]
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 5.5 Draw the graph of the surface z x y= − −1 2 2  for –1 ≤ x, y ≤ 1. Do not draw axes or a surrounding 
box.

SOLUTION

Plot3D[Abs[1 – x2 – y2], {x, – 1, 1}, {y, – 1, 1}, Axes ã False, Boxed ã False] 

 5.6 Graph the intersection of the paraboloid z x y= +2 2  with the plane y z+ = 12. Obtain a front view 
and a side view.

SOLUTION (Graphs are placed side by side for easier comparison.)

paraboloid = Plot3D[x2 + y2, {x, –5, 5}, {y, –5, 5}];

plane = Plot3D[12 – y, {x, –5, 5}, {y, –5, 5}];

Show[paraboloid, plane, BoxRatios ã 1, PlotRange ã {0, 20}, 
 PlotLabel ã "Default View"]

Show[paraboloid, plane, BoxRatios ã 1, PlotRange ã {0, 20}, ViewPoint ã Front,
 PlotLabel ã "Front View"]

Show[paraboloid, plane, BoxRatios ã 1, PlotRange ã {0, 20}, ViewPoint ã Left, 

 PlotLabel ã "Left View"]
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 5.7 Sketch the space curves defined by 
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  0 ≤ t ≤ 2p  for 

(i) a = 5, b = 3, c = 1; (ii) a = 3, b = 3, c = 1; (iii) a = 2, b = 5, c = 2. 
 These curves are known as Lissajous curves.

SOLUTION

ParametricPlot3D[{Cos[5t], Sin[3t], Sin[t]}, {t, 0, 2 o}]

ParametricPlot3D[{Cos[3t], Sin[3t], Sin[t]}, {t, 0, 2 o}]

ParametricPlot3D[{Cos[2t], Sin[5t], Sin[2t]}, {t, 0, 2 o}]

–1.0
–0.5

0.0
0.5

1.0

–1.0

–0.5

0.0
0.5

1.0

–1.0

–0.5

0.0

0.5

1.0

–1.0
–0.5

0.0
0.5

1.0

–1.0

–0.5

0.0
0.5

1.0

–1.0

–0.5

0.0

0.5

1.0

–1.0
–0.5

0.0
0.5

1.0

–1.0

–0.5

0.0
0.5

1.0

–1.0

–0.5

0.0

0.5

1.0

 5.8 Sketch the torus defined by 
x s t

y s t

z s

s

= +
= +
=

⎧
⎨
⎪

⎩⎪
≤

( sin )cos

( sin )sin

cos

,

4

4 0 t ≤ 2π

SOLUTION

x[t_] = (4 + Sin[s])Cos[t];

y[t_] = (4 + Sin[s])Sin[t];

z[t_] = Cos[s];

g1 = ParametricPlot3D[{x[t], y[t], z[t]}, {s, 0, 2 o}, {t, 0, 2o}, Mesh ã False]
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 5.9 (Continuation.) Sketch the space curve 

x t t

y t t

z t

= +
= +
=

⎧
⎨
⎪

( sin )cos

( sin )sin

cos

4 20

4 20

20⎩⎩⎪
≤ ≤0 2t π

 This curve is called a toroidal spiral since it lies on the surface of a torus (let s = 20t).

SOLUTION

x[t_] = (4 + Sin[20t])Cos[t];

y[t_] = (4 + Sin[20t])Sin[t];

z[t_] = Cos[20t];

g2 = ParametricPlot3D[{x[t], y[t], z[t]}, {t, 0, 2o}]
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5.10 (Continuation.) Sketch the torus and the toroidal spiral on the same set of axes.

SOLUTION

Show[g1, g2]
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5.11 Sketch the graph of a “ribbon” one unit wide having the shape of a sine curve from 0 to 4 π.

SOLUTION

We can represent this surface parametrically: 

x t

y s

z t

=
=
=

⎧
⎨
⎪

⎩⎪ sin

  0 ≤ s ≤ 1, 0 ≤ t ≤ 4p.

ParametricPlot3D[{t, s, Sin[t]}, {s, 0, 1}, {t, 0, 4 o}, Axes ã False]
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5.12 Draw the “ice cream cone” formed by the cone z x y= +3 2 2 and the upper half of the sphere 
x y z2 2 29 9+ + − =( ) . Use cylindrical coordinates.

SOLUTION

In cylindrical coordinates the cone has the equation z r= 3  and the hemisphere has the equation z r= + −9 9 2 . 

cone = RevolutionPlot3D[3 r, {r, 0, 3}, BoxRatios ã 1];

hemisphere = RevolutionPlot3D[9+ 9 – r2 ], {r, 0, 3}];

Show[cone, hemisphere, PlotRange ã All, BoxRatios ã {1,1,2}]
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5.13 Sketch the graph of the following surface given in spherical coordinates:

ρ θ φ θ π φ π= + ≤ ≤ ≤ ≤1 4 0 2 0sin sin ,,

SOLUTION

SphericalPlot3D[1 + Sin[4 p]Sin[e], {e, 0, o}, {p, 0, 2o}]
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5.2 Other Graphics Commands
A level curve of a function of two variables, f (x, y), is a two-dimensional graph of the equation 
f (x, y) = k for some fixed value of k. A contour plot is a collection of level curves drawn on the same 
set of axes.

The Mathematica command ContourPlot draws contour plots of functions of two variables. The 
contours join points on the surface having the same height. The default is to have contours corresponding 
to a sequence of equally spaced values of the function. 

 ContourPlot[f[x, y], {x, xmin, xmax}, {y, ymin, ymax}] draws a contour plot of 
f(x, y) in a rectangle determined by xmin, xmax, ymin, and ymax. 

Contour plots produced by Mathematica are drawn shaded, in such a way that regions with higher values 
of f(x, y) are drawn lighter. As with all Mathematica graphics commands, options allow you to control the 
appearance of the graph.

• Contours ã n allows you to determine the number of contours to be drawn. The default is ten 
equally spaced curves.

• Contours ã {k1, k2,...} draws contours corresponding to function values k1, k2, . . . 
• ContourShading ã False turns off shading. This option is particularly useful if your monitor 

or printer does not handle grayscales well.
• ContourLines ã False eliminates the lines that separate the shaded contours.
• PlotPoints ã n controls how many points will be used in each direction in an adaptive algorithm 

to plot each curve. The default is 15. (The default for two-dimensional graphics is 25.)

A complete list of options and their default values can be obtained using the command 
Options[ContourPlot].

EXAMPLE 11 Obtain contour plots of the paraboloid z = x2 + y2. Note that the level curves are all circles 
x2 + y2 = k. (Plots are placed side by side for easy comparison.)

ContourPlot[x2 + y2, {x, –10, 10}, {y, –10, 10}]

ContourPlot[x2 + y2, {x, –10, 10}, {y, –10, 10}, ContourLines ã False]

ContourPlot[x2 + y2, {x, –10, 10}, {y, –10, 10}, ContourShading ã False]

–10 –5 0 5 10
–10

–5

0

5

10

–10 –5 0 5 10
–10

–5

0

5

10

–10 –5 0 5 10
–10

–5

0

5

10

A density plot shows the values of a function at a regular array of points. Lighter regions have higher 
values.

 DensityPlot[f[x, y], {x, xmin, xmax}, {y, ymin, ymax}] draws a density plot of 
f(x, y) in a rectangle determined by xmin, xmax, ymin, and ymax. 
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The option Mesh draws a rectangular mesh that subdivides the region. 

• Mesh ã None (default) draws no mesh.
• Mesh ã n draws n equally spaced mesh divisions.
• Mesh ã Automatic draws automatically chosen mesh divisions.
• Mesh ã All draws mesh divisions between all elements.
• Mesh ã Full draws mesh divisions through regular data points.

EXAMPLE 12

DensityPlot[x2 + y2, {x, –10, 10}, {y, –10, 10}]

DensityPlot[x2 + y2, {x, –10, 10}, {y, –10, 10}, Mesh ã Automatic]
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The commands ListContourPlot and ListDensityPlot are the analogs of ContourPlot 
and DensityPlot for lists of numbers. These commands are appropriate for use with functions defined 
on a lattice of integer coordinates.

 ListContourPlot[array] generates a contour plot from a two-dimensional array of 
numbers. 

 ListDensityPlot[array] generates a density plot from a two-dimensional array of 
numbers. 

array = {{z11, z12,...}, {z21, z22,...}, ...}, representing the heights of points in the x-y 
plane, must be a nested array of dimension 2 × 2 or larger. zij is the z-coordinate of the point ( j,i ). The 
options for ListContourPlot and ListDensityPlot are the same as for ContourPlot and 
DensityPlot, except that the axes are labeled, by default, with positive integers starting with 1. The 
option DataRange allows you to change the labeling of the axes to correspond to the actual values of 
the data.

• DataRange ã {{xmin, xmax}, {ymin, ymax}} labels the x and y axes from xmin to xmax 
and from ymin to ymax, respectively. 
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EXAMPLE 13

list = Table[Random[], {x, 1, 10}, {y, 1, 10}]; 

ListContourPlot[list, DataRange ã {{ –5, 5}, {3, 7}}]

ListDensityPlot[list, DataRange ã {{ –5, 5}, {3, 7}}]
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ContourPlot3D is the three-dimensional counterpart of ContourPlot. ContourPlot3D will 
sketch the level surfaces of f, i.e., the set of points (x, y, z) such that f(x, y, z) = k.

 ContourPlot3D[f[x, y, z], {x, xmin, xmax}, {y, ymin, ymax},{z, zmin, zmax}]
draws a three-dimensional contour plot of the level surface f(x, y, z) = 0 in a box determined by 
xmin, xmax, ymin, ymax, zmin, and zmax.

The most commonly used options for ContourPlot3D are 

• Contours ã {k1, k2,...} draws level surfaces corresponding to k1, k2, . . . 
• PlotPoints ã {nx, ny} determines the initial number of evaluation points that will be used in 

the x and y directions, respectively. PlotPoints ã n is equivalent to PlotPoints ã {n, n}.

EXAMPLE 14

ContourPlot3D[z  –  x2  –  y2, {x, –5, 5}, {y, –5, 5}, {z, 0, 10}, Contours ã {0, 5},  Mesh  ã    None]
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←  Generates a 10  × 10 array 
of random numbers.
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ListPlot3D is the three-dimensional analog of ListPlot.

 ListPlot3D[{{z11, z12,...}, {z21, z22,...},...}] generates a three-dimensional 
surface based upon a given array of heights, zij (must be a nested array of dimension at least 2 × 2). 
The x- and y-coordinate values for each data point are taken to be consecutive integers beginning 
with 1.

 ListPlot3D[{{x1, y1, z1}, {x2, y2, z2},...}] generates a three-dimensional surface based 
upon a given array of heights, zj which are the z-coordinates corresponding to the points {xi, yi}.

Some options for ListPlot3D include:

• MeshShading ã shades generates a surface shaded according to the descriptions in the array 
shades (GrayLevel, Hue, RGBColor, etc.). If array has dimensions m × n, then shades must 
have dimensions (m–1)×(n–1). 

• DataRange ã {{xmin, xmax}, {ymin, ymax}} labels the x- and y-axes from xmin to xmax 
and from ymin to ymax, respectively. The default is DataRange ã Automatic, which assigns 
values starting with 1.

Mesh is an option that specifies how mesh divisions should be drawn. The default is Mesh ã Automatic.

• Mesh ã n specifies that n equally spaced mesh divisions (lines) should be drawn in each direction.
• Mesh ã All specifies that mesh divisions should be drawn between all elements. 
• Mesh ã None eliminates all mesh divisions from being drawn. 

EXAMPLE 15 (Graphs are grouped together for easy comparison.)

list = {{1, 5, 2, 2}, {3, 6, 1, 4}, {3, 1, 7, 2}};

ListPlot3D[list]

ListPlot3D[list, Mesh ã None]

shades = {{Red, Orange, Green}, {Cyan, Yellow, Magenta}}; 

ListPlot3D[list, MeshShading ã shades]
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The discrete analog of ContourPlot3D is ListContourPlot3D.

 ListContourPlot3D[array] draws a contour plot of the values in array, a three-dimensional 
array of numbers representing the values of a function.
• Contours ã n is an option that draws contours at n equally spaced levels. The default is 
Contours → 3. Contours ã {k1, k2,. . .} draws contours corresponding to function  
values k1, k2, . . . 

• DataRange ã {{xmin, xmax}, {ymin, ymax}, {zmin, zmax}} labels the x, y, and 
z axes from xmin to xmax, ymin to ymax, and zmin to zmax, respectively. The default is 
DataRange ã Automatic, which assigns values starting with 1.

EXAMPLE 16 This example generates a discrete set of values of the function f(x, y, z) = x2 + y2 + z2 and draws 
two contour plots of f(x, y, z) = k for k = .5 and k = 1.5. The surfaces generated are spheres, but the larger sphere 
is drawn in a box that is too small to contain it completely. The result is that the inner sphere is partially visible 
in the picture.

list = Table[x2 + y2 + z2, {x, – 1, 1, .25}, {y, – 1, 1, .25}, {z, – 1, 1, .25}];

ListContourPlot3D[list, DataRange ã {{– 1, 1}, {– 1, 1}, {– 1, 1}}, 
                  Contours ã {.5, 1.5}]
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SOLVED PROBLEMS

5.14 Obtain a contour plot of f(x, y) = sin  x + sin y on the square – 4π ≤ x, y ≤ 4π and compare it to the 
three-dimensional graph of the function.

SOLUTION (Graphs are placed side by side for easy comparison.)

Plot3D[Sin[x] + Sin[y], {x, – 4 o, 4 o}, {y, – 4 o, 4 o}]

ContourPlot[Sin[x] + Sin[y], {x, – 4 o, 4 o}, {y, – 4 o, 4 o}]
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5.15 Compare a contour plot and a density plot for the function f(x, y) = sin xy over the rectangle –π ≤ x, 
y ≤ π.

SOLUTION (Graphs are placed side by side for easy comparison.)

ContourPlot[Sin[x y], {x, – o, o}, {y, – o, o}]

DensityPlot[Sin[x y], {x, – o, o}, {y, – o, o}]
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5.16 Obtain a contour plot and a density plot of the discrete function Quotient[x, y] as x and y range 
from 1 to 10.

SOLUTION (Graphs are placed side by side for easy comparison.)

list = Table[Quotient[x, y], {x, 1, 10}, {y, 1, 10}];

ListContourPlot[list]

ListDensityPlot[list]



CHAPTER 5  Three-Dimensional Graphics154

5.17 Let f(x, y, z) = 5x2 + 2y2 + z2. Draw the level surfaces f(x, y, z) = k for k = 1, 4, 9, 16, and 25. Sketch 
the surfaces only for y ≥ 0 so that all the surfaces will be visible.

SOLUTION

ContourPlot3D[5 x2 + 2 y2 + z2, {x, – 5, 5}, {y, 0, 5}, {z, – 5, 5}, 
                              Contours ã {1, 4, 9, 16, 25}]
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5.18 Generate a 5 × 5 array of random integers between 1 and 10 and construct a three-dimensional list 
plot of these values.

SOLUTION

list = Table[Random[Integer, {0, 10}], {x, 1, 5}, {y, 1, 5}];

ListPlot3D[list]



CHAPTER 5  Three-Dimensional Graphics 155

5.19 Draw hyperbolic cylinders x2 – y2 = k, k = 0, 2, and 5, by computing f(x, y, z) = x2 – y2 at integer 
values between –5 and 5 for each variable and using ListContourPlot3D.

SOLUTION

We use integer values of x, y, and z to construct our list.

list = Table[x2 – y2, {z, –5, 5}, {y, –5, 5}, {x, –5, 5}];

ListContourPlot3D[list, Contours ã {0, 2, 5}, 
                                           DataRange ã {{–5, 5}, {–5, 5}, {–5, 5}}]
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5.3 Special Three-Dimensional Plots
The command BarChart3D is the three-dimensional analog of  BarChart. 

Note: Starting with version 7, BarChart3D can be found in the Mathematica kernel. If you are using 
version 6, you will find BarChart3D in the package BarCharts` which must be loaded prior to use. 
See the Documentation Center for appropriate usage.

 BarChart3D[datalist] draws a simple bar graph. datalist is a set of numbers enclosed within 
braces.

 BarChart3D[{datalist1, datalist2,...}] draws a bar graph containing data from multiple data 
sets. Each data list is a set of numbers enclosed within braces.

If a customized look is desired, there are a variety of options that can be invoked. The format of the 
command with options becomes

 BarChart3D[datalist, options]
 BarChart3D[{datalist1, datalist2,...}, options]

Some of the more popular options are:

• Chartstyle ã g specifies that style option g should be used to draw the bars. Examples of style 
options are GrayLevel, Hue, Opacity, RGBColor, and Colors (Red, Blue, etc.). 

• Chartstyle ã {g1, g2,...} specifies that style options g1, g2, . . . should be used 
cyclically.

• ChartLayout ã "layout" specifies that a layout of type layout should be used to draw the graph. 
Examples of layouts are "Stacked", which causes the bars to be stacked on top of each other rather 
than placed side by side, and "Percentile", which generates a stacked bar chart with the total 
height of each bar constant at 100%.

BarSpacing controls the spacing between bars and between groups of bars. The default is 
BarSpacing ã Automatic which allows Mathematica to control the spacing.

• BarSpacing ã s allows a space of s between bars within each data set. The value of s is measured 
as a fraction of the width of each bar.

• BarSpacing ã {s, t} allows a space of s between bars within each data set and a value of t 
determines the space between data sets. The values of s ant t are measured as a fraction of the width 
of each bar.

In each of the preceding BarSpacing commands, the values of s and t may be replaced by one of 
the predefined symbols None, Tiny, Small, Medium, or Large.

• BarOrigin ã edge controls where the bars originate from. The default value of edge is Bottom. 
Other acceptable values are Top, Left, and Right.

• ChartLabels ã {label1, label2,...} specifies the labeling for each bar corresponding to each 
value in the data list.

EXAMPLE 17

array = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}};

g1 = BarChart3D[array, ViewPoint ã {0, –2, 2}];

g2 = BarChart3D[array, BarSpacing ã {.5, 2}, ViewPoint ã {0, –2, 2}, 
 ChartLabels ã {"a", "b", "c", "d"}];

g = GraphicsArray[{g1, g2}]
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ListPointPlot3D is the three-dimensional analog of ListPlot, which plots discrete points in a 
two-dimensional plane.

 ListPointPlot3D[list] plots the points in list in a three-dimensional box. list must be a list of 
sublists, each of which contains three numbers, representing the coordinates of points to be plotted. 

By default, ListPointPlot3D uses BoxRatios ã {1, 1, .4} and accepts the PlotStyle 
option discussed in Chapter 4. 

In the next example, we generate 50 random points and plot them in three-dimensional space.

EXAMPLE 18

list = Table [RandomInteger[{1,10}],{50},{3}] ←  This generates a list of 50 three-element 
lists of random integers.

ListPointPlot3D[list, BoxRatios ã 1]

ListPointPlot3D[list, PlotStyle ã PointSize[.02], BoxRatios ã 1]
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ListSurfacePlot3D creates a mesh of polygons constructed from the vertices specified in a list.

 ListSurfacePlot3D[list]creates a three-dimensional polygonal mesh from the vertices speci-
fied in list, which should be of the form 

{{{x11, y11, z11}, {x12, y12, z12},...}, {{x21, y21, z21}, {x22, y22, z22},...},...}
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EXAMPLE 19 The following generates a list of 169 vertices on the hyperboloid z x y= −2 2 and connects them using 
ListSurfacePlot3D. Note that the list must be flattened before it can be input into the command. (Compare 
with Problem 5.3.)

list = Table[{x, y, x2 – y2}, {x, – 3, 3, .5}, {y, – 3, 3, .5}];

ListSurfacePlot3D[Flatten[list,1], Axes ã True, BoxRatios ã {1, 1, 1}]
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A surface of revolution is a surface obtained by rotating a curve about a given line. Although 
RevolutionPlot3D, discussed in Section 5.1, can draw surfaces rotated about the z-axis, the com-
mand SurfaceOfRevolution offers more flexibility. This command was available in previous ver-
sions of Mathematica and is now available either in the “legacy” package Graphics` or on the Web at 
library.wolfram.com/infocenter/MathSource/6824. If downloaded, the package SurfaceOfRevolution.m 
should be placed in the folder 

C:\Program Files\Wolfram Research\Mathematica\x.x\AddOns\LegacyPackages\Graphics

Note: A warning will be displayed when this package is loaded. It may be safely ignored. To eliminate 
this message, execute the following prior to loading the package:

Off[General õ obspkg];

There are various forms of the command with several options. 

 SurfaceOfRevolution[f[x], {x, xmin, xmax}] generates the surface of revolution obtained 
by rotating the curve z = f(x) about the z-axis. 

 SurfaceOfRevolution[f[x], {x, xmin, xmax}, {p, pmin, pmax}] generates the sur-
face of revolution obtained by rotating the curve z = f(x) about the z-axis, for θmin ≤ θ ≤ θmax. 

 SurfaceOfRevolution[{x[t], z[t]}, {t, tmin, tmax}] generates the surface of rev-
olution obtained by rotating the curve defined parametrically by x = x(t), z = z(t), about the z-axis. 

The following example rotates the curve z = x2 about the z-axis, completely and partially.

EXAMPLE 20

Graphics`

SurfaceOfRevolution[x2, {x, 0, 3}];

SurfaceOfRevolution[x2, {x, 0, 3}, {p, 0, 3o/2}];
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The curve z = x2 is rotated about the line connecting 
the points (0, 0, 0) and (1, 1, 1).

The curve z = x2 is rotated about the line connecting 
the points (0, 0, 0) and (1, 0, 0).

The option RevolutionAxis allows rotation about axes other than the z-axis.

• RevolutionAxis ã {x, z} rotates the curve about an axis formed by connecting the origin to 
the point (x, z) in the x-z plane.

• RevolutionAxis ã {x, y, z} rotates the curve about an axis formed by connecting the origin 
to the point (x, y, z) in space.

EXAMPLE 21

Graphics`

SurfaceOfRevolution[x2, {x, 0, 3}, RevolutionAxis ã {1, 0}, 

                    BoxRatios ã {1, 1, 1}, AxesLabel ã {"x", "y", "z"}]
SurfaceOfRevolution[x2, {x, 0, 3}, RevolutionAxis ã {1, 1, 1}, 

                    BoxRatios ã {1, 1, 1}, AxesLabel ã {"x", "y", "z"}]

–2
0

2

–2

0

2

0

2

4

6

8

–2
0

2

–2

0

2

0

2

4

6

8

0

1

2

3

x

–5

0

5
y

–5

0

5

z

0

5x

0

5y

0

5

z



CHAPTER 5  Three-Dimensional Graphics160

SOLVED PROBLEMS

5.20 Construct a 3 dimensional bar chart depiction of Pascal’s triangle for n = 7.

SOLUTION

Pascal’s triangle is a representation of the binomial coefficients c n k n
k n k

( , ) !
!( )!= − . 

       k

0 1 2 3 4 5 6 7

0 1

1 1 1

n 2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

c[n_, k_]= n!
k!(n – k)!

;

list = Table[c[n, k], {n, 0, 7}, {k, 0, n}];

g = BarChart3D[list, BarSpacing ã {.5, 2}]

5.21 Construct a scatter plot of the points on the helix x t y t z t= = =sin , cos ,2 2  for t between 0 and 10 in 
increments of .25. 

SOLUTION

list = Table[{Sin[2t], Cos[2t], t}, {t, 0, 10, .25}];

ListPointPlot3D[list, PlotStyle ã PointSize[.03],
               BoxRatios ã {.25, .25, 1}, Axes ã False]
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5.22 Construct the surface of revolution obtained by rotating the curve z = sin x, 0 ≤ x ≤ 2 π, about (i) the 
z-axis and (ii) the x-axis.

SOLUTION

Graphics`

SurfaceOfRevolution[Sin[x], {x, 0, 2 o}, Ticks ã False, 

                    AxesLabel ã {"x", "y", "z"}]

SurfaceOfRevolution[Sin[x], {x, 0, 2 o}, RevolutionAxis ã {1, 0}, Ticks ã False,
                   AxesLabel ã {"x", "y", "z"}]
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5.23 Sketch the surface obtained by rotating the curve z = x2, 0 ≤ x ≤ 1, about the line z = x.

SOLUTION

Graphics`

SurfaceOfRevolution[x2, {x, 0, 1}, RevolutionAxis ã {1, 1}, 
                    AxesLabel ã {"x", "y", "z"}, Ticks ã False]
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5.4 Standard Shapes—3D Graphics Primitives

 Graphics3D[primitives] or Graphics3D[primitives, options] creates a three-dimensional 
graphics object.

The standard primitives are 

• Cuboid[{x, y, z}] is a three-dimensional graphics primitive that represents a unit cuboid (cube) 
with a corner at (x, y, z), with edges parallel to the axes.

• Cuboid[{x1, y1, z1}, {x2, y2, z2}] represents a cuboid (parallelepiped) whose opposite 
corners are (x1, y1, z1) and (x2, y2, z2).

• Line[{x1, y1, z1}, {x2, y2, z2},...] draws a sequence of line segments connecting the 
points (x1, y1, z1), (x2, y2, z2), . . .

• Point[{x, y, z}] plots a single point at coordinates (x, y, z).
• Polygon[{x1, y1, z1}, {x2, y2, z2},...] draws a filled polygon with coordinates (x1, y1, z1),
(x2, y2, z2), . . .

• Text[expression, {x, y, z}]creates a graphics primitive representing the text expression, cen-
tered at position (x, y, z).

EXAMPLE 22

Graphics3D[{Cuboid[{0, 0, 0}], Cuboid[{1, 1, 1}, {2, 3, 4}]}, Axes ã True,
                                           Ticks ã {{0, 1, 2}, {0, 1, 2, 3}, {0, 1, 2, 3, 4}}]

0
1

2

0

1

2

3

0

1

2

3

4

xy

z
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EXAMPLE 23 

vertices = {{0, 0, 0}, {2, 2, 0}, {0, 2, 1}, {0, 0, 2}};

Graphics3D[Polygon[vertices], Axes ã   True, Ticks  ã {{0, 1, 2}, {0, 1, 2}, {0, 1, 2}}]

0

1

2

0

1

2

0

1

2

• Sphere[{x, y, z}, r] defines a sphere of radius r centered at {x, y, z}.
• Cylinder[{{x1, y1, z1}, {x2, y2, z2}}, r] defines a cylinder of radius r around the 

line from {x1, y1, z1} to {x2, y2, z2}.
• Cone[{{x1, y1, z1}, {x2, y2, z2}}, r] defines a cone with base radius r centered at 
{x1, y1, z1} and a tip at {x2, y2, z2}.

Additional three-dimensional graphics commands allow for convenient drawing of other stan-
dard shapes. Only Cylinder, Cone and Sphere are available in the Mathematica kernel. 
DoubleHelix, Helix, OutlinePolygons, PerforatePolygons, RotateShape, 
ShrinkPolygons, Torus, TranslateShape, and WireFrame were available in previous ver-
sions of Mathematica and are now available either in the “legacy” package Graphics` or on the Web at 
library.wolfram.com/infocenter/MathSource/6793. If downloaded, the package Shapes.m should be 
placed in the folder 

C:\Program Files\Wolfram Research\Mathematica\x.x\AddOns\LegacyPackages\Graphics

Note: A warning will be displayed when this package is loaded. It may be safely ignored. To eliminate 
this message, execute the following prior to loading the package:

Off[General õ obspkg];

Torus and MoebiusStrip are also available in the kernel function ExampleData.

• Cylinder[r, h, n] draws a cylinder with radius r and half height h using n polygons. 
• Sphere[r, n, m] draws a sphere of radius r using n(m − 2)+ 2 polygons. 
• Cone[r, h, n] draws a cone with radius r and half height h using n polygons. 
• Torus[r1, r2, n, m]draws a torus with radii r1 and r2 using an n × m mesh. 
• MoebiusStrip[r1, r2, n] draws a Moebius strip with radii r1 and r2 using 2n polygons. 
• Helix[r, h, m, n] draws a helix with radius r, half height h, and m turns using an 
n × m mesh. 

• DoubleHelix[r, h, m, n] draws a double helix with radius r, half height h, and m turns using 
an n × m mesh. 
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If the parameters are omitted, e.g., Cone[], Mathematica’s defaults are used. The default values are

Cylinder[1, 1, 20]

Sphere[1, 20, 15]

Cone[1, 1, 20]

Torus[1, .5, 20, 10]

MoebiusStrip[1, .5, 20]

Helix[1, .5, 2, 20]

DoubleHelix[1, .5, 2, 20]

EXAMPLE 24

Graphics`

Graphics3D[Cylinder[]]

Graphics3D[Sphere[]]

Graphics3D[Cone[]]

Graphics3D[Torus[]]

Graphics3D[MoebiusStrip[]]

Graphics3D[Helix[]]

Graphics3D[DoubleHelix[]]

 WireFrame[object] shows all polygons used in the construction of object as transparent. It may 
be used on any Graphics3D object that contains the primitives Polygon, Line, and Point. 

 Opacity[a]specifies the degree of transparency of a graphics object. The value of a must be 
between 0 and 1, with 0 representing perfect transparency and 1 representing complete opaqueness. 

The Opacity directive should be placed within the Graphics3D directive as shown in the follow-
ing example.
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EXAMPLE 25

Graphics`

object = Torus[ ];

Graphics3D[object]

Graphics3D[{Opacity[.3], object}]

WireFrame[object]

There are three commands in Graphics` that provide transformations in space:

 RotateShape[object, e, p, x] rotates object using the Euler angles1 φ, θ, and ψ. 
 TranslateShape[object, {x, y, z}] translates object by the vector {x, y, z}]. 
 AffineShape[object, {xscale, yscale, zscale}] scales the x-, y-, and z-coordinates by xscale, 

yscale, and zscale, respectively. 

EXAMPLE 26

Graphics`

object = Graphics3D[Cone[]]

RotateShape[object, 0, o/2, 0]

RotateShape[object, 0, o/2, o/2]

1Euler angles are a way of describing transformations in R3 by performing three rotations in a specified sequence. First we make a 
rotation φ about the z-axis. Then we perform a rotation θ about the new y-axis. Finally, we perform a rotation ψ about the (new) z-axis 
obtained from this rotation.
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Show[object, TranslateShape[object, {1, 2, 3}]]

shrunkenobject = Affi neShape[object, {.5, .5, .5}];

Show[object, TranslateShape[shrunkenobject, {1, 2, 3}]]

SOLVED PROBLEMS

5.24 Draw two cylinders intersecting at right angles.

SOLUTION

Graphics`

cyl1 = Graphics3D[Cylinder[1, 5, 20]];

cyl2 = Graphics3D[RotateShape[Cylinder[1, 5, 20], 0, o/2, 0]];

Show[cyl1, cyl2]
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5.25 Construct a cylinder inscribed in a sphere of radius 1.

SOLUTION 1

Since the sphere has radius 1, we use the default parameters. In order for the cylinder to be inscribed in 
the sphere, r (radius) and h (half–height) must satisfy r h2 2 1+ = . We choose r h= =1 2 3 2/ /and . In 
order for the cylinder to be visible, we draw the sphere as a wire frame.

Graphics`

sphere = WireFrame[Graphics3D[{Opacity[0.5], Sphere [{0, 0, 0}, 1]}]];

cylinder = Graphics3D Cylinder 0, 0, – 3
2

, 0, 0, 3
2

, 1
2{ } { }{ }⎡

⎣⎢
⎤
⎦⎥

⎡

⎣
⎢

⎤

⎦
⎥;;

Show[sphere, cylinder, Boxed ã False]

SOLUTION 2

Using the graphics Directive Opacity, we can make the sphere semitransparent so the cylinder is visible 
through the sphere.

sphere = Graphics3D[{Opacity[0.5], Sphere[ ]}];

cylinder = Graphics3D Cylinder 0, 0, – 3
2

, 0, 0, 3
2

, 1
2{ } { }{ }⎡

⎣⎢
⎤
⎦⎥

⎡

⎣
⎢

⎤

⎦
⎥;;

Show[sphere, cylinder, Boxed ã False]
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5.26 Draw two interlocking tori of default dimension (r1 = 1, r2 = 0.5). 

SOLUTION

The second torus must be rotated 90° and translated one unit so that they interlock without intersecting.

Graphics`

torus1 = Graphics3D[Torus[]];

torus2 = Graphics3D[TranslateShape[RotateShape[Torus[], 0, o/2, o/2], 

 {0, .5, 0}]];

Show[torus1, torus2, ViewPoint ã {1.75, –2.8, 0.75}, Boxed ã False]

5.27 Construct an animation showing a helix revolving about the z-axis.

SOLUTION

We use a default helix, helix[]. The helix makes one complete revolution as the Euler angle, φ, varies 
from 0 to 2 π. 

Graphics`

Animate[Graphics3D[RotateShape[Helix[], e, 0, 0], Boxed ã False], {e, 0, 2 o}]
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Equations
6.1 Solving Algebraic Equations
Solutions of general algebraic equations may be found using the Solve command. The command is easy 
to use, but one must be careful to use a double equal sign, , between the left- and right-hand sides of the 
equation. (Recall that the double equal sign is a logical equality: lhs  rhs has a value of True if and 
only if lhs and rhs have the same value, False otherwise.)

 Solve[equations, variables] attempts to solve equations for variables. 

The roots determined by Solve are expressed as of a list of the form

{{x → x1},{x → x2}, ...}

The notation x → x1 indicates that the solution, x, is x1, but x is not replaced by this value. If the equation 
has roots of multiplicity m > 1, each is repeated m times. If only one variable is present, variables may be 
omitted.

EXAMPLE 1 In this example, there is only one variable so the specification of variables is unnecessary.

Solve[7 x + 3  3 x + 8]

x 5
4

→{ }{ }
If we solve the equation ax = b for x, Solve tells us that x = b/a. However, if a = b = 0, then every 

number x is a solution. The command Reduce can be used to describe all possible solutions.

 Reduce[equations, variables] simplifies equations, attempting to solve for variables. If equations 
is an identity, Reduce returns the value True. If equations is a contradiction, the value False is 
returned. 

In describing the solutions, Reduce uses the symbols && (logical and) and || (logical or). && takes 
precedence over ||.

EXAMPLE 2

Solve[a x  b, x]

x b
a

→{ }{ }
Reduce[a x  b, x]

(b 0&&a 0)|| a 0 && x b
a

≠⎛
⎝

⎞
⎠  ← Either a = b = 0 or a ≠ 0 and x = b/a.

Reduce[x2 – 9  (x + 3)(x – 3), x]

True

Reduce[x2 – 10  (x + 3)(x – 3), x]

False

CHAPTER 6

  
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If we try to solve an equation that contains two or more variables, we must specify which variable we 
are solving for.

EXAMPLE 3

Solve[a y + b  c x + d]

Solve õ svars : Equations may not give solutions for all "solve" variables. 

{{b  →  d  +  c  x  –  a  y}}

We must specify which variable we wish to solve for:

Solve[a y + b  c x + d, x]

x b–d+a y
c

→{ }⎧
⎨
⎩

⎫
⎬
⎭

Solve[a y + b  c x + d, y]

y –b+d+c x
a

→{ }{ }
Solve[a y + b  c x + d, b]

{{b →  d + c x – a y}}

Solve[a y + b  c x + d, d]

{{d →  b – c x + a y}}

For systems of equations, equations is a list of the form {equation1, equation2, . . .} and variables  
represents either a single variable or a list of several. Alternatively, equations may be represented by the 
individual equations separated by && (logical and). 

EXAMPLE 4 Here is an easy example that shows how to solve a simple system: 
2 3 7
3 4 10

x y
x y

+ =
+ =

⎧
⎨
⎩

Solve[{2 x + 3 y  7, 3 x + 4 y  10}, {x, y}] or Solve[2 x + 3 y  7 && 3 x + 4 y  10, {x, y}]

{{x → 2, y → 1}}

In this example, the specification of {x, y} is not necessary because we do not have more variables 
than equations. If you have more unknown variables than equations, you must specify which variables you 
wish to solve for. Otherwise you get Mathematica’s default.

EXAMPLE 5

Solve[{x + 2 y + z  5, 2 x + y + 3 z  7}, {y, z}]

y 8–x
5

, z –3
5
(–3+x)→ →{ }{ }

Of course, Solve is not limited to solving only linear equations.

EXAMPLE 6

Solve[a x2 + b x + c  0, x]

x
–b – b –4ac

2a
x –b+ b –4ac

2a

2 2

→ →
⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎪

⎩
,

⎪⎪

⎫
⎬
⎪

⎭⎪

Observe that Mathematica gives the general solution in terms of arbitrary a, b, and c unless values are 
assigned to these variables. 

Note the space between a and y and between c and x. 
This is important. ∗ may be used instead.
Note the space between a and y and between c and x. 
This is important. ∗ may be used instead.
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EXAMPLE 7

Solve[x3 + y2  5 && x + y  3]

{y 2, x 1}, y 4– 5, x –1+ 5 , y 4+ 5, x –1– 5→ → → → → →{ } { }{ }
Because Mathematica  returns the solutions of equations as a nested list, they cannot be used directly 

as input to other mathematical structures. However, we can access their values without unnecessary typing 
or pasting by using /.

If we wish to compute the value of an expression using the solutions obtained from Solve, we can use 
the /. replacement operator and Mathematica will substitute the appropriate values.

EXAMPLE 8 Suppose we wish to solve the equations x y
x y

2 5
3

+ =
+ =

⎧
⎨
⎩

  and compute the values of the expression x y2 2+ . 

We use the Solve command and the object solutions for convenience.

solutions = Solve[{x2 + y  5, x + y  3},{x, y}]

{{y → 1, x → 2}, {y → 4, x → –1}}

x + y /. solutions2 2

5 17,{ }
 ← Mathematica produces a list containing

   both values of the expression.

EXAMPLE 9 Suppose we wish to find the sum of the squares of the roots of

x x x x x x6 5 4 3 221 175 735 1 624 1 764 720 0− + − + − + =, ,

We use the Solve command:

solutions = Solve[{x6 – 21 x5 + 175 x4 – 735 x3 + 1624 x2 – 1764 x + 720  0]
{{x → 1}, {x → 2}, {x → 3}, {x → 4}, {x → 5}, {x → 6}}

Now we can define a list containing the solutions listed above.

list = x /. solutions
{1, 2, 3, 4, 5, 6}

Now we can easily compute the sum of the squares of the elements of the list.

Total[list2]

91

Solve is designed to solve algebraic equations, but can sometimes be used to find limited solutions of 
transcendental equations. A warning message is given to indicate that not all solutions can be found. 

EXAMPLE 10

Solve[Sin[x]  1/2, x]

 Solve  õ  ifun : Inverse functions are being used by Solve, so some solutions may not be found;
 use Reduce for complete solution information. 

 x
6

→{ }{ }π

To get a more general solution to this equation, use Reduce.

Reduce[Sin[x]  1/2, x]

C[1] Integers &&

x =
6

2 C[1]||x = 5

∈

+π π
6

2 C[1]π π+⎛
⎝

⎞
⎠

If the equations to be solved are inconsistent, Mathematica returns an empty list.

x = π π
6 6

or plus5  any integer multiple of 2πx = π π
6 6

or plus5  any integer multiple of 2π
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EXAMPLE 11 

Solve[{2 x + 3 y  5, 4 x +6 y  11}]
{}

If the roots of an equation involve complex numbers, they are represented as rational powers of –1. 
However, if a more traditional expression is desired, the function ComplexExpand can be used.

EXAMPLE 12

Solve[x3  1]

{{x → 1},{x → –(–1)1/3},{x → (–1)2/3}}

Solve[x3  1] //ComplexExpand

{ }, ,x x –1
2
– 3 x –1

2
+ 3→ →⎧

⎨
⎩

⎫
⎬
⎭

→⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

1
2 2

A system of equations need not have a unique solution. For example, a system of two equations in three 
unknowns will either be inconsistent or have an infinite number of solutions. In the latter case it is possible 
to eliminate one or more variables from the system.

 Eliminate[equations, variables] eliminates variables from a set of simultaneous equations.

equations is a list of simultaneous equations, and variables may be a single variable or a list of two or 
more.

EXAMPLE 13 (a) Eliminate the variable z; (b) eliminate the variables y and z from the following equations: 

w x y z

w x y

+ + + =

+ + +

3

2 2 5 z

w x y z

=

+ + + =

6

3 6 2 2 1

(a) Eliminate[{ w + x + y + z  3, 2 w + 2 x + 5 y + z  6, 3 w + 6 x + 2 y + 3 z  1}, z]

 w  3 – x – 4 y && 3 x  –8 + y

(b) Eliminate[{ w + x + y + z  3, 2 w + 2 x + 5 y + z  6, 3 w + 6 x + 2 y + 3 z  1}, {y, z}]

 –29 – 13 x  w

Not all algebraic equations are solvable by Mathematica, even if theoretical solutions exist. If 
Mathematica  is unable to solve an equation, it will represent the solution in a symbolic form. For the most 
part, such solutions are useless and a numerical approximation is more appropriate. Numerical approxima-
tions are obtained with the command NSolve.

 NSolve[equations, variables] solves equations numerically for variables. 
 NSolve[equations, variables, n] solves equations numerically for variables to n digits of

 precision. 

As with Solve, the list of variables may be omitted if there is no ambiguity.

EXAMPLE 14 Solve the equation x x x x x5 4 3 2 2 0+ + + + + = .

SOLUTION

Solve[x5 + x4 + x3 + x2 + x + 2  0]

 
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{{x → Root[2 + #1 + #12 + #13 + #14 + #15&, 1]},

 {x → Root[2 + #1 + #12 + #13 + #14 + #15&, 2]},

 {x → Root[2 + #1 + #12 + #13 + #14 + #15&, 3]},

 {x → Root[2 + #1 + #12 + #13 + #14 + #15&, 4]},

 {x → Root[2 + #1 + #12 + #13 + #14 + #15&, 5]}}

Mathematica cannot solve this equation exactly, so it returns a symbolic solution. However, we can obtain a 
numerical approximation.

NSolve[x5 + x4 + x3 + x2 + x + 2  0]

{{x → –1.21486}, {x → –0.522092–1.06118 },{x → –0.522092 + 1.06118 }, 
  {x → 0.629523 – 0.883585 }, {x → 0.629523 + 0.883585 }}

An extraneous solution is a number that is technically not a solution of the equation, but evolves from 
the solution process. When solving radical equations, one typically encounters extraneous solutions. For 
example, when solving x = −3, which has no real solution, the squaring process yields x = 9.

• VerifySolutions is an option that determines whether Mathematica should verify if solutions 
obtained are extraneous. The default, VerifySolutions ã True, eliminates extraneous 
solutions from the solution list. If such solutions are desired, the option VerifySolutions ã 
False should be used.

EXAMPLE 15

Solve[x + x 5]

x 1
2
11 – 21→ ( ){ }{ }

Solve [x + x 5, VerifySolutions ã False]

x 1
2
11– 21 , x 1

2
11+ 21→ ( ){ } → ( ){ }{ }

SOLVED PROBLEMS

 6.1 Find an equation of the line passing through (2, 5) and (7, 9).

SOLUTION

The general equation of a line is y = a x + b. Substituting the coordinates of the given points leads to the 
equations 2 a + b = 5 and 7a + b = 9.

Solve[2 a + b  5 && 7 a + b  9]

a 4
5
,b 17

5
→ →{ }{ }

The line has equation y x= +4
5

17
5 .

 6.2 Find an equation of the circle passing through (1, 4), (2, 7), and (4, 11).

SOLUTION

The general equation of a circle is x2 + y2 + ax + by + c = 0. We substitute the coordinates of the given points 
into the equation to obtain 17 + a + 4 b + c = 0, 53 + 2 a + 7 b + c = 0, and 137 + 4 a + 11 b + c = 0.

1
2

11 + 21( ) is extraneous.1
2

11 + 21( ) is extraneous.


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Solve[{17 + a + 4 b + c  0, 53 + 2 a + 7 b + c  0,137 + 4 a + 11 b + c  0}]

{{a → –54, b → 6, c → 13}}

The equation of the circle is x2 + y2 – 54 x + 6 y + 13 = 0.

 6.3 Solve the equation x4 – 16x3 + 61x2 – 22x – 12 = 0, exactly and numerically.

SOLUTION

equation = x4 – 16 x3 + 61 x2 – 22 x – 12  0;

Solve[equation]

x 3– 5 , x 3+ 5 , x 5–2 7 , x→{ } →{ } →{ } →→{ }{ }5+2 7

NSolve[equation]

{{x → –0.291503}, {x → 0.763932}, {x → 5.23607}, {x → 10.2915}}

 6.4 Solve the following system for w, x, and y and then determine the solution when z = 1, z = 2, and z =  3.
w x y z

w x y z

w x y z

+ + + =
+ + + =
− + − =

3

2 3 4 5 10

4

SOLUTION

equations = {w + x + y + z  3, 2 w + 3 x + 4 y + 5 z  10,w – x + y – z  4};

solution = Solve[equations, {w, x, y}]

w 1
4
(5+ 4z),x 1

2
–z),y 9

4
–z)→ → − →{ }{ }

solution /. z ã 1

w 9
4
, x –3

2
, y 5

4
→ → →{ }{ }

solution /. z ã 2

w 13
4
, x –5

2
, y 1

4
→ → →{ }{ }

solution /. z ã 3

w 17
4
, x –7

2
, y 3

4
→ → →{ }{ }–

 6.5 Find, to 20 significant digits, a real number such that the sum of itself, its square, and its cube is 30.

SOLUTION

NSolve[x + x2 + x3  30, x, 20]

{{x → – 1.8557621138713175532 – 2.7604410593413850003 },

 {x → – 1.8557621138713175532 + 2.7604410593413850003 },

 {x → 2.7115242277426351064}}

The only real solution is x = 2.7115242277426351064.

 6.6 Solve the trigonometric equation 2 sin2 x + 1 = 3 sin x for sin x and then for x.

SOLUTION

To solve for sin x, we can write

Solve[2 Sin[x]2 + 1  3 Sin[x]]

Sin[x] 1
2

, Sin[x] 1→{ } →{ }{ }
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If we solve for x, only the principal solutions (using inverse functions) are obtained.

Solve[2 Sin[x]2 + 1  3 Sin[x], x]

Solve õ ifun : Inverse functions are being used by Solve, so some solutions may not be found; 
 use Reduce for complete solution information. 

x
6

, x
2

→{ } →{ }{ }π π

Using Reduce we can get all the solutions.

Reduce[2 Sin[x]2 + 1  3 Sin[x], x]

C[1] Integers &&

x =
2

2 C[1]||x =
6

∈

+π π π ++ 2 C[1]||x = 5
6
+ 2 C[1]π π π⎛

⎝
⎞
⎠

 6.7 Solve for x : e2x + ex = 3.

SOLUTION

Solve[Exp[2 x] + Exp[x]  3, x]

Solve  õ ifun : Inverse functions are being used by Solve, so some solutions may not be found; 
 use Reduce for complete solution information. 

x Log 1
2

x Log 1
2

→ − +( )⎡
⎣

⎤
⎦{ } → − −( )⎡

⎣
⎤
⎦{ }1 13 1 13, π +{{ }

Reduce[Exp[2 x] + Exp[x]  3, x]

C[1] Integers &&

x = +2 C[1]+ Log 1
2
1+ 13

∈

π π (( )⎡
⎣⎢

⎤
⎦⎥ ( )||x =2 C[1]+ Log 1

2
–1+ 13π ⎡⎡

⎣⎢
⎤
⎦⎥( )

 6.8 Sketch the graphs of f(x) = x3 – 7 x2 + 2 x + 20 and g(x) = x2 on the same set of axes and find their 
points of intersection exactly and approximately.

SOLUTION

f[x_] = x3 – 7 x2 + 2 x + 20;

g[x_] = x2;

Plot[{f[x], g[x]},{x, –10, 10},PlotRange ã {–100, 100}]
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xvalues = Solve[f[x]  g[x], x];

{x, f[x]} /. xvalues //Expand

{2,4}, 3– 19,28-6 19 , 3+ 19,28+6{ } 19{ }{ }
% // N

{{2., 4.}, {–1.3589, 1.84661}, {7.3589, 54.1534}}

 6.9 A theorem from algebra says that if p x a x a x a x a x an
n

n
n

n
n( ) ,= + + + + +−

−
−

−
1

1
2

2
1 0L  the sum of the 

roots of the equation p(x) = 0 is − −a

a
n

n

1  and their product is ( )−1 0n

n

a

a
. Verify this for the equation 

20 32 221 118 725 18 726 252 07 6 5 4 3 2x x x x x x x+ − − + − − + =

SOLUTION

solution = Solve [20 x7 + 32 x6 – 221 x5 – 118 x4 + 725 x3 – 18 x2 – 726 x + 252 0]

x –7
2

, x 2
5

, x 3
2

, x – 2 , x→{ } →{ } →{ } →{ } →→{ } →{ } →{ }{ }2 , x – 3 , x 3

list = x /. solution  

–7
2
,2
5
,3
2
,– 2, 2,– 3, 3{ }

list[[k]]
k 1

7

=
∑  or Sum[list[[k]], {k, 1, 7}] or  Total[list]

−8
5

list[[k]]
k=1

7

∏  or Product[list[[k]], {k, 1, 7}]

−63
5

6.10 Find all possible solutions, x, for the equation ax + b = cx + d.

SOLUTION

Solve[a x + b  c x + d, x]

x –b + d
a – c

→{ }{ }
This solution presumes a ≠ c. A more general solution is obtained using Reduce.

Reduce[a x + b  c x + d, x]

(b d &&a c)|| a – c 0 && x –b + d
a – c

≠( )
6.11 Eliminate the variable x from the nonlinear system

 
x y z

x y z

3 2 1

3

+ + =
+ + =

n
a
a
n

n

= − = − = −−7 32
20

8
5

1;n
a
a
n

n

= − = − = −−7 32
20

8
5

1;

n n a
an

= − = − = −7 1 1 7 252
20

63
5

0; ) )( (n n a
an

= − = − = −7 1 1 7 252
20

63
5

0; ) )( (

  
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SOLUTION

Eliminate[{x3 + y2 + z  1, x + y + z  3}, x]

(26 – 18 y + 3 y2) z + (–9 + 3 y) z2 + z3  26 – 27 y + 10 y2 – y3

6.2 Solving Transcendental Equations
A transcendental equation is one that is non-algebraic. Although Solve and NSolve can be used in a 
limited way to handle simple trigonometric or exponential equations, it was not designed to handle equa-
tions involving more complicated transcendental functions. The Mathematica command FindRoot is 
better equipped to handle these.
FindRoot uses iterative methods to find solutions. A starting value, sometimes called the initial guess, 

must be specified. For best results, the initial guess should be as close to the desired root as possible.

 FindRoot[lhs  rhs, {x, x0}] solves the equation lhs = rhs using Newton’s method with 
starting value x0. 

 FindRoot[lhs  rhs,{x, {x0, x1}] solves the equation lhs = rhs using (a variation of) 
the secant method1 with starting values x0 and x1. 

 FindRoot[lhs  rhs,{x, x0, xmin, xmax}] attempts to solve the equation, but stops if 
the iteration goes outside the interval [xmin, xmax]. 

If a function is specified in place of the equation lhs  rhs,  FindRoot will compute a zero of the 
function. A zero of f  is a number x such that f(x) = 0.

EXAMPLE 16 The equation sin x = x2 – 1 has two solutions. 

Plot[{Sin[x], x2 – 1}, {x, – o, o}]
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The graph of the two functions shows that they intersect near x = –1 and x = 1.

FindRoot[Sin[x]  x2 – 1, {x, –1}]

{x → –0.636733}

FindRoot[Sin[x]  x2 – 1, {x, 1}]

{x → 1.40962}

1Newton’s method uses the x-intercept of the tangent line to improve the accuracy of the initial guess. Thus, Newton’s method fails if 
the derivative of the function cannot be computed. The secant method, although a bit slower, uses the values of the function at two distinct 
points, computing the x-intercept of the secant line.
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By default, 100 iterations are performed before FindRoot is aborted. The number of iterations per-
formed before quitting is controlled by the option MaxIterations.

• MaxIterations ã n instructs Mathematica to use a maximum of n iterations in the iterative 
process before aborting.

EXAMPLE 17 The equation e2x – 2ex + 1 = 0 has x = 0 as its only root. However, because its multiplicity is 2, 
Newton’s method converges very slowly.

FindRoot[Exp[2 x] – 2 Exp[x] + 1  0,{x, 100}]

FindRoot õ cvmit : Failed to converge to the requested accuracy or precision within 100 iterations. 

{x → 50.}

FindRoot[Exp[2 x] – 2 Exp[x] + 1  0, {x, 100}, MaxIterations ã 300]

{x → 4.54676 × 10–9}

FindRoot attempts to find real solutions. However, if a complex initial value is specified, or if the 
equation contains complex numbers, complex solutions will be sought. The equation in the next example 
has no real solutions.

EXAMPLE 18

FindRoot[x2 + x + 1  0,{x, 2}]

FindRoot õ lstol:

The line search decreased the step size to within tolerance specifi ed by AccuracyGoal and PrecisionGoal 
 but was unable to fi nd a suffi cient decrease in the merit function. You may need more than 
 MachinePrecision digits of working precision to meet these tolerances. 

{x → –0.500002}

FindRoot[x2 + x + 1  0,{x, I}]

{x → –0.5 + 0.866025}

FindRoot[x2 + x + 1  0,{x, –I}]

{x → –0.5 – 0.866025 }

There are three options that control the calculation in FindRoot and other numerical algorithms.

• WorkingPrecision is an option that specifies how many digits of precision should be main-
tained internally in computation. The default is  WorkingPrecision ã 16.

• AccuracyGoal is an option that specifies how many significant digits of accuracy are to be obtained. 
The default is AccuracyGoal ã Automatic, which is half the value of  WorkingPrecision.  
AccuracyGoal effectively specifies the absolute error allowed in a numerical procedure.

• PrecisionGoal is an option that specifies how many effective digits of precision should be sought 
in the final result. The default is PrecisionGoal ã Automatic, which is half the value of  
WorkingPrecision. PrecisionGoal effectively specifies the relative error allowed in a numeri-
cal procedure.

EXAMPLE 19 We wish to obtain a 10-decimal place approximation to the solution of the equation cos 100
1x

x
x( ) = +  , 

nearest to 5,000.

FindRoot Cos 100
x

x
x+1

, {x, 5000}⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎦⎥

{x → 5000.83}


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Mathematica’s defaults are insufficient to give the required accuracy. By increasing WorkingPrecision, we 
can obtain the desired result.

FindRoot Cos 100
x

x
x+1

, {x, 5000},Wo⎡
⎣⎢

⎤
⎦⎥

rrkingPrecision 28→⎡
⎣⎢

⎤
⎦⎥

{x → 5000.83319115955609589817}

Since AccuracyGoal is, by default, half the value of  WorkingPrecision, only the first 14 significant digits 
can be trusted. Thus, x ≈ 5000.8331911595 (accurate to ten decimal places).

 EvaluationMonitor can be used to show intermediate calculations to be performed and dis-
played. The format is EvaluationMonitor  expression. 

The symbol  can be found on the Basic Math Input palette or can be created by typing :>. This sym-
bol is used instead of → to avoid expression  being immediately evaluated. This technique is illustrated 
in the next two examples.

EXAMPLE 20 To see how quickly the sequence of approximations converges when we solve the equation e−x = x, 
we can use EvaluationMonitor to print the results of intermediate calculations. 

n = -1;

FindRoot[Exp[–x]  x, {x, 2}, EvaluationMonitor  {n++, Print[n,"   ", x]}]

0   2.

1   0.357609

2   0.558708

3   0.56713

4   0.567143

5   0.567143

{x → 0.567143}

EXAMPLE 21 To obtain a comparison between Newton’s method and the secant method, we can ask 
EvaluationMonitor to print the number of iterations needed to converge to 100 significant digits.

Newton’s Method 

n = 0;

FindRoot[Exp[–x]  x,{x, 1}, WorkingPrecision ã 100, 
 AccuracyGoal ã 100, EvaluationMonitor  n++]

Print[n," iterations"]

{x → 0.5671432904097838729999686622103555497538157871865125081351310792230
 457930866845666932194469617522946}

8  iterations

Secant Method 

n = 0;

FindRoot[Exp[–x]  x,{x, 1, 2},WorkingPrecision ã 100,
 AccuracyGoal ã 100, EvaluationMonitor  n++]

Print[n," iterations"]

{x → 0.5671432904097838729999686622103555497538157871865125081351310792230
 457930866845666932194469617522946}

24 iterations


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If the equation to be solved has a root of multiplicity 2 or greater, Newton’s method may converge 
slowly or not at all. In this situation, convergence can sometimes be improved by a judicious choice of  
DampingFactor. 

• DampingFactor ã factor is an option that controls the behavior of convergence in Newton’s 
method. The size of each step taken in Newton’s method is multiplied by the value of factor. The 
default is DampingFactor ã 1.

EXAMPLE 22

n = 0;

FindRoot[(Exp[x] – 1)2, {x, 2}, EvaluationMonitor  n++] 
Print[n," iterations"]

x 6.95942 10-9→ ×{ }
32 iterations

n = 0;

FindRoot[(Exp[x] – 1)2, {x, 2}, DampingFactor ã 2, EvaluationMonitor  n++] 
Print[n," iterations"]

x 6.6703 10-17→ ×{ }

8 iterations

FindRoot can also be used to determine the solution of simultaneous equations. 

 FindRoot[equations,{var1, a1},{var2, a2},...] attempts to solve equations using 
initial values a1, a2, . . . for var1, var2, . . . , respectively. The equations are enclosed in a list: 
{equation1, equation2,...}.  Alternatively, the equations may be separated by && (logical and). 

Convergence of Newton’s method for functions of several variables is much more sensitive to choice of 
starting values than its counterpart for single variables. Therefore, a good graph of the functions involved 
is quite helpful.

EXAMPLE 23 Solve the system of equations 
e y

x y

x + =
+ =

⎧
⎨
⎩

ln
sin cos

2
1

First we graph the equations.

ContourPlot[{Exp[x] + Log[y]  2, Sin[x] + Cos[y] 1}, {x, 0, 2}, {y, 0, 3}, 
 Frame ã False, Axes ã True]
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It appears that there is only one solution. We use x = 1,  y = 1 for our initial guess.

FindRoot[{Exp[x] + Log[y]  2, Sin[x] + Cos[y]  1}, {x, 1}, {y, 1}]

{x → 0.624295, y → 1.14233}

If the function in an equation is such that its evaluation is costly, particularly if high precision is desired, 
there is another procedure that may be beneficial.

 InterpolateRoot[lhs  rhs, {x, a, b}] solves the equation lhs = rhs using initial 
values a and b. 

Whereas FindRoot uses linear functions (straight lines) to approximate the root of the equation, 
InterpolateRoot uses polynomials of degree 3 or less. The result is that higher precision can 
be achieved with fewer function evaluations. InterpolateRoot is contained within the package 
FunctionApproximations` and must be loaded prior to use.

As with FindRoot, the equation may be replaced by a function, in which case its zero is computed.

EXAMPLE 24 This example computes the zero (between 2 and 3) of the Bessel function2 J0(x), using a working 
precision of 1000 significant digits. For comparison purposes, the Mathematica function Timing is used. The actual 
numerical approximation is suppressed to save space. As a result, the value Null is returned. Delete the semicolon 
and run the command to see the actual result of the calculation.

FindRoot[BesselJ[0, x], {x, 2}, WorkingPrecision ã 1000]; //Timing

{0.219, Null}

FunctionApproximations`

InterpolateRoot[BesselJ[0, x], {x, 2, 3}, WorkingPrecision ã 1000]; //Timing

{0.046, Null}

SOLVED PROBLEMS

6.12 Solve the equation 5 4 3cos .x x= −  Make sure you find all solutions.

SOLUTION

Since 5 4 3cos x x= −  if and only if 5 4 03cos x x− + = , we introduce the function f x x x( ) cos= − +5 4 3  and 
look for x-intercepts. (Although we could look for the intersection of two curves, it is easier to approxi-
mate where points intercept an axis.)

f[x_] = 5 Cos [x] – 4 + x3;

Plot[f[x], {x, –1, 2}]
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2J0(x) is a solution of the differential equation x2 y" + x y '  + x2 y = 0.
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It appears that there are three solutions, near –0.5, 0.8, and 1.6.

FindRoot[f[x], {x, –0.5}]

{x → –0.576574}

FindRoot[f[x], {x, 0.8}]

{x → 0.797323}

FindRoot[f[x], {x, 1.6}]

{x → 1.61805}

6.13 Find a solution of the equation sin x = 2. (This problem may be omitted by those unfamiliar with 
functions of a complex variable.)

SOLUTION

Since –1 ≤ sin x ≤ 1 for all real x, this problem has no real solutions. We can force FindRoot to search 
for a complex solution by using a complex initial guess.

FindRoot[Sin[x]  2,{x, I}]

{x → 1.5708 + 1.31696 }

6.14 Find a 20 significant digit approximation to the equation x + | sin (x − 1) | = 5.

SOLUTION

First we plot the function f(x) = x + | sin (x – 1) | – 5.

f[x_] = x + Abs[Sin[x – 1]] – 5;

Plot[f[x], {x, –10, 10}]
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It appears that the only solution lies between 4 and 5.

FindRoot[f[x],{x,5}, AccuracyGoal ã 20, WorkingPrecision ã 25]

{x → 4.577640011987577295259374}

To 20 significant digits, the solution is 4.5776400119875772953   (last digit rounded up).

6.15 Find the points of intersection of the parabola y = x2 + x – 10  with the circle x2 + y2 = 25. 

SOLUTION

First, plot the two graphs.

g1 = Graphics[Circle[{0, 0}, 5], Axes ã True];

g2 = Plot[x2 + x – 10, {x, –5, 5}];

Show[g1, g2, AspectRatio ã Automatic, PlotRange ã {–10, 10}]
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The parabola y = x2 + x + 1 intersects the circle x2 + y2 = 25 at four points. Now solve for the intersection points. 
Because of the complicated structure of the exact solution, we obtain a numerical approximation.

NSolve[y  x2 + x – 10 && x2 + y2  25]

{{y → –4.63752, x → 1.86907}, {y → 2.83654, x → –4.11753},
 {y → –4., x → –3.}, {y → 3.80098, x → 3.24846}}

6.16 Find the points of intersection of the limacon r = −5 4cosθ  and the parabola y = x2.

SOLUTION

First we plot both curves on the same set of axes.

limacon = PolarPlot[5 – 4 Cos[t], {t, 0, 2 o}];

parabola = Plot[x2, {x, –3, 3}];

Show[limacon, parabola, PlotRange ã All]
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We convert the equation of the limacon to rectangular coordinates:

 

r

r r r

x y x y x

= −

= −

+ = + −

5 4

5 4

5 4

2

2 2 2 2

cos

cos

θ

θ  
r x y

x r

= +

=

2 2

cosθ

The first intersection point appears to be near (2, 2):

FindRoot y x x y x y x x2 2[ , + 5 + – 4 , , 2 ,{ } { } {2 2 2 yy, 2 ]}

{x → 1.53711, y → 2.3627}

The second point lies near (–3, 6):

FindRoot y x x y x y x x2 2[ , + 5 + – 4 , ,–3 ,{ } { } {2 2 2 yy, 6 ]}

{x → –2.4552, y → 6.02802}

6.17 Where does the Spiral of Archimedes, r = q, intersect the ellipse 4 9 4002 2x y+ = ?

SOLUTION

spiral = PolarPlot[p, {p, 0, 6 o}];

ellipse = ContourPlot[4 x2 + 9 y2  400, {x, –10, 10}, {y, –20, 20},
 ContourStyle ã Dashing[.02]];

Show[spiral, ellipse]
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The graph shows three points of intersection that appear to be near (4, 6), (–8, 4), and (–9, –2). To convert 

the polar equation to rectangular, we use the transformations r x y= +2 2  and θ = −tan ( / )1 y x . However, 

Newton’s method is more stable if we write this as tan( ) /x y y x2 2+ = .

FindRoot[ Tan[ x + y ] y/x, 4x + 9y 400 , x,{ } {2 2 2 2 44 , y,6 ]

FindRoot[ Tan[ x + y ] y/x, 4x + 9y

} { }

{ 2 2 2 22

2 2

400 , x,–8 , y,4}]

FindRoot[ Tan[ x + y ] y

} { } {

{ //x, 4x + 9y 400 , x,–9 , y,–2}]2 2 } { } {

 

 












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{x → 3.93476, y → 6.1289}

{x → –8.04703, y → 3.95785}

{x → –9.38786, y → –2.29668}

6.18 Find a solution of the system of equations

 

x y z

x y z

e y
z

x

+ + =

+ + =

+ + =

6

1

1
5

sin cos tan

near the point (1, 2, 3).

SOLUTION

FindRoot[ x + y + z 6,Sin[x]+ Cos[y]+ Tan[z] 1,

Ex

{

pp[x]+ Sqrt[y]+ 1/z 5}, x,1 , y,2 , z,3 ]{ } { } { }

{x → 1.23382, y → 1.5696, z → 3.19658}

 

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7.1 Polynomials
Because they are so prevalent in algebra, Mathematica offers commands that are devoted exclusively to 
polynomials. 

 PolynomialQ[expression, variable] yields True if expression is a polynomial in variable, and 
False otherwise.

 Variables[polynomial] gives a list of all independent variables in polynomial. 
 Coefficient[polynomial, form] gives the coefficient of form in polynomial. 
 Coefficient[polynomial, form, n] gives the coefficient of form to the nth power in polynomial. 
 CoefficientList[polynomial, variable] gives a list of the coefficients of powers of variable 

in polynomial, starting with the 0th power. 

EXAMPLE 1

PolynomialQ[x2 + 3 x + 2, x]

True

PolynomialQ[x2 + 3 x + 2/x, x]

False

PolynomialQ[x2 + 3 x + 2/y, x]   ← 2/y is treated as a constant with respect to x.

True

PolynomialQ[x2 + 3 x + 2/y, y]

False

EXAMPLE 2

poly1 =(x + 1)10;

poly2 = x3 – 5 x2 y + 3 x y2 – 7 y3;

Variables[poly2]

{x, y}

Coeffi cient[poly1, x, 5]

252

Coeffi cient[poly2, x]

3 y2

Coeffi cient[poly2, y, 2]

3 x

Coeffi cient[poly2, x y2]

3

Coeffi cientList[poly1, x]

{1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1}

CHAPTER 7
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Coeffi cientList[poly2, x]

{–7 y3, 3 y2, –5 y, 1}

Coeffi cientList[poly2, y]

{x3, –5 x2, 3 x, –7}

Often it is convenient to write the solution of a polynomial equation as a logical expression. For example, 
if x2 – 4 = 0, then x = –2  or x = 2. Roots of polynomial equations can be expressed in this form  using two 
specialized commands, Roots and NRoots. The solutions are given in disjunctive form separated by the 
symbol | | (logical or). 

 Roots[lhs  rhs, variable] produces the solutions of a polynomial equation. 
 NRoots[lhs  rhs, variable] produces numerical approximations of the solutions of a polyno-

mial equation. 

EXAMPLE 3 Find all the solutions of x4 + x3 – 8x2 – 5x + 15 = 0 that are greater than 2.

solutions = Roots[x4 + x3 – 8 x2 – 5 x + 15  0, x]

x 1
2
(–1– 13)||x 1

2
(–1+ 13)||x 5||x – 5

solutions  &&  x > 2 //Simplify 

x   5

numericalsolutions = NRoots[x4 + x3 – 8 x2 – 5 x + 15  0, x]

x  – 2.30278||x  –2.23607||x  1.30278||x  2.23607

numericalsolutions &&  x > 2 //Simplify

x  2.23607

The division algorithm for polynomials guarantees that given two polynomials, p and s, for which 
degree(p) ≥ degree(s), there exist uniquely determined polynomials, q and r, such that

p x q x s x r x( ) ( ) ( ) ( )= + ,  where  deg( ) deg( )r s<

The Mathematica commands that produce the quotient and remainder are 

 PolynomialQuotient[p, s, x] gives the quotient upon division of p by s expressed as a 
function of x. Any remainder is ignored. 

 PolynomialRemainder[p, s, x] returns the remainder when p is divided by s. The degree 
of the remainder is less than the degree of s. 

EXAMPLE 4

p = x5 – 7 x4 + 3 x2 – 5 x + 9;

s = x2 + 1;

q = PolynomialQuotient[p, s, x]

10 – x – 7 x2 + x3

r = PolynomialRemainder[p, s, x]

–1 – 4 x

 Expand[poly] expands products and powers, writing poly as a sum of individual terms. 
 Factor[poly] attempts to factor poly over the integers. If factoring is unsuccessful, poly is 

unchanged. 
 FactorTerms[poly] factors out common constants that appear in the terms of poly. 
 FactorTerms[poly, var] factors out any common monomials containing variables other than var. 
 Collect[poly, var] takes a polynomial having two or more variables and expresses it as a poly-

nomial in var. 

&& is Mathematica’s logical and.
See Section 7.4 for a discussion of Simplify.

   
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EXAMPLE 5

poly = 6 x2 y3z4 + 8 x3 y2 z5 + 10 x2 y4 z3;

Factor[poly]

2 x2 y2 z3(5 y2 + 3 y z + 4 x z2) ← poly is factored completely.

FactorTerms[poly]

2(5 x2 y4 z3 + 3 x2 y3 z4 + 4 x3 y2 z5) ← Only the constants are factored.

FactorTerms[poly, x]

2 y2 z3(5 x2 y2 + 3 x2 y z + 4 x3 z2) ← Only the common factors not involving x are factored.

FactorTerms[poly, y]

2 x2 z3(5 y4 + 3 y3 z + 4 x y2 z2) ← Only the common factors not involving y are factored.

FactorTerms[poly, z]

2 x2 y2(5 y2 z3 + 3 y z4 + 4 x z5)  ← Only the common factors not involving z are factored.

EXAMPLE 6

poly = 1 + 2 x + 3 y + 4 x y + 5 x2 y + 6 x y2 + 7 x2 y2;

Collect[poly, x]

1 + 3 y + x(2 + 4 y + 6 y2) + x2 (5 y + 7 y2)   ← Powers of x are factored out. 

Collect[poly, y]

1 + 2 x +(3 + 4 x + 5 x2)y +(6 x + 7 x2)y2     ← Powers of y are factored out.

EXAMPLE 7 The following Manipulate command expands (x + 1)n to any power between 1 and 10, controlled 
by radio buttons.

Manipulate[Expand[(x + 1)n] //TraditionalForm,{n, Range[10]},
           ControlType ã RadioButton]

By default, Factor allows factorization only over the integers. There are options that allow this default 
to be overridden.

• Extension ã {extension1, extension2, . . .} can be used to specify a list of algebraic numbers 
that may be included as well. (The brackets, {}, are not needed if only one extension is used.) 

• Extension ã Automatic extends the field to include any algebraic numbers that appear in the 
polynomial.

• GaussianIntegers ã True allows the factorization to take place over the set of integers with  
adjoined. Alternatively,  or I may be included in the list of extensions.

EXAMPLE 8

Factor[x8 – 41 x4 + 400]

(–2 + x)(2 + x)(–5 + x2)(4 + x2)(5 + x2)

Factor[x8 – 41 x4 + 400, GaussianIntegers ã True]

(–2 + x)(–2 + x)(2 + x)(2 + x)(–5 + x2)(5 + x2)

Factor[x8 – 41 x4 + 400, Extension ã 5 ]

–( 5 –x)(–2+x)(2+x)( 5 +x)(4+x )(5+x )2 2

Factor[x8 – 41 x4 + 400, Extension ã {I, 5}]

–( 5 –x)( 5 – x)( 5 + x)(–2+x)(–2 +x)(2 +x)(2+x)( 5 +x))
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q = x + 5

PolynomialGCD[p, q]

1

PolynomialGCD[p, q, Extension ã Automatic]

5 + x

PolynomialLCM[p, q]

( ) ( )5 + x –5+ x2

PolynomialLCM[p, q, Extension ã Automatic]

–5 + x2

Although Mathematica will automatically expand integer exponents of products and quotients, if the 
exponent is non-integer, the expression will be left unexpanded. To force the “distribution” of the expo-
nent, the command PowerExpand is available.

 PowerExpand[expression] expands nested powers, powers of products and quotients, roots of 
products and quotients, and their logarithms. 

EXAMPLE 11

(a b)5

 a5 b5 ← Mathematica distributes the exponent because it is an integer.

(a b)x

(a b)x ← Mathematica does nothing because the exponent is undefi ned.

PowerExpand[(a b)x]

ax  bx ← We force the expansion with PowerExpand.

189

The greatest common divisor (GCD) of polynomials, p1, p2, . . . is the polynomial of largest degree 
that can be divided evenly (remainder = 0) into p1, p2, . . . . The least common multiple (LCM) of polyno-
mials p1, p2, . . . is the polynomial of smallest degree that can be divided evenly by p1, p2, . . . .

 PolynomialGCD[p1, p2,...] computes the greatest common divisor of the polynomials
p1, p2, . . . 

 PolynomialLCM[p1, p2,...] computes the least common multiple of the polynomials
p1, p2, . . . 

EXAMPLE 9

p = (x – 1)(x – 2)2(x – 3)3;

q = (x – 1)2(x – 2)(x – 3)4;

PolynomialGCD[p, q]

(–3 + x)3(–2 + x)(–1 + x)

PolynomialLCM[p, q]

(–3 + x)4(–2 + x)2(–1 + x)2

By default, both PolynomialGCD and PolynomialLCM assume the coefficients of the polynomials 
to be rational numbers. As with Factor, the option Extension can be used to specify a list of algebraic 
numbers (and/or I) that may be allowed. 

EXAMPLE 10

p = x2 – 5;
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One must be very careful with PowerExpand when multi-valued functions are involved.

EXAMPLE 12

ab /. {a –1,b –1}→→ →→

1

PowerExpand ab /. {a –1,b –1}⎡⎣ ⎤⎦ →→ →→

–1

Here are a few additional examples illustrating PowerExpand:

EXAMPLE 13

(ax)y  // PowerExpand

ax 
y

(a/b)x  // PowerExpand

ax  b–x

Log[x y] // PowerExpand

Log[x] + Log[y]

Log[x/y] // PowerExpand

Log[x] – Log[y]

Log[xy] // PowerExpand

y Log[x]

SOLVED PROBLEMS

 7.1 Test to see if 1 2 5+ + +x y x y x eysin cos  is a polynomial in x. Is it a polynomial in y?

SOLUTION

PolynomialQ[1 + x Sin[y] + x2 Cos[y] + x5 Exp[y], x]
True

PolynomialQ[1 + x Sin[y] + x2 Cos[y] + x5 Exp[y], y]
False

 7.2 What are the coefficients of the polynomial expansion of (2 x + 3)5 ?

SOLUTION

poly = (2 x + 3)5;

CoefficientList[poly, x]

{243, 810, 1080, 720, 240, 32}

 7.3 What is the coefficient of x y2 z3 in the expansion of (x + y + z)6 ?

SOLUTION

poly = (x + y + z)3;

Coefficient[poly, x y2 z3]

60

( )( )− − = =1 1 1 1

PowerExpand expands and then replaces 
the values of a and b by –1.

y  is treated as a constant
in this expression.
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 7.4 Expand (x + a + 1)4 completely.

SOLUTION

Expand[(x + a + 1)4]

1 + 4 a + 6 a2 + 4 a3 + a4 + 4 x + 12 a x + 12 a2  x + 4 a3 x + 6 x2 + 12 a x2 + 6 a2 x2 + 4 x3 + 4 a x3 + x4

 7.5 Express (x + a + 1)4 as a polynomial in x.

SOLUTION

Collect[(x + a + 1)4, x]

1 + 4 a + 6 a2 + 4 a3 + a4 + (4 + 12 a + 12 a2 + 4 a3) x +(6 + 12 a + 6 a2) x2 +(4 + 4 a)x3 + x4

 7.6 Factor the polynomial

poly = 6 x3 + x2 y − 11 x y2 − 6 y3 − 5 x2 z + 11 x y z + 11 y2 z − 2 x z2 − 6 y z2 + z3

 and solve for z so that poly = 0. 

SOLUTION

poly = 6 x3 + x2 y – 11 x y2 – 6 y3 – 5 x2 z + 11  x y z + 11 y2 z – 2 x z2 – 6 y z2 + z3;

Factor[poly]

(x + y – z) (3 x + 2 y – z) (2 x – 3 y + z)

SOLUTION using Solve

Solve[poly  0,z]

{{z → x + y}, {z → 3 x + 2 y}, {z → –2 x + 3 y}}

SOLUTION using Roots

Roots[poly  0, z]

z  x + y||z  3 x + 2 y||z  –2 x + 3 y

 7.7 Find the quotient and remainder when x5 + 2 x4 − 3 x3 + 7x2 − 10 x + 5 is divided by x2 – 4 and verify 
that the answer is correct.

SOLUTION

p = x5 + 2 x4 – 3 x3 + 7 x2 – 10 x + 5;

s = x2 – 4;

q = PolynomialQuotient[p, s, x]

15 + x + 2 x2 + x3

r = PolynomialRemainder[p, s, x]

65 – 6 x

checkpoly = q * s + r//Expand

5 – 10 x + 7 x2 – 3 x3 + 2 x4 + x5

checkpolyp

True

 7.8 Express (x + y + z)3 as a polynomial in z.

SOLUTION

Collect[(x + y + z)3, z]

x3 + 3 x2 y + 3 x y2  + y3 + (3 x2 + 6 x y + 3 y2)z + (3 x + 3 y)z2 + z3
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 7.9 Let p = 2x4 − 15x3 + 39x2 − 40x + 12 and q = 4x4 − 24x3 + 45x2 − 29x + 6. Compute their GCD and 
LCM and show that their product is equal to pq.

SOLUTION

p = 2 x4 – 15 x3 + 39 x2 – 40 x + 12;

q = 4 x4 – 24 x3 + 45 x2 – 29 x + 6;

a = PolynomialGCD[p, q]

–6 + 17 x – 11 x2 + 2 x3

b = PolynomialLCM[p, q]

(–2 + x)(6 – 29 x + 45 x2 – 24 x3 + 4 x4)

Expand[a * b] Expand[p * q]

True

7.10 Factor x 4 – 25 over the integers and then over the field containing 5 and i.

SOLUTION

Factor[x4 – 25]

(–5 + x2)(5 + x2)

Factor[x4 – 25, Extension ã { 5, I}]

– 5 – x 5 x 5 x 5 + x( )( )( )( )− +

7.11 Expand ln
x y
z

a b

c

⎡
⎣⎢

⎤
⎦⎥
.

SOLUTION

Log
x y
z

//PowerExpand
a b

c

⎡

⎣
⎢

⎤

⎦
⎥

1
2
(a Log[x]++ b Log[y]– c Log[z])

7.2 Rational and Algebraic Functions
There are a few commands appropriate for use with rational functions (fractions). 

 Numerator[ fraction] returns the numerator of fraction. 
 Denominator[ fraction] returns the denominator of fraction. 
 Cancel[ fraction] cancels out common factors in the numerator and denominator of fraction. The 

option Extension ã Automatic allows operations to be performed on algebraic numbers that 
appear in fraction. 

 Together[ expression] combines the terms of expression using a common denominator. Any 
common factors in numerator and denominator are cancelled. 

 Apart[ fraction] writes fraction as a sum of partial fractions. 

EXAMPLE 14

Cancel
x + 5 x +6
x + 3 x + 2

2

2

⎡
⎣⎢

⎤
⎦⎥

3+ x
1+ x

EXAMPLE 15

Together 1
x +1

+ 2
x –12

⎡
⎣⎢

⎤
⎦⎥

1
–1+ x

 
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EXAMPLE 16 

Apart x + 5 x
x + x – x –1

2

4 3
⎡
⎣⎢

⎤
⎦⎥

1
–1+ x

+ 2
2

1+ x
+ –1–3 x
1+ x + x

Since Mathematica, by default, converts factors with negative exponents to their positive exponent 
equivalents, the result of Numerator or Denominator may be different than expected.

EXAMPLE 17

fraction =
x y
z

;
–1 –2

–3

Numerator[fraction]

z3

Denominator[fraction]

x y2

 ExpandNumerator[expression] expands the numerator of expression but leaves the denomina-
tor alone. 

 ExpandDenominator[expression] expands the denominator of expression but leaves the 
numerator alone. 

 ExpandAll[expression]expands both numerator and denominator of expression, writing the 
result as a sum of fractions with a common denominator. 

EXAMPLE 18

expression =(x +1)(x + 2)
(x + 3)(x + 4)

;

ExpandNumerator[expression]

2+3 x + x
(3+ x)(4+ x)

2

ExpandDenominator[expression]

(1+ x)(2+ x)
12+7 x + x2

ExpandAll[expression]

2
12+7 x + x

+ 3 x
12+7 x + x

+ x
12+2 2

2

77 x + x2

ExpandNumerator[ExpandDenominator[expression]]

2+3 x + x
12+7 x + x

2

2

The commands described in this section are not limited to rational functions (quotients of polynomials) 
but will work for both algebraic expressions involving radicals and non-algebraic expressions involv-
ing functions or undefined objects. In addition, if the option Trig ã True is set within the command, 
Mathematica will use standard trigonometric identities to simplify the expression. This will be discussed 
further in Section 7.3.

EXAMPLE 19

Expand 1+ x
6( )⎡

⎣⎢
⎤
⎦⎥

1 + 6 x +15 x +20 x3/2 ++15 x +6 x + x2 5/2 3
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EXAMPLE 20

Apart 1
x +1 x + 2( ) ( )

⎡
⎣⎢

⎤
⎦⎥

1
1+ x

– 1
2+ x

SOLVED PROBLEMS

7.12 The expression 
f x f a

x a
( ) ( )−

−  appears in calculus in connection with the derivative. Simplify this 

expression for f(x) = x9,  a = –3.

SOLUTION

f[x_]= x9;
a = –3;

Cancel f[x]–f[a]
x – a

⎡
⎣⎢

⎤
⎦⎥

6561 – 2187 x + 729 x2 – 243 x3 + 81 x4 – 27 x5 + 9 x6 – 3 x7 + x8

7.13 Express the sum of 
a
b

c
d

e
f

, , and  as a single fraction.

SOLUTION

Together[a/b + c/d + e/f]

b d e + b cf+ a d f
b d f

7.14 Write 
( )( )( )

( )( )( )
x x x

x x x x
+ + −
+ + − +

2 3 2 7
5 2 5 6

2

2  with expanded numerator and denominator.

SOLUTION 1

ExpandNumerator ExpandDenominator (x + 2)(x2 ++ 3)(2x – 7)
(x + 5x + 2)(x – 5)(x +6)2

⎡
⎣⎢

⎤⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

–42–9 x –8x –3x +2x
–60–1

2 3 4

448x –23x +6x + x2 3 4

SOLUTION 2

ExpandAll (x + 2)(x + 3)(2x – 7)
(x + 5x +

2

2 22)(x – 5)(x +6)
//Together⎡

⎣⎢
⎤
⎦⎥

–42–9x ––8x –3x +2x
–60–148x –23x +6x +

2 3 4

2 3 4x

7.15 Add
 

2 3
5 7

x
x

+
− , 

7 2
3 1
x
x

−
+ , and 

x
x

2

2 1+  and express as a single fraction with expanded numerator and 

denominator.

SOLUTION

p = 2 x + 3
5 x – 7

;

q = 7 x – 23 x +1;

r = x
x +1

2

2 ;
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Together[p + q + r] //ExpandDenominator

17– 48x +51x –64x +56x
–7–16x +8x

2 3 4

2 3 4–16x +15x

7.16 What is the partial fraction expansion of 
( )

( )( ) ( )
x

x x x
−

+ + −
1

1 1 4

6

2 2 ?

SOLUTION

Apart (x –1)
(x +1)(x+1)(x –4)

6

2 2
⎡
⎣⎢

⎤
⎦⎥

–4+ 729
425(–4+ x)

+ x – 32
5(1+ x)

+ 2
2

888
25(1+ x)

– 4(4+ x)
17(1+ x )2

7.17 Find the partial fraction expansion of the function in the previous problem with linear complex 
denominators.

SOLUTION

Apart (x –1)
(x+I)(x –I)(x+1)(x –4)

6

2
⎡
⎣⎢

⎤
⎦⎥

–4+
729

425(–4+x)
+x–

+x
–

+
+x

–
32

5

2
17

8
17

2
17

8
17-

((1+x)
+

288
25(1+x)2

7.18 Express (ex + e2x)4 as a sum of exponentials.

SOLUTION

Expand[(Ex + E2 x)4]
4 x + 4 5 x + 6 6 x + 4 7 x + 8 x 

7.3 Trigonometric Functions
Although the commands discussed in the previous section may be applied to trigonometric functions, doing 
so does not take advantage of the simplification offered by trigonometric identities. To incorporate these 
into the calculation, the option Trig ã True must be set. (The default is Trig ã False for all but the 
Simplify command.) The following examples show the difference.

EXAMPLE 21

Cancel Sin[x]
1 – Cos[x]2

⎡
⎣⎢

⎤
⎦⎥

Sin[x]
1– Cos[xx]2

Cancel Sin[x]
1 – Cos[x]

, Trig True2 →→⎡
⎣⎢

⎤
⎦⎥

Cssc[x]

EXAMPLE 22

Together Cos[x]
1 – Sin[x]

+ Sin[x]
1 – Cos

2

2

2

[[x]2
⎡
⎣⎢

⎤
⎦⎥

Cos[x] – Cos[x] + Sin[x] – Si2 4 2 nn[x]
–1+ Cos[x] –1+ Sin[x]

4

2 2( ) ( )

To force Mathematica to express the result using linear complex
denominators, we factor x2 + 1 as (x + I ) (x – I ).

Without //ExpandDenominator, the 
denominator would be expressed in factored 
form.

 

– 
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Together Cos[x]
1 – Sin[x]

+ Sin[x]
1 – Cos

2

2

2

[[x]
, Trig True2 →→⎡

⎣⎢
⎤
⎦⎥

2

Trig ã True applies to hyperbolic as well as circular functions.

EXAMPLE 23

Expand[(Cosh[x]2 + Sinh[x]2)(Cosh[x]2 – Sinh[x]2)]

Cosh[x]4 – Sinh[x]4

Expand[(Cosh[x]2 + Sinh[x]2)(Cosh[x]2 – Sinh[x]2), Trig ã True]

Cosh[x]2 + Sinh[x]2

To allow additional manipulation of trigonometric expressions, Mathematica offers the following spe-
cialized commands, which apply to both circular and hyperbolic functions:

 TrigExpand[expression] expands expression, splitting up sums and multiples that appear in 
arguments of trigonometric functions and expanding out products of trigonometric functions into 
sums and powers, taking advantage of trigonometric identities whenever possible. 

 TrigReduce[expression] rewrites products and powers of trig functions in expression as 
trigonometric expressions with combined arguments, reducing expression to a linear trig function 
(i.e., without powers or products). 

 TrigFactor[expression] converts expression into a factored expression of trigonometric func-
tions of a single argument.

The next example shows the difference between Expand and TrigExpand.

EXAMPLE 24

Expand[(Sin[x] + Cos[x])2]

Cos[x]2 + 2 Cos[x] Sin[x] + Sin[x]2 

TrigExpand[(Sin[x] + Cos[x])2]

1 + 2 Cos[x] Sin[x]

EXAMPLE 25

TrigExpand[Sin[x + y]]

Cos[y] Sin[x] + Cos[x] Sin[y]

TrigExpand[Sin[2 x]]

2 Cos[x] Sin[x]

TrigExpand[Sin[2 x + y]]

2 Cos[x] Cos[y] Sin[x] + Cos[x]2 Sin[y] – Sin[x]2 Sin[y]

TrigExpand can also be applied to hyperbolic functions.

EXAMPLE 26

TrigExpand[Cosh[x + y]]

Cosh[x] Cosh[y] + Sinh[x] Sinh[y]

EXAMPLE 27

TrigReduce[Sin[2 x]2 + Sin[x] Cos[3 x]3]
1
8
(4– 4Cos[4x]–3Sin[2x]+3Sin[4x]– Sin[8x]+ Sin[10x])

TrigReduce rewrites the original expression 
as a linear trig expression.
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TrigReduce[Sinh[2 x]2 + Sinh[x] Cosh[3 x]3]

1
8
(–4+ 4Cosh[4x]–3Sinh[2x]+3Sinh[4xx]– Sinh[8x]+ Sinh[10x])

The next example shows the difference between TrigFactor and TrigReduce. Notice that 
TrigFactor writes the expression as a product, while TrigReduce writes the expression as a sum 
of linear trig functions.

EXAMPLE 28

expression = 24 Sin[x]2 Cos[x]2 + 16 Cos[x]4;

TrigFactor[expression]

– 4 Cos[x]2 (– 5 + Cos[2 x])

TrigReduce[expression]

9 + 8 Cos[2 x] – Cos[4 x]

The Solve command can be used to solve trigonometric equations. However, because only principal 
values of inverse trigonometric functions are returned, not all solutions will be obtained.

EXAMPLE 29 Consider the equation 1 – 2 cos x – sin x + sin  2x = 0.

equation = 1 – 2 Cos[x] – Sin[x] + Sin[2 x] 0

Solve[equation , x]

Solve õ ifun : Inverse functions are being used by Solve, so some solutions may not be found; 
 use Reduce for complete solution information. 

x –
3
, x

3
, x

2
→{ } →{ } →{ }{ }π π π

Since trigonometric and hyperbolic functions can be represented in terms of exponential functions 
(complex exponentials in the case of circular trig functions), Mathematica offers two conversion 
functions:

 TrigToExp[expression] converts trigonometric and hyperbolic functions to exponential 
form. 

 ExpToTrig[expression] converts exponential functions to trigonometric and/or hyperbolic 
functions. 

TrigToExp and ExpToTrig may also be used to convert inverse trigonometric and hyperbolic 
functions.

EXAMPLE 30

TrigToExp[Cos[x]]

� �
Â Â– x x

2
+

2
TrigToExp[Sinh[x]]

–
2

+
2

–x x

ExpToTrig[Exp[x]]

Cosh[x] + Sinh[x]

ExpToTrig[Exp[I x]]

Cos[x] +  Sin[x]

 
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SOLVED PROBLEMS

7.19 Simplify the trigonometric function 1
2 2cos sinx x− .

SOLUTION

TrigReduce 1
Cos[x] –Sin[x]2 2

⎡
⎣⎢

⎤
⎦⎥

Sec[2x]

7.20 Factor and simplify: sin2 x cos2 x + cos4 x.

SOLUTION

TrigFactor[Sin[x]2 Cos[x]2 + Cos[x]4]
Cos[x]2

7.21 Solve the trigonometric equation 1 – 2 cos x –  2 sin x + 4 sin 2x = 0.

SOLUTION

equation = 1 – 2 Cos[x] – 2 Sin[x] + 4 Sin[2 x]  0
Solve[equation, x]

Solve õ ifun : Inverse functions are being used by Solve, so some solutions may not be found; 
use Reduce for complete solution information. 

x ArcCos 1
8
+ 13

8
– 1
4

1
2
(9– 13)→ ⎡

⎣⎢
⎤
⎦⎥

⎧
⎨
⎩

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪⎪
→ ⎡

⎣⎢
⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

→

, x ArcCos 1
8
+ 13

8
+ 1
4

1
2
(9– 13) ,

x AArcCos 1
8
1– 13–4 9

8
+ 13

8

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,, x ArcCos 1

8
1– 13+4 9

8
+ 13

8
→ −

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬⎬
⎪

⎭⎪

⎫
⎬
⎪

⎭⎪

A numerical solution would probably be more useful.

% //N

{{x → 1.40492}, {x → 0.165873}, {x → 2.83487}, {x → –1.26407}}

7.22 Add and simplify: 
cos

sin tan
x

x
x1+ + .

SOLUTION 

Together Cos[x]
1 + Sin[x]

+ Tan[x], Trig True→→⎡
⎣⎣⎢

⎤
⎦⎥

1

Cos x
2

– Sin x
2

Cos x
2

+⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥( ) ⎡

⎣⎢
⎤
⎦⎥ SSin x

2
⎡
⎣⎢

⎤
⎦⎥( )

TrigReduce[%]
Sec[x]

7.23 Combine and simplify: 
sinh

cosh sinh
cosh

cosh sinh
x

x x
x

x x− + +

SOLUTION

Together Sinh[x]
Cosh[x] – Sinh[x]

+ Cosh[x]
Coosh[x] + Sinh[x]

, Trig True→→⎡
⎣⎢

⎤
⎦⎥

Cosh[2 x]

Sometimes you have to apply two or more trig 
commands to simplify completely.
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7.24 Construct a table of multiple angle formulas for sin nx and cos nx, n = 2, 3, 4, and 5.

SOLUTION

trigtable = Table[{n, TrigExpand[Sin[n x]], TrigExpand[Cos[n x]]},
         {n, 2, 5}];
TableForm[trigtable,  TableHeadings ã 
     {None, {"n", "     sin nx", "     cos nx"}}]

   

n   sin  nx    cos nx

2 2 Cos[x]Sin[x] Cos[x]2 – Sin[x]2

3 3 Cos[x]2  Sin[x] – Sin[x]3 Cos[x]3 – 3 Cos[x] Sin[x]2

4 4 Cos[x]3  Sin[x] – 4 Cos[x]Sin[x]3 Cos[x]4 – 6 Cos[x]2 Sin[x]2  +  Sin[x]4

5 5 Cos[x]4  Sin[x] – 10  Cos[x]2  Sin[x]3 + Sin[x]5 Cos[x]5  – 10 Cos[x]3 Sin[x]2  +  5 Cos[x] Sin[x]4

7.25 Construct a table of linear trig formulas for sinn x and cosn x, n = 2, 3, 4, and 5.

SOLUTION

trigtable = Table[{n, TrigReduce[Sin[x]n], TrigReduce[Cos[x]n]},
            {n, 2, 5}];
TableForm[trigtable,  TableHeadings ã
    {None, {"n", "     sinn x", "     cosn x"}}]

n   sinn x   Cosn x

2 1
2
(1– Cos[2x]) 1

2
(1+Cos[2x])

3 1
4
(3Sin[x]– Sin[3x]) 1

4
(3Cos[x]+ Cos[3x])

4 1
8
(3– 4Cos[2x]+ Cos[4x]) 1

8
(3+ 4Cos[2x]+ Cos[4x])

5 1
16

(10Sin[x]–5Sin[3x]+ Sin[5x]) 1
16

(10Cos[x]+5Cos[3x]+ Cos[5x])

7.26 Express ex + y in terms of hyperbolic functions and expand.

SOLUTION

ExpToTrig[Ex + y]

Cosh[x + y] + Sinh[x + y]

TrigExpand[%]

Cosh[x]Cosh[y] + Cosh[y]Sinh[x] + Cosh[x]Sinh[y] + Sinh[x]Sinh[y]

7.27 Express sinh–1x and tanh–1x in logarithmic form.

SOLUTION

TrigToExp[ArcSinh[x]]

Log x + 1+ x2[ ]

TrigToExp[ArcTanh[x]]

–1
2
Log 1– x + 1

2
Log 1+ x[ ] [ ]

7.28 Use Manipulate to control the graph of f(x) = a sin (b x + c), 0 ≤ x < 2 π, with controls for a, b, 
and c varying between 1 and 10. Move  the sliders and observe the affect upon the graph.

SOLUTION

Manipulate[Plot[a Sin[b x + c], {x, 0, 2 o}, 
        PlotRange ã {–10, 10}], {a, 1, 10}, {b, 1, 10}, {c, 1, 10}]
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7.4 The Art of Simplification
There are many different ways to write any particular algebraic or trigonometric expression. Obviously 
one person’s interpretation of “simple” may not agree with another’s. For example, in dealing with ratio-
nal functions, (x + 3)2 may be preferable to x2 + 6 x + 9, but when manipulating polynomials, the latter is 
clearly more desirable.

As you have seen from reading this chapter, Mathematica offers a variety of commands that allow full 
control of how an expression will appear. With practice, you will learn to use these commands to reshape 
appearances to suit your needs. 

As a step in the direction toward simplification, Mathematica offers two commands that can be used to 
simplify complex structures. 

 Simplify[expression] performs a sequence of transformations on expression and returns the 
simplest form it finds. 

 FullSimplify[expression] tries a wider range of transformations on expression including 
elementary and special functions and returns the simplest form it finds. 

Simplify tries expanding, factoring, and other standard mathematical transformations to reduce the 
complexity of expression. Because of its general nature, Simplify tends to be quite slow in comparison to 
more direct instructions. FullSimplify always produces an expression at least as simple as Simplify, 
but may take somewhat longer. 

You can specify a time limitation (in seconds) with the option TimeConstraint. The default for 
Simplify is TimeConstraint ã 300 and for FullSimplify, TimeConstraint ã
Infinity. For both commands, Trig ã True is the default for trigonometric evaluation.

EXAMPLE 31 First let us generate a messy algebraic expression.

messyexpression = Expand 1
x+1

+ 1
x+2

+ 1
x+3( )⎡

⎣⎢
⎤5

⎦⎦⎥
1

(1+x)
+ 1
(2+x)

+ 5
(1+x)(2+x)

+ 10
(1+x)(2+x)5 5 4 2 3 ++

10
(1+x)(2+x)

+

5
(1+x)(2+x)

+ 1
(3+x)

+ 5
(1+x

3 2

4 5 ))(3+x)
+ 5
(2+x)(3+x)

+ 10
(1+x)(3+x)

+

10
(2+x

4 4 2 3

))(3+x)
+ 20
(1+x)(2+x)(3+x)

+ 10
(1+x)(3+x)2 3 3 3 2 ++

10
(2+x)(3+x)

+

30
(1+x)(2+x)(3+x)

+ 30
(1+x

3 2

2 2 ))(2+x)(3+x)
+ 5
(1+x)(3+x)

+ 5
(2+x)(3+x)

+

20

2 2 4 4

((1+x)(2+x)(3+x)
+ 30
(1+x)(2+x)(3+x)

+ 20
(1+3 2 2 xx)(2+x)(3+x)3

a

b

c

10

5

–5

–10

1 2 3 4 5 6
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Now we will simplify. Of course, Mathematica does not “remember” how messyexpression was generated.

Simplify[messyexpression]

(11+12x +3x )
(6+11 x +6 x + x )

2 5

2 3 5

FullSimplify[messyexpression]

(11+3x(4+x))
(1+ x) (2+ x) (3+ x)

5

5 5 5

EXAMPLE 32

messytrigexpression = Expand[(Tan[x]2 + Sin[x]2 + Cos[x]2)5]

Cos[x]10 + 5 Cos[x]6 Sin[x]2 + 5 Cos[x]8 Sin[x]2 + 10 Cos[x]2 Sin[x]4 + 20 Cos[x]4 Sin[x]4 +

 10 Cos[x]6 Sin[x]4 + 30 Sin[x]6 + 30 Cos[x]2 Sin[x]6 + 10 Cos[x]4 Sin[x]6 +

 20 Sin[x]8 + 5 Cos[x]2 Sin[x]8 + Sin[x]10 + 10 Sin[x]4 Tan[x]2 + 30 Sin[x]6 Tan[x]2 +

 5 Sin[x]8 Tan[x]2 + 20 Sin[x]4 Tan[x]4 + 10 Sin[x]6 Tan[x]4 + 5 Sin[x]2 Tan[x]6 +

 10 Sin[x]4 Tan[x]6 + 5 Sin[x]2 Tan[x]8 + Tan[x]10

Simplify[messytrigexpression]

Sec[x]10
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Differential Calculus

8.1 Limits
The limit of a function is the foundation stone of differential calculus. For a complicated function, the 
calculation of a limit can be quite difficult and can require specialized techniques for its evaluation. 
Mathematica has built-in procedures for accomplishing this task and always attempts to determine the 
exact value of the limit. 

 Limit[f[x], x ã a] computes the value of lim ( )
x a

f x
→

. 

EXAMPLE 1 We wish to compute lim
x

x
x→

−
−2

5

3
32
8

. Because both numerator and denominator approach zero as x → 2, 
the limit is not immediately obvious.

Limit x –32
x –8

, x 2
5

3 →→⎡
⎣⎢

⎤
⎦⎥

20
3

Left- and right-hand limits can be computed with the Direction option. 

• Direction ã 1 causes the limit to be computed as a left-hand limit with values of x approaching 
a from below. 

• Direction ã –1 causes the limit to be computed as a right-hand limit with values of x approach-
ing a from above.

The default for the Limit command is Direction → Automatic, which provides Direction →  –1 
except for limits at ∞. Thus, Mathematica may give a misleading representation of the limit of a discontinuous 
function if the Direction option is omitted.

EXAMPLE 2 Evaluate lim
x

x
x→0

.

Limit Abs[x]
x

, x 0→→⎡
⎣⎢

⎤
⎦⎥

1

By default, only the right-hand limit has been computed, since no direction was specified. To fully analyze the 
limit we must compute the left-hand limit as well.

Limit Abs[x]
x

, x 0, Direction 1→→ →→⎡
⎣⎢

⎤
⎦⎥

–1

The limit does not exist since the left- and right-hand limits are different numbers.

CHAPTER 8
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Mathematica can compute infinite limits and limits at ∞.

EXAMPLE 3

Limit[1/x, x ã 0, Direction ã –1]
∞

Limit[1/x, x ã 0, Direction ã 1]
– ∞

Limit 2 x + 3 x + 4
x + 1

, x
2

2 →→ ∞∞⎡
⎣⎢

⎤
⎦⎥

2

The functi ons in the next example exhibit a different behavior. As x → 0, the function oscillates an infi-
nite number of times. Mathematica returns the limit as an Interval object. Interval[{min, max}] 
represents the range of values between min and max.

EXAMPLE 4

Limit[Sin[1/x], x ã 0]

Interval[{–1, 1}]

Limit[Tan[1/x], x ã 0]

Interval[{ –∞, ∞}]

SOLVED PROBLEMS

 8.1 Compute lim
x

x x
x→

+ −
0

2 1
3 .

SOLUTION

Limit 2 + x – 1
3 x

,x 0
x

→→⎡
⎣⎢

⎤
⎦⎥

1
3
(1+Log[2])

 8.2 Compute lim
tan

x

x x
x→

−
0

3

SOLUTION

Limit Tan[x]– x
x

,x 03 →→⎡
⎣⎢

⎤
⎦⎥

1
3

 8.3 Compute lim( sin )cot

x

xx
→

+
0

21

SOLUTION

Limit (1 + Sin[x]) ,x 0Cot[2x] →→[ ]

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 8.4 Compute lim( ) lim ( )/ /

x

x x

x

x xe x e x
→∞ → − ∞

+ +1 1and

SOLUTION

Limit(Exp[x]+ x) , x1/x →→  ∞∞[ ]


Limit(Exp[x]+ x) , x1/x →→ ∞∞–[ ]
1

 8.5 Compute lim( )tan( )

x
x x

→
−

1
2 2

π

SOLUTION

Limit[(2–x) , x 1]Tan[ x]2
ππ

→→
2/π

 8.6 If p dollars is compounded n times per year at an annual interest rate of r, the money will be worth 

p
r
n

nt

1+⎛
⎝⎜

⎞
⎠⎟

 dollars after t years. How much will the money be worth after t years if it is compounded 

continuously (n → ∞)?

SOLUTION

Limit[p(1 + r/n) ,n ]n t →  ∞∞
„r t p

 8.7 The derivative of a function is defined to be lim
( ) ( )

h

f x h f x
h→

+ −
0

. Use this definition to compute the 
derivative of f x x x x( ) ln sin= + +5 .

SOLUTION

f[x_]= Log[x]+ x + Sin[x];

Limit f[x + h]

5

–– f[x]
h

, h 0→→⎡
⎣⎢

⎤
⎦⎥

1
x
+5 x + Cos[x]4

 8.8 The second derivative of a function can be computed as the limit

lim
( ) ( ) ( )

h

f x h f x f x h
h→

+ − + −
0 2

2

 Use this limit to compute the second derivative of f x x x x( ) ln sin= + +5 .

SOLUTION

f[x_]= Log[x]+ x + Sin[x];

Limit f[x+h]–

5

22 f[x]+ f[x–h]
h

, h 02 →→⎡
⎣⎢

⎤
⎦⎥

– 1
x

+ 20 x2
3 – Sin[x]
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8.2 Derivatives
There are several ways derivatives can be computed in Mathematica. Each has its advantages and disad-
vantages, so the proper choice for a particular situation must be determined.

 If f[x] represents a function, its derivative is represented by f'[x]. Higher order derivatives are 
represented by f''[x], f'''[x], and so on. 

EXAMPLE 5

f[x_]= x5 + x4 + x3 + x2 + x + 1;

f'[x]

1  +  2  x  +  3  x2 +  4  x3 +  5  x4

f''[x]

2  +  6  x  +  12  x2 +  20  x3

f'''[x]

6  +  24  x  +  60  x2

If a more traditional formatting of the derivatives is desired, the command TraditionalForm can 
be used.

EXAMPLE 6

f[x_]= x5 + x4 + x3 + x2 + x + 1;

f'[x] // TraditionalForm

5 x4 + 4 x3 + 3 x2 + 2 x + 1

f''[x] // TraditionalForm

20 x3 + 12 x2 + 6 x + 2 

f'''[x] // TraditionalForm

60 x2 + 24 x + 6

The prime notation can also be used for “built-in” functions, as illustrated in the next example. If the 
argument is omitted, Mathematica returns a pure function representing the required derivative. (Pure 
functions are discussed in the appendix.)

EXAMPLE 7 

Sqrt'

Sqrt'[x]

1
2 #1

&

1
2 x

x← The variable replaaces the symbol .#1

– 1
4 #1

&3/2

Sqrt''

Sqrt'''[x]

– 1
4 x3/2

 D[f[x], x] returns the derivative of f with respect to x. 
 D[f[x], {x, n}] returns the nth derivative of f with respect to x. 
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EXAMPLE 8

D[x5 + x4 + x3 + x2 + x + 1, x]

1  +  2x  +  3x2 +  4x3 +  5x4

D[x5 + x4 + x3 + x2 + x + 1, {x, 2}]

2  +  6x  +  12x2 +  20x3

D[x5 + x4 + x3 + x2 + x + 1, {x, 3}]

6  +  24x  +  60x2

 ∂Ò, which can be found on the Basic Math Input palette, is equivalent to D. ∂x will return the deriva-
tive with respect to x. The nth derivative is represented by ∂{x, n}.

EXAMPLE 9 

ìx(x
5 + x4 + x3 + x2 + x + 1)

1  +  2x  +  3x2 +  4x3 +  5x4

∂{x, 2}(x
5 + x4 + x3 + x2 + x + 1)

2  +  6x  +  12x2 +  20x3

∂{x, 3}(x
5 + x4 + x3 + x2 + x + 1)

6  +  24x  +  60x2

 Derivative[n] is a functional operator that acts on a function to produce a new function, 
namely, its nth derivative. Derivative[n][f] gives the nth derivative of f as a pure function 
and Derivative[n][f][x]evaluates the nth derivative of f at x. 

It is useful to remember that f' is converted to Derivative[1]. Thus, f'[x] becomes 
Derivative[1][x]. Higher order derivatives f'',  f''', etc. are handled in a similar manner.

EXAMPLE 10

f[x_] =  x5 + x4 + x3 + x2 + x + 1;

Derivative[1][f]

1  +  2#1  +  3#12 +  4#13 +  5#14&

Derivative[1][f][x]

1  +  2x  +  3x2 +  4x3 +  5x4

The numerical value of a derivative at a specific point can be computed several different ways, depend-
ing upon how the derivative is computed. The next example illustrates the most common techniques.

EXAMPLE 11  

f[x_]= (x2 – x + 1)5;

f''[1]
30

D[f[x], {x, 2}] /. x ã 1
30

ì{x, 2}f[x] /. x ã 1
30

g  Derivative[2][f]

g[1]
30

f[x_] = x3

g[1]
6

←  Mathematica returns a pure function 
representing the derivative of f. Pure 
functions are discussed in the appendix.

← #1 is replaced by x.

←  In each of the fi rst three parts of this example, 
the second derivative is computed and then x 
is replaced by 1.

←  Here we have defi ned a new function, g, as the 
second derivative of f. If f is changed, g will 
be the second derivative of the new function. 
Note the use of  here. This is crucial if g is to 
refl ect the change in f.
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Mathematica computes derivatives of combinations of functions, sums, differences, products, quotients, 
and composites by “memorizing” the various rules. If we do not define the functions, we can see what the 
rules are. 

EXAMPLE 12

Clear[f, g]

D[f[x] + g[x], x]

f'[x] + g'[x]

D[f[x] g[x], x]

g[x] f'[x] + f[x] g'[x]

D[f[x]/g[x], x]//Together

g[x]f'[x]–f[x]g'[x]
g[x]2

D[f[g[x]], x]

f'[g[x]] g'[x]

We can use Mathematica to investigate some basic theory from a graphical perspective. Rolle’s Theorem 
guarantees, under certain conditions, the existence of a point where the derivative of a function is 0:

Let f be continuous on the closed interval [a, b] and differentiable on the open interval (a, b) and suppose 
f(a) = f(b) = 0. Then there exists a number, c, between a and b, such that f ' (c) = 0.

In other words, if a smooth (differentiable) function vanishes (has a value of 0) at two distinct locations, 
its derivative must vanish somewhere in between.

EXAMPLE 13 Show that the function f x x x x x( ) ( )sin= + + +3 22 15 2 π  satisfies Rolle’s Theorem on the interval 
[0, 1] and find the value of c referred to in the theorem.

Since f is the product of a polynomial and a trigonometric sine function,  f  is continuous and differentiable 
everywhere.

f[x_]=(x3 + 2 x2 + 15 x + 2) Sin[o x];

f[0]

0

f[1]

0

FindRoot[f'[c]  0, {c, 0.5}]

{c → 0.640241}

Plot[{f[x], f[.640241]}, {x, 0, 1}]

    0.2 0.4 0.6 0.8 1.0

2

4

6

8

10

←  The derivative of a sum is the sum of 
the derivatives of its terms.

← This is the familiar product rule.

← Quotient rule.

← Chain rule.

←  We used 0.5 as our initial guess since it is 
halfway between 0 and 1.
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The Mean Value Theorem is similar to Rolle’s Theorem and does not require f  to be 0 at each endpoint 
of the interval:

Let f be continuous on the closed interval [a, b] and differentiable on the open interval (a, b). Then 
there exists a number, c, between a and b such that f(b) – f(a) = f ' (c) (b – a).

If we write the conclusion of the theorem in the form 
f b f a

b a
f c

( ) ( )
' ( )

−
− = , we see that the Mean Value 

Theorem guarantees the existence of a number, c, between a and b, such that the tangent line at (c, f(c)) is 

parallel to the line segment connecting the endpoints of the curve.

Note: Rolle’s Theorem and the Mean Value Theorem guarantee the existence of at least one number c. 
In actuality, there may be several.

EXAMPLE 14 Find the value(s), c, guaranteed by the Mean Value Theorem for the function f x x x( ) sin= + 2π
on the interval [0, 2].

f[x_]= x + Sin[2 x]; a = 0; b = 2; m = f[b]–f[a]
b – a

;

Plot[f'[x]– m, {x, 0, 2}, PlotRange ã {–8, 8}]]

0.5 1.0 1.5 2.0

–5

5

FindRoot[f'[c] m, {c, {.3, .7, 1.3, 1.7}}]

{c → {0.257071, 0.753319, 1.24344, 1.75836}}

c1 = .257071; c2= .753319; c3 = 1.24344; c4 = 1.75836;

l1[x_]  f[c1] + f'[c1](x – c1) /; c1 – .25  Ä  x  Ä  c1 + .25

l2[x_]  f[c2] + f'[c2](x – c2) /; c2 – .25  Ä  x  Ä  c2 + .25

l3[x_]  f[c3] + f'[c3](x – c3) /; c3 – .25  Ä  x  Ä  c3 + .25

l4[x_]  f[c4] + f'[c4](x – c4) /; c4 – .25  Ä  x  Ä  c4 + .25

l[x_]  f[a] + m (x – a)

Plot[{f[x], l[x], l1[x], l2[x], l3[x], l4[x]}, {x, a, b}]

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

We estimate the zeros of the function f '(x) – m 
to determine the approximate locations of c. 
There appear to be four values: 0.3, 0.7, 1.3, 
and 1.7 (approximately).

The tangent lines are parallel to the secant 
connecting the endpoints of the curve.
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SOLVED PROBLEMS

 8.9 Compute the 3rd derivative of tan x.

SOLUTION

Tan'''[x]

2 Sec[x]4 + 4 Sec[x]2 Tan[x]2

8.10 Compute the values of the first ten derivatives of f x ex( ) = 2 at x = 0. Put the results in tabular 
form.

SOLUTION

f[x_] = Exp[x2]

derivtable = Table[{n, D[f[x], {x, n}] /. x ã 0}, {n, 1, 10}]; 

TableForm[derivtable, TableAlignments ã Right, TableSpacing ã {1,5}, 
         TableHeadings ã {None,{"n", "f(n)(0)"}}]

 n f(n)(0)

 1 0

 2 2

 3 0

 4 12

 5 0

 6 120

 7 0

 8 1680

 9 0

 10 30  240

8.11 Sketch the graph of f(x) = x4 – 50 x2 + 300 and its derivative, on one set of axes, for –10 ≤ x ≤ 10.

SOLUTION

PlotLegends`

f[x_] = x4 – 50 x2 + 300;

Plot[{f[x], f'[x]}, {x, – 10, 10}, PlotRange ã {–1000, 1000},
    PlotStyle ã {GrayLevel[0], Dashing[{.015}]}, 
    PlotLegend ã {"f(x)", "f'(x)"}]

 

–10 –5 5 10

–1000

–500

500

1000

f '(x)

f(x)

Observe that f '(x) = 0 precisely 
where f (x) has a relative (local) 
maximum or minimum.

Observe that f '(x) = 0 precisely 
where f (x) has a relative (local) 
maximum or minimum.



CHAPTER 8  Differential Calculus210

8.12 Given f(x) whose graph is C, the slope of the line tangent to C at a is f '(a). Let f(x) = sin x. Sketch 
the graph and its tangent line at a = π /3.

SOLUTION

f[x_] = Sin[x];

a = o/3;

l[x_] = f[a] + f'[a](x – a);

Plot[{f[x], l[x]}, {x, 0, 2 o}]

 

1 2 3 4 5 6

–1

1

2

3

8.13 Use Manipulate to show the tangent line at various positions along the curve y = sin x,  0 ≤ x ≤ 2 π. 

SOLUTION

The tangent line has equation y f a f a x a= + −( ) '( )( ).

f[x_] = Sin[x];

l[x_, a_]:= f[a]+ f'[a](x–a)/;a – 1
1 + ff'[a]

x a + 1
1 + f'[a]2 2

≤≤ ≤≤

This guaranteess that the tangent line will have a constannt length of 2.6 744444444 844444444

Manipulate[Plot[{f[x], l[x, a]}, {x, 0, 2 o}, 
          PlotRange ã {–1.5, 1.5}], {a, 0, 2 o}]

 

Move the slider to change the location of the tangent line.

Recall that the equation of a line having 
slope m, passing through (x1, y1) is

 y − y1 = m(x − x1)

or y = y1 + m(x – x1)

Here, x1 = a, y1 = f (a), and m = f '(a) so 

 y = f (a) + f '(a)(x − a)
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8.14 Find the value(s) of c guaranteed by Rolle’s Theorem for the function  
f(x) = 4x + 39x2 − 46 17 23 4 5x x x+ −  on the interval [0, 4]. 

SOLUTION

Since f(x) is a polynomial, it is continuous and differentiable everywhere. First we verify that f(0) = f(4) = 0.

f[x_]= 4 x + 39 x – 46 x + 17 x – 2 x ;2 3 4 5

f[0]

0

f[4]

0

Now we look to see where f '(c) = 0. Since f ' is a polynomial, we can use NSolve.

NSolve[f'[c]  0]

{{c → –0.0472411}, {c → 1.05962}, {c → 2.27466}, {c → 3.51296}}

There are three values of c between 0 and 4 (Rolle’s Theorem guarantees at least one). A plot of the graph 
confirms our result.

Plot[f[x], {x, –1, 4}]

 –1 1 2 3 4

10

20

30

40

8.15 Verify the Mean Value Theorem for the function f x x x( ) sin= + 2  on the interval [0, π].

SOLUTION

  f  (x) is continuous and differentiable everywhere. Define a = 0, b = π and solve the equation 
f b f a( ) ( )− = f  ' (c)(b − a) for c. To approximate their values, we look at the graph with the endpoints connected 
by a line segment.

f[x_] = x + Sin[2 x];

a = 0; b = o;

m = f[b]– f[a]
b – a

;
 
 

l[x_] = f[a]+ m (x – a);

← Slope of the secant connecting the endpoints. 

← Function representing the secant line.
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Plot[{f[x], l[x]}, {x, a, b}]

 0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

It looks like the tangent line will be parallel to the secant when x ≈ 1 or x ≈ 2 5. . Clearly both values lie 
between 0 and π.

FindRoot[f[b] – f[a]  f'[c](b – a), {c, 1}]

FindRoot[f[b] – f[a]  f'[c](b – a), {c, 2.5}]

{c → 0.785398}
{c → 2.35619}

8.3 Maximum and Minimum Values
A function  f  has an absolute (global) maximum over an interval, I, at a point c if f(x) ≤ f(c) for all x in I. 
In other words, f(c) is the largest value of f(x) in I. A similar definition (with the inequality reversed) holds 
for an absolute minimum. One of the most important applications of differential calculus is optimization, 
i.e., finding the maximum and minimum values of a function, subject to certain constraints.

Not all functions have absolute maxima and minima. However the Extreme Value Theorem gives condi-
tions sufficient to guarantee their existence:

If f is continuous on a closed bounded interval, then f has both an absolute maximum and an absolute 
minimum in that interval.

A critical number of a function f is a number c for which f '(c) = 0 or f '(c) fails to exist. It can be shown 
that if a function is continuous on the closed interval [a, b], then the absolute maximum and minimum will 
be found either at a critical number or at an endpoint of the interval. We can use Mathematica to help us 
find the maximum and/or minimum values.

EXAMPLE 15 We wish to find the absolute maximum and minimum values of the function  
f (x) = x4 – 4 x3 + 2 x2 + 4 x + 2 on the interval [0, 4]. First we find the critical numbers.

f[x_]= x4 – 4 x3 + 2 x2 + 4 x + 2;

Solve[f'[x] 0]

{x 1}, x 1– 2 , x 1+ 2→ →{ } →{ }{ }
Of these three numbers, only two lie in the interval [0, 4]. We compute the value of the function at these numbers 

as well as the endpoints of the interval.

c1 = 0; c2 = 1; c3=1+ 2; c4 = 4;

points = {{c1, f[c1]}, {c2, f[c2]}, {c3, f[c3]}, {c4, f[c4]}} //Expand;
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TableForm[points, TableHeadings ã {None, {"x", "f[x]"}}]

 x f[x]

 0 2
 1 5

 1+ 2  1
 4 50

Max[{f[c1], f[c2], f[c3], f[c4]}] //Expand

50

Min[{f[c1], f[c2], f[c3], f[c4]}] //Expand

1

The absolute maximum of f is 50 and the absolute minimum is 1.

EXAMPLE 16 A wire, 100 in. long, is to be used to form a square and a circle. Determine how the wire should 
be distributed in order for the combined area of the two figures to be (a) as large as possible and (b) as small as 
possible.

100"

x

x

x

x r

The combined area of the two figures is A x x r( ) = +2 2π . The circle has a circumference of 2π r, so it follows that 
4 2 100x r+ =π . Since the wire is 100 in. long, 0 ≤ x ≤ 25.

Solve[4 x + 2 o r  100, r] 

r – 2(–25+ x)→{ }{ }π

a[x_]= x + r /. r – 2(–25+ x)2 2o ã
o

4(–25+ x)) + x
2

2

π

Solve[a'[x] 0]

x 100
4+

→{ }⎧
⎨
⎩

⎫
⎬
⎭π

x1 =0;

x2= 100
4+

;

x3= 25;

o

← Replace r in terms of x.

← Find critical value(s).

Compute the values of a(x) at these three 
points. The values are placed in a table with 
numerical approximations for comparison.
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points = {{x1, a[x1], N[a[x1]]}, {x2, a[x2], N[a[x2]]}, 
  {x3, a[x3], N[a[x3]]}} //Together;

TableForm[points, TableAlignments ã Center, TableSpacing ã {2, 5},

   TableHeadings ã {None, {"x", "a[x]", "N[a[x]]"}}]

 x a [x] N [a [x]]

 0 2500
π

 795.775

 100
4 + π

 2500
4+ π

 350.062

 25 625 625.

The largest combined area occurs when x = 0 (all the wire is used to form the circle). The smallest area occurs 

when one side of the square is 100
4 + π

 (cut the wire 400
4 + π

 
from one end). To further confirm that x = 100

4 + π
 gives a 

minimum area, we can apply the second derivative test.

Sign a'' 100
4+ππ

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

1

Since the sign of the second derivative at the critical number is positive, A(x) has a relative minimum at 100
4 + π

. 
Since this is the only relative extreme value, it must be the location of the absolute minimum.

A function has a relative or local maximum at c if there exists an open interval, I, containing c such that 
f(x) ≤ f(c) for all x in I. In other words, there exists an open interval containing c such that f(c) is the larg-
est value of f for all x in this interval. A similar definition holds for a relative minimum.

Unlike an absolute maximum (minimum), a function may have several relative maxima (minima). If a 
numerical approximation of their location is all that is required, the Mathematica commands  FindMinimum 
and FindMaximum offer an efficient and convenient procedure.

 FindMinimum[f[x], {x, x0}] finds the relative minimum of f(x) near x0. 
 FindMaximum[f[x], {x, x0}] finds the relative maximum of f(x) near x0.

As with FindRoot, the options AccuracyGoal and WorkingPrecision can be set if greater 
accuracy is desired. In addition, PrecisionGoal can be set to determine the precision in the value of the 
function at the maximum or minimum point. (Precision is the number of significant digits in the answer; 
accuracy is the number of significant digits to the right of the decimal point.)

EXAMPLE 17 The function f(x) = x + sin(5 x) has three relative maxima and two relative minima in the interval 
[0, π]. A quick look at its graph gives good approximations to their locations.

f[x_] = x + Sin[5 x];

Plot[f[x], {x, 0, o}]

 0.5 1.0 1.5 2.0 2.5 3.0

1

2

3
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FindMinimum[f[x], {x, 1}]

{–0.0775897, {x → 0.902206}}

FindMinimum[f[x], {x, 2}]

{1.17905, {x → 2.15884}}

FindMaximum[f[x], {x, 0.4}]

{1.33423, {x → 0.354431}}
FindMaximum[f[x], {x, 1.5}]

{2.59086, {x → 1.61107}}
FindMaximum[f[x], {x, 3}]

{3.8475, {x →  2.8677}}

The relative maximum points are (0.354431, 1.33423), (1.61107, 2.59086), and (2.8677, 3.8475). The relative 
minimum points are (0.902206, – 0.0775897) and (2.15884, 1.17905).

Note: Caution must be taken to examine the results of the calculation. The value obtained is not necessarily the 
one closest to the initial guess. For example,

FindMaximum[f[x], {x, 2.8}]

{5.10414,{x → 4.12434}}

but the value of x is not between 0 and π.

SOLVED PROBLEMS

8.16 Find two positive numbers whose sum is 50, such that the square root of the first added to the cube 
root of the second is as large as possible.

SOLUTION 

y = 50 – x;

f[x_]= x + y;

Plot[f[x], x, 50

3

{ }}];

 10 20 30 40 50

5

6

7

8

NSolve[f'[x] 0]

{{x → 41.1553}}
y /. x → 41.1553

8.8447

f[41.1553]

8.48329

The two numbers are x = 41.1553 and y = 8.8447. The maximum sum is 8.48329.

←  The value of the function comes fi rst, 
followed by the value of x.
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8.17 A right circular cylinder is inscribed in a unit sphere. 
 (a) Find the largest possible volume.
 (b) Find the largest possible surface area.
  

SOLUTION
(a)  We consider a two-dimensional perspective of the problem. Label the radius and height of the inscribed 

cylinder r and h, respectively. The volume of the inscribed cylinder is V r h= π 2  and, by the Theorem 

of Pythagoras, r h2
2

2
1+ ⎛

⎝
⎞
⎠ = . It is easily seen (even without Mathematica) that 

r h2
2

1
2

= − ⎛
⎝

⎞
⎠ . Thus, the volume, as a function of h, becomes

 

V h h h( ) = − ⎛
⎝

⎞
⎠

⎡

⎣
⎢

⎤

⎦
⎥π 1

2

2

. 

v[h_]= 1– h /2 h;

Solve[v'[h] 0,h]

2
o ( )( )

hh – 2
3

, h 2
3

→⎧
⎨
⎩

⎫
⎬
⎭

→⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

⎡⎣ ⎤⎦vmax = v 2/ 3

44
3 3

–1

π

sign[v''[2/ 3]]

(b)    The surface area of the cylinder (including top and bottom) is S rh r= +2 2 2π π . As in part (a), 

r h2
2

2
1+ ⎛

⎝
⎞
⎠ = , but because r and r2 both appear in the equation for S, it is easier to solve for h in 

terms of r.

Solve[r +(h/2) 1,h]2 2

h –2 1–r , h 2 12→{ } → ––r2{ }{ }
 Now substitute the (positive) value of h into the formula for s:

s[r_]= 2 r h + 2 r /. h 2 1 –r2 2o o →→

2 r +4 r 1–r2π π 22

 Solve for the critical value of r :

Solve[s'[r] 0,r]

r 1
10

5+ 5 , r – 1→ ( ){ } →
110

5– 5( ){ }⎧
⎨
⎩

⎫
⎬
⎭

 Only the positive value of r is acceptable. We use it to compute the maximum surface area.

s 1
10

5 + 5 //Simplify( )⎡
⎣⎢

⎤
⎦⎥

+( )1 5 π

Sign s'' 1
10

5 + 5( )⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

 ← Confirmation of a maximum.

 –1

1
h/2

r







Obviously only the positive value of h is appropriate. 

Since the sign of the second derivative at the critical 
point is negative, we have a relative maximum at 2 3/ . 
Since this is the only relative extremum, it must be the 
absolute maximum.



CHAPTER 8  Differential Calculus 217

8.18 Find the points on the circle x y x y2 2 2 4 0+ − − =  closest to and furthest from P(4, 4).

SOLUTION

First we draw a diagram.

circle = ContourPlot[x2 + y2 – 2 x – 4 y  0, {x, –5, 5}, {y, –2, 5}];

point = Graphics[{PointSize[Medium], Point[{4,4}]}];

Show[circle, point, Frame ã False, AspectRatio ã Automatic, Axes ã True]

 

–4 –2 2 4

–2

–1

1

2

3

4

5

Let (x, y) represent a point on the circle. First, we need to solve for y in terms of x.

Solve[x + y – 2 x – 4 y 0,y]//Simplif2 2 yy

y 2– 4+ 2 x – x , y 2+ 4+ 2 x – x2→{ } → 22{ }{ }
We shall minimize the square of the distance from (x, y) to (4, 4). We call this d2. It is clear from the 
picture that the point closest to P lies on the upper semicircle.

 

y = 2+ 4 + 2 x – x ;

d2[x_]=(x – 4) +(y

2

2 –– 4);

Solve[d2'[x] 0]

2

x 1
13

13+3 65→{ }⎧
⎨
⎩

⎫
⎬
⎭

⎛
⎝⎜

⎞
⎠⎟

{x,y} /. x 1
13

13+ 3 65 //Simplify→ ( )
1+3 5

13
, 2+ 2 5

13

⎧
⎨
⎩

⎫
⎬
⎭

%//N

{2.86052, 3.24035}

The point furthest from P lies on the lower semicircle.

y = 2– 4 + 2 x – x ;

d2[x_]=(x – 4) +(y

2

2 –– 4);

Solve[d2'[x] 0]

2






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x 1
13

13–3 65→{ }{ }( )

{x,y} /. x 1
13

13– 3 65 //Simplify→→ ( )

1–3 5
13
, 2– 2 5

13{ }
%//N

{– 0.860521, 0.759653}

8.19 A local telephone company wants to run a cable from point A on one side of a river 100 feet wide 
to point B on the opposite side, 500 feet along the shore from point C, which is opposite A. It costs 
three times as much money to run the cable underwater as on land. How should the company run the 
cable in order to minimize the cost of the project?

SOLUTION

If we let a represent the cost per foot to run the cable on land, 3a is the cost to run a foot of cable under-
water. The total cost is then c x a x a x( ) ( )= + + −3 100 5002 2 . Of course, 0 ≤ x ≤ 500.

500′

500 – xx

x2 + 1002

C B

A

100′

c[x_]= 3 a x + 100 + a(500 – x);

Solve[c'

2 2

[[x] 0,x]

x 25 2→{ }{ }
Now we must compare the cost corresponding to this solution with the cost at the endpoints of the interval.

c[0] //N

c[25 2] //N

c[500] //

800. a

782.843 a

NN

1529.71 a

8.4 Power Series
The nicest functions to work with are polynomials. They are continuous and can easily be differentiated 
and integrated. If a difficult function is encountered in a problem, one approach is to approximate it by a 
polynomial.

For minimum cost, run the cable 
underwater to the point 25 2 feet 
from C, then on land to B.


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If the value of the function and its derivatives are known at a single point, a, the function can often 
be represented by a power series. This, however, is usually an infinite series that must be truncated for 
practical application. The trick is to truncate it in such a way that it accurately approximates the given 
function, at least in some neighborhood of a.

The following series, known as a Taylor series, gives a representation of an analytic1  function, f(x). If 
a = 0, the series is known as a Maclaurin series.

f x
f a

k
x a

k
k

k

( )
( )
!

( )
( )

= −
=

∞

∑
0

f ak( ) ( ) represents the kth derivative of f evaluated at a. If k = 0, it represents f(a).
If we truncate this infinite series by omitting all terms of degree greater than n, we obtain the nth degree  

Taylor polynomial of f about a. We shall represent this polynomial as p xn ( ). If a = 0, the polynomial is 
called a Maclaurin polynomial.

EXAMPLE 18 To obtain the Maclaurin polynomial of degree 5 for the function f x ex( ) = , we can use the 
Sum command or the Σ symbol from the Basic Math Input palette. Here are three different ways the 
polynomial can be generated:

f[x_] = Exp[x];

(a) Sum[(D[f[x], {x, k}]/.x ã 0)/k! * xk, {k, 0, 5}]

 
1+ x + x

2
+ x
6
+ x
24

+ x
120

2 3 4 5

(b) 
ì ã{x,k} k

k=0

5 f[x] /. x 0

k!
x∑

 
1+ x + x

2
+ x
6
+ x
24

+ x
120

2 3 4 5

(c) Derivative[k][f][0]
k!

xk

k=0

5

∑

 
1+ x + x

2
+ x
6
+ x
24

+ x
120

2 3 4 5

Mathematica includes a convenient command for constructing the Taylor polynomial.

 Series[f[x], {x, a, n}] generates a SeriesData object2 representing the nth degree Taylor 
polynomial of f(x) about a. 

EXAMPLE 19

f[x_]= Exp[x];

Series[f[x], {x, 0, 5}]

1+ x + x
2
+ x
6
+ x
24

+ x
120

2 3 4 5

 + O[x]6

The symbol O[x]6 in the above expansion represents the “order” of the omitted terms in the (infinite) expansion.  
O[x]6 means that the omitted terms have powers of x of degree ≥ 6. 

We can see what a SeriesData object looks like by using the command InputForm.

 InputForm[expression] prints expression in a form suitable for input to Mathematica. 

1An analytic function of a real variable is one that has a Taylor series expansion. Most functions encountered in applications are of 
this type; however, even if a function has derivatives of all orders, it may not be analytic.

2A SeriesData object is a representation of a power series but does not have a numerical value.  
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EXAMPLE 20 

f[x_]= Exp[x];

s = Series[f[x], {x, 0, 5}];

InputForm[s]

SeriesData[x, 0, {1, 1, 1/2, 1/6, 1/24, 1/120}, 0, 6, 1]

A SeriesData object is non-numerical and therefore cannot be evaluated numerically.

EXAMPLE 21 

f[x_] = Exp[x];

p[x_] = Series[f[x], {x, 0, 5}]

1+ x + x
2
+ x
6
+ x
24

+ x
120

2 3 4 5
 + O[x]6

p[1]

SeriesData õ ssdn :

  Attempt to evaluate a series at the number 1. Returning Indeterminate. 

Indeterminate

In order to convert the series into one that can be evaluated, the function Normal can be used to trans-
form it into an ordinary polynomial.

 Normal[series] returns a polynomial representation of the SeriesData object series, which can 
then be evaluated numerically. The O[x]n term is omitted. 

EXAMPLE 22 

f[x_] = Exp[x];

s = Series[f[x], {x, 0, 5}]

1+ x + x
2
+ x
6
+ x
24

+ x
120

2 3 4 5

 + O[x]6

p[x_] = Normal[s]

1+ x + x
2
+ x
6
+ x
24

+ x
120

2 3 4 5

p[1]

163
60

The number obtained in the previous example, 163/60, is approximately 2.71667. If we compare 
this to the (known) value of e ≈ 2.71828, we see a small error in our approximation. We would expect 
the error to diminish as the degree of the polynomial increases. This is shown to be the case in the next 
example.

EXAMPLE 23

f[x_] = Exp[x];

exactvalue = f[1];

p[n_]   Normal[Series[f[x], {x, 0, n}]] /. x ã 1

data = Table[{n, N[p[n]], N[Abs[p[n] – exactvalue]]}, {n, 1, 10}];

Normal has converted the SeriesData object into an ordinary 
polynomial, whose value can now be computed.
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TableForm[data, TableSpacing ã {1,10}, 
       TableHeadings ã {None, {"n", "     p(1)","     Error "}}]

 n p(1) Error

 1 2. 0.718282
 2 2.5 0.218282
 3 2.66667 0.0516152
 4 2.70833 0.0099485
 5 2.71667 0.00161516
 6 2.71806 0.000226273
 7 2.71825 0.0000278602
 8 2.71828 3.05862 × 10–6

 9 2.71828 3.02886 × 10–7

 10 2.71828 2.73127 × 10–8

EXAMPLE 24 To see the convergence of a power series even more dramatically, we can construct an anima-
tion showing the sequence of Maclaurin polynomials converging to ex. We consider the interval [0, 5]. 

f[x_] = Exp[x];

p[n_, x_]   Normal[Series[f[t], {t, 0, n}]] /.t ã x

Animate[Plot[{p[n, x], f[x]}, {x, 0, 5},
        PlotRange ã {0,Exp[5]}], {n, 1, 10, 1}]

 Output of Animate when n = 5

If only the coefficient of a particular term of a series is needed, the command SeriesCoefficient
may be used. The actual series, which may be quite long, need not be printed in its entirety. 
SeriesCoefficient is the SeriesData equivalent of Coefficient for polynomials.

 SeriesCoefficient[series, n] returns the coefficient of the nth degree term of a SeriesData 
object.

EXAMPLE 25 

f[x_] = Exp[x];

s = Series[f[x], {x, 0, 10}];

SeriesCoeffi cient[s, 10]

1
3628800
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SOLVED PROBLEMS

8.20 Obtain the Maclaurin polynomial of degree 10 for the function f(x) = tan–1x by using a direct 
summation and then by using the Series command.

SOLUTION

f[x_] = ArcTan[x];

Derivative[k][f][0]
k!

xk

k=0

10

∑

x – x
3
+ x
5
– x
7
+ x
9

3 5 7 9

Series[f[x], {x, 0, 10}]

x – x
3
+ x
5
– x
7
+ x
9

3 5 7 9

 + O[x]11

8.21 Obtain a representation of x5 in powers of x – 2.

SOLUTION

Series[x5, {x, 2, 5}] //Normal

32 + 80(–2 + x) + 80(–2 + x)2 + 40(–2 + x)3 + 10(–2 + x)4 + (–2 + x)5

%//TraditionalForm

( ) ( ) ( ) ( ) (x x x x x− + − + − + − + −2 10 2 40 2 80 2 805 4 3 2 22 32) +

8.22 Construct a Taylor polynomial of degree 5 about a = 1 for the function x and use it to 

approximate 3 2/ .

SOLUTION

p[x_]=Series[ x, x,1,5 ] //Normal{ }

1+ 1
2
(–1+ x)– 1

8
(–1+ x) + 1

16
(–1+ x) – 5

128
(–1+ x)2 3 44 5+ 7

256
(–1+ x)

approx = p[3/2] //N

1.22498

exact = 3/2 //N

1.22474

Abs[% – %%] 

0.000230715 ← This is the absolute error of the approximation.

8.23 Let f(x) = sin x and compute the Maclaurin polynomials of degrees 7, 9, and 11. Then plot f(x) and 
the three polynomials on one set of axes, 0 ≤ x ≤ 2 π, and observe their behavior. 

SOLUTION

f[x_]= Sin[x];

p7[x_]= Series[f[x], {x, 0, 7}] //Normal;

p9[x_]= Series[f[x], {x, 0, 9}] //Normal;

p11[x_]= Series[f[x], {x, 0, 11}] //Normal;
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Plot[{f[x], p7[x], p9[x], p11[x]}, {x, 0, 2 π},
         PlotStyle ã {Thickness[.01], Thickness[.001], 
             Thickness[.001], Thickness[.001]}]

 

1 2 3 4 5 6

–4

–3

–2

–1

1

2

3

 The higher the degree of the polynomial, the better the polynomial 
 approximates f (x) = sin x.

8.24 Let f(x) = sin x and compute the Maclaurin polynomial of degree 11. Construct an error function and 
compute its value from x = 0 to x = 1 in increments of 0.1. Place the results in the form of a table and 
comment on the values of the error as x gets further from 0.

SOLUTION

f[x_] = Sin[x];

p11[x_] = Normal[Series[f[x], {x, 0, 11}]];

error[x_] = Abs[f[x] – p11[x]];

errorvalues = Table[{x, error[x]}, {x, 0, 6, 1.}];

TableForm[errorvalues, TableSpacing ã {1,5},
          TableHeadings ã {None, {"x","     error[x]"}}]

 x error[x]

 0. 0.
 1. 1.59828 × 10–10

 2. 1.29086 × 10–6

 3. 0.000245414
 4. 0.0100021
 5. 0.174693
 6. 1.78084

8.25 Let f(x) = sin x. Construct the Maclaurin polynomials of degrees 1, 3, 5, 7, and 9 and compute their 
value at x = 1. Determine the error in the approximations and express in a tabular form.

SOLUTION

f[x_] = Sin[x];

exactvalue = f[1];

value[n_]   Normal[Series[f[x], {x, 0, n}]] /. x ã 1

data = Table[{n, N[value[n]], N[exactvalue], 
            N[Abs[value[n] – exactvalue]]}, {n, 1, 9, 2}];

As x gets further from 0, the error gets larger.
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TableForm[data, TableSpacing ã {1,5}, 
         TableHeadings ã {None, {"n","     p(1)","     f(1)","     Error"}}]

 n p(1) f(1) Error

 1 1. 0.841471 0.158529

 3 0.833333 0.841471 0.00813765

 5 0.841667 0.841471 0.000195682

 7 0.841468 0.841471 2.73084 × 10–6

 9 0.841471 0.841471 2.48923 × 10–8

8.26 Let f(x) = ln x and compute the Taylor polynomials about a = 1 of degrees 5, 10, and 15. Then plot 
f(x) and the three polynomials on one set of axes, 1 ≤ x ≤ 2.

SOLUTION

f[x_] = Log[x];

p5[x_] = Series[f[x], {x, 1, 5}]//Normal;

p10[x_] = Series[f[x], {x, 1, 10}]//Normal;

p15[x_] = Series[f[x], {x, 1, 15}]//Normal;

Plot[{f[x], p5[x], p10[x], p15[x]}, {x, 1, 2}, 
    PlotStyle ã {Thickness[.01], Thickness[.001], 
   Thickness[.001], Thickness[.001]}]

 1.2 1.4 1.6 1.8 2.0

0.2

0.4

0.6

0.8

8.27 Let f(x) = ln x and construct the Taylor polynomial of degree 5 about a = 1. Construct an error 
function and compute its value from x = 1 to x = 2 in increments of 0.1. Place the results in the form 
of a table and comment on the values of the error as x gets further from 1.

SOLUTION

f[x_] = Log[x];

p5[x_] = Normal[Series[f[x], {x, 1, 5}]];

error[x_] = Abs[f[x] – p5[x]];

errorvalues = Table[{x, error[x]}, {x, 1, 2, .1}];

As n gets larger, the error gets smaller.
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TableForm[errorvalues, TableSpacing ã {1,5}, 
                        TableHeadings ã {None, {"  x","     error[x]"}}]

 x error[x]

 1. 0.
 1.1 1.53529 × 10–7

 1.2 9.10987 × 10–6

 1.3 0.0000967355
 1.4 0.000509097
 1.5 0.00182656
 1.6 0.00514837
 1.7 0.0122941
 1.8 0.026016
 1.9 0.0502191
 2. 0.0901862

8.28 Let f(x) = ln x. Construct the Taylor polynomials of degrees 1, 2, 3, . . . , 10 about a = 1 and compute 
their value at x = 1.5. Determine the error in the approximations and express in a tabular form.

SOLUTION

f[x_] = Log[x];

exactvalue = f[1.5];

value[n_]  Normal[Series[f[x], {x, 1, n}]]/. x ã 1.5
data = Table[{n, N[value[n]], exactvalue, 
            N[Abs[value[n] – exactvalue]]}, {n, 1, 10}];

TableForm[data, TableSpacing ã {1,5},
         TableHeadings ã {None, {"n","     pn(1.5)","     f(1.5)","     Error"}}]

 n Pn(1.5) f(1.5) Error

 1 0.5 0.405465 0.0945349
 2 0.375 0.405465 0.0304651
 3 0.416667 0.405465 0.0112016
 4 0.401042 0.405465 0.00442344
 5 0.407292 0.405465 0.00182656
 6 0.404688 0.405465 0.000777608
 7 0.405804 0.405465 0.000338463
 8 0.405315 0.405465 0.000149818
 9 0.405532 0.405465 0.000067196
 10 0.405435 0.405465 0.0000304603

8.29 What is the coefficient of the x20 term of the Maclaurin series for sin( )x2 1+ ?

SOLUTION

s = Series[Sin[x2 + 1], {x, 0, 20}];

SeriesCoefficient[s, 20]

– Sin[1]
3628 800

As x gets further from 1, the error gets larger.
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9.1 Antiderivatives
An antiderivative of a function f  is another function F  such that F'(x) = f (x). In Mathematica, the 
Integrate command computes antiderivatives. You will notice, however, that the constant of integration, 
C, is omitted from the answer.

 Integrate[f[x], x] computes the antiderivative (indefinite integral) f x dx( )∫ . The symbol 
·∫  · from the Basic Math Input palette may also be used. 

Mathematica can compute antiderivatives of elementary integrals found in standard tables, but if 
unable to evaluate an antiderivative in terms of elementary functions, the software will try to express the 
antiderivative in terms of special functions. If this is not possible, Mathematica returns the antiderivative 
unevaluated.

EXAMPLE 1

x Exp[x]Sin[x]2∫  x or Integrate[x^2 Exp[x] Sin[x], x]

1
2
x(–(–1+x) Cos[x]+(–1+ x )Sin[x])2 2

EXAMPLE 2

Sin[x ]2∫   x or Integrate[Sin[x^2], x]

π
π2

Fresnel 2 x⎡
⎣⎢

⎤
⎦⎥
 

EXAMPLE 3

Sin[Sin[x]]∫   x or Integrate[Sin[Sin[x]], x] 

Sin[Sin[x]]∫  x ← Mathematica cannot evaluate this antiderivative.

Care must be taken when general antiderivatives involving parameters are requested. 

EXAMPLE 4

xn∫ x

x
1+n

1+ n

CHAPTER 9

This integral has no simple antiderivative, so Mathematica expresses 

it as a Fresnel sine integral: FresnelS( )x = ( )∫ sin π t dt
x 2

0 2
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Of course, this result is valid only if n ≠ –1, but if the value of n is specified, Mathematica knows what to do.

n = –1;

xn∫  x

Log [x]

SOLVED PROBLEMS

 9.1 Compute x dx∫ .

SOLUTION

x∫   x or Integrate x , x⎡⎣ ⎤⎦  

2x
3

3/2

 9.2 Compute a x dx2 2+∫
SOLUTION

a +x2 2∫ x or Integrate a + x , x2 2⎡⎣ ⎤⎦
1
2
x a +x +1

2
a Log x+ a +x2 2 2 2 2⎡⎣ ⎤⎦

 9.3 Compute 
1

2 2u a
du

−∫
SOLUTION

1
u –a2 2∫  u or Integrate[1/Sqrt[u2  –  a2], u]

Log u+ –a + u2 2⎡⎣ ⎤⎦

 9.4 Compute tanh x dx∫ .

SOLUTION

Tanh[x]∫ x or Integrate[Tanh[x], x]

Log[Cosh[x]]

 9.5 Evaluate (a) f x dx'( )∫  and (b) g f x f x dx'( ( )) '( )∫ .

SOLUTION

 (a) f'[x]∫  x (b) g'[f[x]]f'[x]∫  x

  f[x]  g[f[x]]

 9.6 Construct a table of integrals for sinn x dx∫  n = 1, 2, 3, . . . , 10.

SOLUTION

anti[n]:= sin[x]n∫ x

tablevalues = Table[{n, Together[anti[n]]}, {n, 1, 10}];

TableForm ⎡
⎣
tablevalues, TableSpacing ã {1, 5}, 

                                   TableHeadings ã None, ,"n" " Sin x dx"n∫{ }{ }⎤
⎦⎥
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 n Sin[x] x∫
 1 – Cos[x]

 2 
1
4
(2x–Sin[2x])

 3 1
12
(–9Cos[x]+Cos[3x])

 4 1
32
(12x –8Sin[2x]+Sin[4 x])

 5 1
240

(–150Cos[x]+25Cos[3x]–3Cos[5 x])

 6 1
192

(60 x –45Sin[2x]+9Sin[4 x]–Sin[6 x])

 7 
–1225Cos[x]+245Cos[3x]–49Cos[5x]+5Cos[7x]

22440

 8 
840x –672Sin[2x]+168Sin[4x]–32Sin[6x]+3Sin[8xx]

3072

 9 
–39 690Cos[x]+8820Cos[3x]–2268Cos[5 x]+405Cos[[7 x]–35Cos[9 x]

80 640

 10 
2520 x –2100Sin[2x]+600Sin[4 x]–150Sin[6 x]+25Siin[8 x]–2Sin[10 x]

10 240

 9.7 Use Manipulate to evaluate sinn x dx∫  
for 1 ≤ n ≤ 10.

SOLUTION

Manipulate Sin[x]n∫⎡
⎣  x //Together, {n, 1, 10, 1}, ControlType RadioButton→→ ⎤⎦

9.2 Definite Integrals
A definite integral can be computed one of two ways: exactly, using the Fundamental Theorem of Calculus, 
or approximately, using numerical methods. You can instruct Mathematica which method you wish to use 
by choosing from two commands.

 Integrate[f[x], {x, a, b}] computes, whenever possible, the exact value of f x dx( )
a

b

∫ . The 

symbol ·
·

·

∫  · on the Basic Math Input palette may be used as well. 
 NIntegrate[f[x], {x, a, b}] computes an approximation to the value of f x dx( )

a

b

∫  using 
strictly numerical methods. 

NIntegrate evaluates the integral using an adaptive algorithm, subdividing the interval of integra-
tion until a desired degree of accuracy is achieved. The interval is divided recursively until the value of 
AccuracyGoal or PrecisionGoal is achieved.

• AccuracyGoal is an option that specifies how many digits to the right of the decimal point should 
be sought in the final result. AccuracyGoal effectively specifies the absolute error. The default for 
NIntegrate is AccuracyGoal ã Infinity, which specifies that accuracy should not be used 
as the criterion for terminating the numerical procedure.

• WorkingPrecision is an option that specifies how many digits of precision should be main-
tained in internal computations. The default value is approximately 16. 

• PrecisionGoal is an option that effectively specifies the relative error. The default setting, 
PrecisionGoal ã Automatic, sets PrecisionGoal to half the value of WorkingPrecision.
If defaults are not used, you should set PrecisionGoal to be less than the value of 
WorkingPrecision.


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Other options, which control more precisely how the algorithm should be implemented, are available, 
but will not be discussed here. These options are useful for integrals involving “pathological” functions 
such as sin

.

1
0001

1

x
dx( )∫  or e dxx−

−∫
2

1000

1000
. The interested reader should consult the Mathematica Documentation 

Center for details.
The sequence N[Integrate[f[x], {x, a, b}]] or f[x] x //N

a

b

∫  evaluates the integral, 
whenever possible, by first finding the antiderivative and then using the Fundamental Theorem of Calculus. 
If this is impossible, NIntegrate[f[x], {x, a, b}] is called automatically. 

EXAMPLE 5 To evaluate x e x dxx sin
0

1

∫  we input 

Integrate[x Exp[x] Sin[x], {x, 0, 1}]

1
2
(–1 +  Sin[1])

As an alternate representation, we can use the Basic Math Input palette.

x
0

1

∫ x Sin[x]x

1
2
(–1 +  Sin[1])

If a numerical approximation is desired, we can type 

x
0

1

∫ x Sin[x] x //N or Integrate[x Exp[x] Sin[x], {x, 0, 1}] //N 

0.643678

Here, the antiderivative of the function x e xx sin was computed and then evaluated from 0 to 1. If a strictly numerical 
procedure is preferred, we can use Nintegrate.

NIntegrate[x Exp[x] Sin[x], {x, 0, 1}]

0.643678

EXAMPLE 6 Obtain an approximation to sin (sin )x dx
0

1

∫  accurate to (a) 6 significant digits and (b) 20 significant digits.

(a) Sin[Sin[x]]
0

1

∫ x //N

 0.430606

(b) N Sin[Sin[x]]
0

1

∫⎡
⎣⎢

x,20⎤
⎦⎥

 0.43060610312069060491

Mathematica can handle certain improper integrals. An improper integral of type I is an integral with one or 

two infinite limits of integration. We define ( ) lim ( )f x dx f x dx
a t a

t∞

→∞∫ ∫=  and ( ) lim ( )f x dx f x dx
b

t t

b

−∞ → −∞∫ ∫=  

provided the limits exist. Such an integral is said to be convergent. If both f x dx
a

( )
−∞∫  and f x dx

a
( )

∞

∫ con-

verge, we define f x dx f x dx f x dx
a

a
( ) ( ) ( )

−∞

∞

−∞

∞

∫ ∫ ∫= + .

EXAMPLE 7

0

∞∞

∫ -x x

1

EXAMPLE 8

x
0

∞∞

∫   x      ← This integral is divergent.

Integrate õ idiv : Integral of x does not converge on {0, ∞}. 

x
0

∞

∫   x

Mathematica automatically adjusts WorkingPrecision 
and PrecisionGoal to achieve the desired result.


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EXAMPLE 9

1
1+x2−∞

∞

∫   x

π

The value of a type I improper integral may depend upon the values of parameters within the integrand. 
The option Assumptions allows the specification of conditions to be imposed upon these parameters.

• Assumptions ã conditions specifies conditions to be applied to parameters within the integral.

EXAMPLE 10 x dxn

0

∞

∫  converges if n < –1 and diverges otherwise.

Integrate[xn, {x, 1, ∞}, Assumptions ã n < –1]

– 1
1+n

Integrate[xn, {x, 1, ∞}, Assumptions ã n ê –1]

Integrate õ idiv : Integral of xn does not converge on {1, ∞}. 

Integrate[xn, {x, 1, ∞}, Assumptions  n ≥ –1]

An improper integral of type II is an integral whose integrand is discontinuous on the interval of inte-

gration. If f is continuous on [a, b) but not at b, we define f x dx f x dx
t b a

t

a

b
( ) lim ( )=

→ − ∫∫ , and if f is continu-

ous on (a, b] but not at a we define f x dx f x dx
t a t

b

a

b
( ) lim ( )=

→ + ∫∫ . If the limit exists, we say the integral is 

convergent. If f has a discontinuity at c ε (a, b) and both f x dx
a

c
( )∫  and f x dx

c

b
( )∫  are convergent, then 

f x dx f x dx f x dx
a

b

a

c

c

b
( ) ( ) ( )∫ ∫ ∫= + .

EXAMPLE 11

Log[x]
0

1

∫   x

–1

EXAMPLE 12

1
x–2

3

∫   x or Integrate[1/x, {x, –2, 3}]

Integrate õ idiv : Integral of 1x  does not converge on {–2, 3}. 

1
x–2

3

∫    x

Because of the discontinuity at 0, the integral of Example 12 is improper. If we break up the integral 

into the sum of two integrals, 
dx
x

dx
x

+ ∫∫− 0

3

2

0

, each integral, evaluated separately, diverges. However, if we 

consider the limits simultaneously,

lim lim ln | |
t t

t

t

dx
x

dx
x

x
→ −

−

→ −+ +
+⎡

⎣⎢
⎤
⎦⎥

=∫∫0

3

2 0 22

3

0
2 3

3

−

→

+⎡⎣ ⎤⎦

= − + −[ ]

=

+

t

t

t

x

t t

ln

lim ln ln ln ln

ln −−

=

ln

ln

2

3
2

This number is called the Cauchy Principal Value. The option PrincipalValue instructs 
Integrate to compute the Cauchy Principal Value of an integral.

• PrincipalValue ã True specifies that the Cauchy Principal Value of an integral is to be determined.
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EXAMPLE 13

Integrate[1/x, {x, –2, 3}, PrincipalValue ã True]

Log 3
2

⎡
⎣⎢

⎤
⎦⎥
 ← Compare with the result of Example 12.

SOLVED PROBLEMS

 9.8 Compute the area bounded by the curves f(x) = 1 – x2 and g(x) = x4 – 3x2.

SOLUTION

f[x_] = 1 – x2;

g[x_] = x4 – 3x2;

Plot[{f[x], g[x]}, {x, –2, 2}]

 –2  –1 1 2

–3

–2

–1

1

2

3

4

First we must find the points of intersection of the two curves.

intersectionpoints = Solve[f[x]  g[x]]

x – –1+ 2 , x –1+ 2 , x – 1+ 2 ,→{ } →{ } →{ } x 1+ 2→{ }{ }
{a, b, c, d} = x /. intersectionpoints  

– –1+ 2, –1+ 2, – 1+ 2, 1+ 2{ }
The points of intersection correspond to the real solutions of this equation c and d.

(f[x]–g[x])
c

d

∫   x //Simplify

8
15

1+ 2 4+ 2( )
% //N

4.48665

 9.9 The volume of the solid of revolution obtained by rotating about the x-axis the area bounded by the 

curve y = f(x), the x-axis, and the lines x = a and x = b is π [ ( )]f x dx
a

b
2∫ . Compute the volume of the 

sphere obtained if the semicircle y r x= −2 2 , –r ≤ x ≤ r, is rotated about the x-axis.

SOLUTION

y = r – x

y

2 2

2

–r

r

o

34 r
3

∫
π

 

 

  x

y

–r
x

r

r2 – x2y =
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9.10 Compute the volume of a frustum of a cone with height h and radii r and R, and use this to derive 
the formula for the volume of a cone of radius R and height h. 

SOLUTION

Position the frustum as shown in the diagram. The frus-
tum is generated by rotating about the x-axis the region 
bounded by the line segment connecting (0, r) and (h, R),
the x-axis, and the vertical lines x = r and x = R. The equa- 

tion of the line segment is y R r
h

x r= − + . The volume is

π y dx
h

2

0∫ .

y = R – r
h

x + r

y x2

0

h

o  ∫
1
3
h (r + r R + R2π 22

2

)

1
3
h R

% /. r 0→→ ← Let = for a cone.r 0

π

9.11 The arc length of a curve represented by f(x), a ≤ x ≤ b, is given by L f x dx
a

b
= +∫ 1 2[ '( )] . Compute 

the length of arc of one “arch” of a sine curve.

SOLUTION

One arch of the curve is generated for 0 ≤ x ≤ π. 

f[x_] = Sin[x];

Integrate[Sqrt[1 + f'[x]^2], {x, 0, Pi}] or 1 + f'[x]2

0

ππ

∫   x

2 2 EllipticE 1
2

⎡
⎣⎢

⎤
⎦⎥

% //N

3.8202

9.12 The Mean Value Theorem for integrals says that if f is continuous on a closed bounded interval 

[a, b], there exists a number, c, between a and b, such that f x dx f c b a
a

b
( ) ( )( )∫ = − . Find the value 

of c that satisfies the mean value theorem for f(x) = ln x on the interval [1, 2].

SOLUTION

f[x_]= Log[x];

a =1;b = 2;

Solve f[x] x
a

b

∫ f[c](b – a), c //Simplify⎡
⎣⎢

⎤
⎦⎥

→{ }{ }c 4

%//N

{{c → 1.47152}}

Mathematica returns the value of the integral as a complete elliptic 
integral of the second kind, represented by EllipticE[x]. We 
easily obtain a numerical approximation to the arc length.







R

h

r

0
x


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To get a visualization of the Mean Value Theorem for integrals, consider the following plot. Observe that 
the area below the curve, above the x-axis, is equal to the area enclosed by the rectangle determined by c.

g1 = Plot[{f[x],f[c]}, {x, a, b},
            Ticks ã {{1, 1.2, 1.4, 1.6, 1.8, 2.0,{c, "c"}}, Automatic}]

g2 = Graphics[Line[{{2, 0},{2, f[2]}}]];

g3 = Graphics[{Dashed, Line[{{c, 0}, {c, f[c]}}]}];

Show[g1, g2, g3]

1.2 1.4 1.6 1.8 2.0c

0.1

0.2

0.3

0.4

0.5

0.6

0.7

The area below the curve, above the x-axis, is equal to the area enclosed 
by the rectangle.

9.13 The work done in moving an object from a to b by a variable force, f(x), is f x dx
a

b
( )∫ . According 

to Hooke’s law, the force required to hold a spring stretched beyond its natural length is directly 
proportional to the displaced distance. If the natural length of a spring is 10 cm, and the force that 
is required to hold the spring 5 cm beyond this length is 40 Newtons, how much work is done in 
stretching the spring from 10 to 15 cm?

SOLUTION

Hooke’s law states that f(x) = kx where x represents the distance beyond the spring’s natural length. 
Since a force of 40 Newtons is required to hold the spring 5 cm (0.05 m) beyond its natural length, 
40 = 0.05k.

k = 40/0.05;

f[x_] = k x;

work = f[x] x
0

.05

∫
1.            ← The work done is 1 Joule.

9.3 Functions Defined by Integrals
If f is continuous on [a, b], we can define a new function:

F x f t dt
a

x
( ) ( )= ∫

Intuitively, if f(t) ≥ 0, F(x) represents the area bounded by f(t) and the t-axis from a to x, if x ≥ a, and the 
negative of this area if x < a. The (second) Fundamental Theorem of Calculus tells us that F is differen-
tiable on (a, b) and F' (x) =  f(x) for all x ε (a, b). 


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EXAMPLE 14 Let f(x) = 1/x, x > 0. The shaded area in the diagram represents F(x), assuming x ≥ 1.

Students of calculus will recognize that F x dtt
x

( ) = ∫ 1
1

 defines F (x) to be the natural logarithm function. 
Mathematica knows this also.

f[x_] = 1/x;

F[x_] = Integrate[f[t],{t, 1, x}, Assumptions ã x > 0];
F[2] 

Log[2]

F[1/2]

– Log[2]

EXAMPLE 15 The continuous function f(x) = xx has an antiderivative, but it cannot be put into “closed form” in 
terms of elementary functions. However, Mathematica can deal with it as a function defined by an integral. Since all 
antiderivatives of f(x) differ by a constant, we define F(x) to be the antiderivative for which F(0) = 0. Let us plot this 
antiderivative for 0 ≤ x ≤ 4.

f[x_]= x^x;

F[x_]= f[t] t
0

x

∫ ;      ← By making the lower limit 0, we force F(0) = 0.

Plot[F[x], {x, 0, 4}]

1

1 2 3 x 4 5

2

3

4

t

f (t) = 1/t

F (x)





1 2 3 4

10

20

30

40

50

60

SOLVED PROBLEMS

9.14 Let F x e dtt
x

( ) sin= ∫1
. Find F x'( ) . 

SOLUTION

F[x_]= Exp[Sin[t]] t;

F'[x]
1

x

∫

Sin[x]

This is in accordance with the Second Fundamental 
Theorem of Calculus.
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9.15 Sketch, on one set of axes, the graphs of the three antiderivatives of f(x) = e sin x, 0 ≤ x ≤ 2 π, for which 
F(0) =  0, F(1) =  0, and F(2) =  0.

SOLUTION

Because of the complicated nature of f(x), it is faster to use NIntegrate.

f[x_]=  Exp[Sin[x]];

F1[x_]  NIntegrate[f[t], {t, 0, x}]

F2[x_]  NIntegrate[f[t], {t, 1, x}]

F3[x_]  NIntegrate[f[t], {t, 2, x}]

Plot[{F1[x], F2[x], F3[x]}, {x, 0, 2 o}]

9.16 Consider the semicircle x2 + y2 = 16, y ≥ 0 shown in the figure. Find the height, h, so that the shaded 
area is half the area of the semicircle.

SOLUTION

We solve for x as a function of y:

Solve[x2 + y2  16, x]

x – 16– y x 16– y2 2→{ } →{ }{ },

By subdividing the y-axis and taking advantage of symmetry, we obtain the following representation for 
A(h), the shaded area: 

A h x y dy
h

( ) ( )= ∫2
0

 where x y y( ) = −16 2

x[y_]= 16 – y ;

A[h_]= 2 x[y] y;

2

0

h

∫
Compute the total area inside the semicircle. (Since we know a formula for the area of a circle, this is a 
good check for errors.)

A[4]

8 π

To approximate the solution, draw a graph of A(h):

Plot[A[h], {h, 0, 4}]

1 2 3 4 5 6

–4

–2

2

4

6

8

y

x

4

4–4

h


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2 4 6 8
h

5

10

15

20

25

30

35

A (h)

It appears that half the semicircular area, 4 π ≈12.5, corresponds to a value of h near 1.5. We finish the 
job with FindRoot.

FindRoot[A[h]  4 π, {h, 1.5}]

{h → 1.61589}

9.17 The curve shown is the parabola y = 9 – x2. Find h so that the shaded area is two-thirds the total area 
bounded by the curve and the x-axis.

SOLUTION

Solve[y  9 – x2, x]

x 9 – y , x 9 – y→ −{ } →{ }{ }
x[y_]= 9 – y;

A[h_]= 2 x[y] y;

totalarea
0

h

∫
= A[9]

Plot[A[h], h,0, 9 ,AxesLabel{ }

36

→→ "h" "A(h)"{ }],

Two-thirds of the total area of 36 
is 24 and appears to correspond 
to a value of h near 5.

h

–3 –2 –1 1 2 3
x

y

8

6

4

2

FindRoot[A[h]  (2/3) totalarea, {h, 5}]

{h → 4.67325}



1 2 3 4

5

10

15

20

25
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9.18 Find a point on the parabola y = x2 which is five units away from the origin along the curve.

SOLUTION

The length of arc of a function, f(x), from x = a to x = b  is 

L f x dx
a

b
= +∫ 1 2[ '( )] . Obviously there are two points. We shall 

find the point that lies in the first quadrant.

f[x_]= x ;

s[x_]= 1 +f'[t]

2

2

0

x

∫
Plot[s[x], {x, 0, 3}, AxesLabel ã {"x", "s(x)"}]

5

solution = FindRoot[s[x] 5, {x, 2}]

{x → 2.08401}

x = x  /. solution;

{x, f[x]}

{2.08401, 4.34308}

9.19 A mixing bowl is a hemisphere of radius 5 in. Determine the height of 100 cubic inches of liquid.

SOLUTION

The equation of the hemisphere in three dimensions is 
x y z2 2 2 25+ + = , z ≤ 0. Its intersection with the plane z = z0 
is the circle x y z2 2

0
225+ = – , whose radius r z= 25 0

2– and 

whose area π πr z2
0
225= ( )– . Integrating with respect to z, the 

volume of the shaded region is V h z dz
h

( ) ( )=
−

− +

∫π 25 2

5

5
– . (z0 has 

been replaced by z for convenience.)

v[h_]= (25–z ) z2

-5

-5+h

o

5h – h
3

2
3

∫
( )π

As a check, v[5] should give the volume of the hemisphere. The volume of the hemisphere is 
2
3

2
3 5 250

3
3 3π π πr = =( ) .

v[5]

250
3

π

Plot v as a function of h.

Plot[v[h], {h, 0, 5}, AxesLabel ã {"h", "v[h]"}]

0.5 1.0 1.5 2.0 2.5 3.0
x

2

4

6

8

s (x)

The graph shows s(2) ≈ 5. 

h

z

y

x –5

t;


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Since v[h] is a polynomial function, we can use NSolve to determine the approximate solution to the 
problem. (From the graph, it looks like h is near 3.)

NSolve[v[h]  100]

{{h → –2.34629}, {h → 2.79744}, {h → 14.5489}}

Obviously, the only realistic solution is h = 2.79744 in.

9.20 An underground fuel tank is in the shape of an elliptical cylinder. The tank has length l = 20 ft, 
semi-major axis a = 10 ft and semi-minor axis b = 5 ft. 
To measure the amount of fuel in the tank, we insert a 
stick vertically through the center of the cylinder until it 
touches the bottom of the tank and measure how high the 
fuel level is on the stick. How far from the end of the stick 
should a mark be placed to indicate that only 500 cubic 
feet of fuel remain?

SOLUTION

The equation of the ellipse is x
a

y
b

2

2

2

2 1+ = . We first want to define x as a function of y.

Solve x
a

+
y
b

1,x
2

2

2

2
⎡
⎣⎢

⎤
⎦⎥

x – a –
a y
b

, x a –
a y
b

2
2 2

2
2

2 2

2→
⎧
⎨
⎩

⎫
⎬
⎭

→
⎧
⎨
⎩

⎫
⎬
⎭

⎧⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Next we obtain an integral representing the cross-sectional area of the tank. We take the positive solution 
and double the area, taking advantage of symmetry. 

a =10; b = 5;

x[y_]= a –
a y
b

;

area[h_]

2
2 2

2

== 2 x[y] y;
–b

–b+h

∫
As a check, we can compute area[0], area[b], and area[2b]. The area enclosed by the ellipse 
x
a

y
b

2

2

2

2 1+ =   is  πab .

area[0]
0

area[b]
25 π
area[2b]
50 π

1 2 3 4 5
h

50

100

150

200

250

v [h]

–a

–b

b

a

h

Cross-section of fuel tank.




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Since the tank has a uniform cross-section, its volume = length × cross-sectional area. 

length = 20;

volume[h_] = length * area[h];

To approximate the location on the stick that corresponds to 500 cubic feet, we draw the graph of 
volume[h]. Then we use FindRoot to obtain a more accurate value. (We cannot use NSolve, as in 
the previous problem, because volume[h] is a non-algebraic function.)

Plot[volume[h], {h, 0, 2b}, AxesLabel ã {"h", "volume"}]

2 4 6 8 10
h

500

1000

1500

2000

2500

3000

volume

From the graph we observe that volume = 500 when h is near 2.

FindRoot[volume[h]  500, {h, 2}]

{h → 2.1623}

9.21 An underground fuel tank is in the shape of an ellipsoid with semi-axes 6, 10, and 6 ft. (This 
problem, although more difficult than the previous problem, is somewhat more realistic.) To 
measure the amount of fuel in the tank, we insert a stick vertically through the center of the 
ellipsoid until it touches the bottom of the tank and measure how high the fuel level is on the stick. 
How far from the end of the stick should a mark be placed to indicate that only 500 cubic feet of 
fuel remain?

10

6

6

y

z

h

x

SOLUTION

The equation of this ellipsoid is x
a

y
b

z
c

2

2

2

2

2

2 1+ + =  with a = 6, b = 10, and c = 6. The intersection of the 

ellipsoid with the plane z = z0 is the ellipse x
a

y
b

z
c

2

2

2

2
0
2

21+ = −  whose area can be computed as a function 

of z0. We then integrate with respect to z to obtain the volume.
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 To determine the area of the ellipse, we take advantage of the fact that the area enclosed by an ellipse is

π times the product of its semi-major and semi-minor axes. If we re-write x
a

y
b

z
c

2

2

2

2
0
2

21+ = −  in the equivalent

form x

a
z
c

y

b
z
c

2

2 0
2

2

2

2 0
2

21 1
1

−⎛
⎝⎜

⎞
⎠⎟

+
−⎛

⎝⎜
⎞
⎠⎟

= , we see that the semi-axes are a
z
c

1 0
2

2−  and b
z
c

1 0
2

2− . The elliptical

area is then πab
z
c

1 0
2

2−⎛
⎝⎜

⎞
⎠⎟

. For our values of a, b, and c, this becomes 60 1
6

5
3 360

2

2 0
2π π−⎛

⎝⎜
⎞
⎠⎟

= −( )z
z . The

integral representing the volume of liquid as a function of h is then V z dz
h

= −( )
−

− +

∫5
3 36 2

6

6π .

v[h_]= 5
3

36–z z;2

–6

–6+ho ( )∫
Plot [v[h], {h, 0, 12}, AxesLabel ã {"h", "volume"}]

2 4 6 8 10 12
h

200

400

600

800

1000

1200

1400

volume

4

3

2

1

1 2

f (x)

f (x4
*)

f (x3
*)

f (x2
*)

f (x1
*)

x1
* x2

* x3
* x4

*
x

NSolve[v[h]  500]

{{h → –3.63858}, {h → 4.62871}, {h → 17.0099}}

The mark should be placed approximately 4.62871 ft from the end of the stick. The  other solutions are 
extraneous.

9.4  Riemann Sums
A partition, P, of the interval I = [a, b] is a collection of subintervals, 

[x0, x1], [x1, x2] , . . . , [xn–1, xn]

where x0 = a and xn = b. If we let xi
* be any point in the ith subinterval and Δxi = xi – xi–1 be the length

of the ith subinterval, then the Riemann sum of f over I with respect to P is f x xi i
i

n
*( )

=
∑ Δ

1

.

If f(x) ≥ 0 for a ≤ x ≤ b, the Riemann sum represents an approximation of the area under the graph of 
f(x), above the x-axis, from x = a to x = b. The diagram shows the Riemann sum of the function f(x) = x2 
over the interval [1, 2] as the area enclosed by four approximating rectangles of equal width.


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The Riemann sum, represented by the gray area enclosed by the rectangles, offers only an approxima-
tion to the area under the curve. However, as the width of each rectangle shrinks, the approximation gets 
better and the exact area under the curve is approached as a limit.

The definite integral of f(x) over [a, b] is defined in many calculus texts by

f x dx f x x
a

b

i i
i

n

( ) lim ( )
|| ||

*∫ ∑=
→ =P 0

1

Δ  where || ||P xi=
≤ ≤

max
1 i n

Δ

The condition || P || → 0 guarantees that the lengths of all subintervals shrink toward 0 as we take 
more and more subintervals. If all subintervals are of equal length, this condition is equivalent to 
n → ∞. For convenience we shall only consider subintervals of equal length. However, in theory, 
this need not be the case.

EXAMPLE 16 We will consider the function f (x) = sin x on the interval [0, π /2]. Because sin
/

x dx
0

2π

∫  = 1, this is a 
good example for comparative purposes.

(a) We use 100 subintervals and choose xi
* to be the left endpoint of each subinterval.

f[x_] = Sin[x];

a = 0; b = π/2; n = 100;

Δx = (b – a)/n; ← Since each Δx has the same value, subscripts are not necessary.

xstar[i_] = a + (i – 1)Δx;

f[xstar[i]] x//N
i=1

n

Δ∑
0.992125

(b)  We choose the value of xi
* to be the right endpoint of each subinterval. (This time we expect an over-

approximation.)

f[x_] = Sin[x];

a = 0; b = π/2; n = 100;

Δx = (b – a)/n;

xstar[i_]= a + i Δx;

f[xstar[i]] x//N
i=1

n

Δ∑
1.00783

To improve the accuracy of the approximation offered in Example 16, we can choose the value of xi
* to 

be the midpoint of each subinterval. This leads to an approximation method called the midpoint rule.

EXAMPLE 17

f[x_] = Sin[x];

a = 0;  b = o/2; n = 100;

Δx = (b – a)/n;.

xstar[i_] = a +(i – .5)Δx;

f[xstar[i]] x //N
i=1

n

ΔΔ∑
1.00001

As expected, the accuracy of the approximation improves. 

Another simple approximation method, called the trapezoidal rule, improves accuracy by connecting 
the points on the curve corresponding to the points of subdivision with line segments, forming trapezoidal 
approximations of the area in place of rectangular approximations. 
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The area enclosed by a trapezoid with base Δx and sides A and B is Δx A B2 ( )+  . 
Thus, the area enclosed by the trapezoid constructed in the ith interval, 

[xi–1, xi], is 
Δx

f x f xi
i i2 1( ) ( )− +⎡⎣ ⎤⎦ .

The total trapezoidal area, obtained by adding the individual areas, is

Δ Δ Δx
f x f x

x
f x f x

x
f1

0 1
2

1 2
3

2 2 2[ ( ) ( )] [ ( ) ( )] [ (+ + + + xx f x
x

f x f xn
n n2 3 12) ( )] [ ( ) ( )]+ + + +−

. . . Δ

If all intervals have the same length, Δ x, this reduces to

Δx
f x f x f x f x f x f x2 0 1 1 2 2 3[ ( ) ( )] [ ( ) ( )] [ ( ) ( )+ + + + + ]] [ ( ) ( )]+ + +⎡⎣ ⎤⎦−

. . . f x f xn n1

or
Δx

f x f x f x f x f xn2 2 2 2 20 1 2 3( ) ( ) ( ) ( ) (+ + + + +. . .
−− +⎡⎣ ⎤⎦1) ( )f xn

EXAMPLE 18 Approximate sin
/

x dx
0

2π

∫  using the trapezoidal rule.

f[x_] = Sin[x];

a = 0; b = o/2; n = 100;

Δx = (b – a)/n;

x[i_] = a + i * Δx;

approximation = x
2

f[a]+ 2 f[x[i]]+
i=1

n-1Δ ∑ ff[b] //N
⎛
⎝⎜

⎞
⎠⎟

0.999979

SOLVED PROBLEMS

9.22 Compute the Riemann sums of f x x e xx( ) =  over the interval [0, 2] using
 (a) the left endpoint of each subinterval.
 (b) the right endpoint of each subinterval.
 (c) the midpoint of each subinterval.
 Compare with Mathematica’s approximation to the integral f x dx( )

0

2

∫ .

SOLUTION

f[x_] = x x;x

a = 0; b = 2;

f[x] x //N
a

b

∫
10.2406       ← Mathematica’s approximation.

f (xi–1)

xi–1 Δxi xi

f (xi)

Trapezoidal approximation to sin
/

x dx
0

2π

∫ using four trapezoids.

f (x)
1

0.8

0.6

0.4

0.2

0.25 0.5 0.75 1 1.25 1.5
x




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n = 100;

Δx =(b – a) / n;

xstar[i_] = a + (i – 1) Δx;

f[xstar[i]] x //N
i=1

n

Δ∑
10.0328                 ← Left endpoint approximation.

xstar[i_] = a + i Δx;

f[xstar[i]] x //N
i=1

n

Δ∑
10.4508                 ← Right endpoint approximation.

xstar[i_] = a + (i – .5) Δx;

f[xstar[i]] x //N
i=1

n

Δ∑
10.24                   ← Midpoint approximation.

9.23 Approximate x x dxln
1

2

∫  using the trapezoidal rule with n = 100 and compare the result with 
Mathematica’s approximation.

SOLUTION

f[x_]= x Log[x];

a = 1; b = 2;

n = 100;

Δx = (b – a) / n;

x[i_] = a + i Δx;

approximation = x
2

f[a]+ 2 f[x[i]]+
i=1

n-1Δ ∑ ff[b] //N
⎛
⎝⎜

⎞
⎠⎟

0.6363

f[x] x //N
a

b

∫
0.636294 

9.24 Compute the lower and upper Riemann sums for the function f(x) = x2 on the interval [0, 1] for 
n = 2, 4, 8, 16, . . . , 220 subintervals. Explain the behavior of the approximations in terms of the 
integral x dx2

0

1

∫ .

SOLUTION 

f[x_]= x2;

a = 0; b = 1;

n = 2m;

Δx =(b – a) / n;

nn = PaddedForm[n, 10];

temp1 = PaddedForm N f[a +(i – 1) x] x
i=1

n

Δ Δ∑∑⎡
⎣
⎢

⎤
⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥, 8,6 ;{ }

temp2= PaddedForm N f[a + i x] x
i=1

n

Δ Δ
⎡
⎣
⎢

⎤
⎦

∑ ⎥⎥
⎡

⎣
⎢

⎤

⎦
⎥, 8,6 ;{ }

list = Table[{nn, temp1, temp2}, {m, 1, 20}];

TableForm[list, TableSpacing ã {1, 5},

          TableHeadings ã {None, {"          n", "    Lower", "    Upper"}}]

The error of 0.000006 is less than 0.001%.

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 n Lower Upper

 2 0.125000 0.625000

 4 0.218750 0.468750

 8 0.273438 0.398438

 16 0.302734 0.365234

 32 0.317871 0.349121

 64 0.325562 0.341187

 128 0.329437 0.337250

 256 0.331383 0.335289

 512 0.332357 0.334311

 1024 0.332845 0.333822

 2048 0.333089 0.333578

 4096 0.333211 0.333455

 8192 0.333272 0.333394

 16384 0.333303 0.333364

 32768 0.333318 0.333349

 65536 0.333326 0.333341

 131072 0.333330 0.333337

 262144 0.333331 0.333335

 524288 0.333332 0.333334

 1048576 0.333333 0.333334

As n gets larger, the lower sums increase, approaching a limit of 1
3

, and the upper sums decrease, also 

approaching 1
3

. 

x2

0

1

∫ x

1
3

9.25 Compute an approximation of e dxx2

0

1

∫ using the trapezoidal rule with 10, 50, and 100 subintervals. 
Compare with Mathematica’s approximation.

SOLUTION

f[x_] = Exp[x2];

a = 0; b = 1;

f[x] x //N
a

b

∫
1.46265      ← This is Mathematica’s approximation. 

Δx = (b – a)/n;

x[i_] = a + i * Δx;
n = 10

approximation = x
2

f[a]+ 2 f[x[i]]+
i=1

n–1Δ ∑ ff[b] //N
⎛
⎝⎜

⎞
⎠⎟

1.46717 ← Error = 0.00452.

n = 50

approximation = x
2

f[a]+ 2 f[x[i]]+
i=1

n–1Δ ∑ ff[b] //N
⎛
⎝⎜

⎞
⎠⎟

1.46283 ← Error = 0.00018.

n = 100

approximation = x
2

f[a]+ 2 f[x[i]]+
i=1

n–1Δ ∑ ff[b] //N
⎛
⎝⎜

⎞
⎠⎟

1.4627 ← Error = 0.00005.


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Multivariate Calculus

10.1 Partial Derivatives
The commands D, ì, and Derivative discussed in Chapter 8 are actually commands for computing 
partial derivatives. Of course, if there is only one variable present in a function, the partial derivative 
becomes an ordinary derivative. If two or more variables are present, however, all variables other than the 
one specified are treated as constants.

In the following descriptions, f  stands for a function of several variables.

 D[f,  x]  or ìxf  (on the Basic Math Input palette) returns ∂f/∂x, the partial derivative of f with 
respect to x.

 D[f,(x, n}] or ì{x, n}f returns ∂nf/∂xn, the nth order partial derivative of f with respect to x.

 D[f, x1, x2,..., xk] or ∂∂x , x ,..., x1 2 k
f  returns the “mixed” partial derivative 

∂
∂ ∂ ∂

k

1 2 k

f
x x ... x

 D[f,{x1, n1}, {x2, n2},..., {xk, nk}] or ì{x , n }, {x , n },..., {x , n }1 1 2 2 k k
f  returns the partial 

derivative 
∂

∂ ∂ ∂

n
1 2 k

x
n

x
n

x

n

f[x , x ,..., x ]

...
1
1

2
2

k

k
 where n1+  n2 +...+  nk =  n .

For convenience, an invisible comma may be used to separate variables in the partial derivative symbol. 
An invisible comma is entered by the three-key sequence [ESC] [.] [ESC]. An invisible comma works 
like an ordinary comma, but is hidden from the display.

EXAMPLE 1

D[x2 y3 z4, x]

2 x y3 z4

ìy(x
2  y3  z4) ← The parentheses are important here. Why?

3 x2 y2 z4

D[x2 y3 z4, {z, 2}]

12 x2 y3 z2

ìx, y(x
2 y3 z4)

6 x y2 z4

EXAMPLE 2

Compute ∂
∂ ∂

7

3 4
5 7

x y
x y .

f[x_, y_] = x5  y7;

D[f[x, y], {x, 3}, {y, 4}]

50 400 x2 y3

CHAPTER 10
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ì(x, 3}, {y, 4}f[x, y]

50 400 x2 y3

The Derivative command can also be used to construct partial derivatives. Suppose f is a function 
of k variables, x1, x2, . . . , xk.

 Derivative[n1, n2,..., nk][f] gives the partial derivative 
∂

∂ ∂ ∂

n

x
n

x
n

x
n

f

...
1

1

2

2

k

k
 where 

 n1 + n2 + ... + nk = n. It returns a pure function (see the appendix) that may then be evaluated at
    [x1, x2,..., xk].

EXAMPLE 3 (Continuation of Example 2)

f[x_, y_] = x5  Y7;

g = Derivative[3, 4][f]

50 400 #12 #23 &

g[x, y]

50 400 x2 y3

Although the command D  can be used to evaluate partial derivatives at a given point, Derivative is 
perhaps a bit more convenient.

EXAMPLE 4 Let f(x, y) = x3 sin y. Evaluate fxy at the point (2, π).

f[x_, y_] = x3 Sin[y];

D[f[x, y], x, y] /. {x ã 2, y ã o}

–12

Derivative[1, 1][f][2, o]

–12

SOLVED PROBLEMS

 10.1 Compute the first- and second-order partial derivatives of f(x, y) = xexy.

SOLUTION

f[x_, y_] = x  Exp[x y];

D[f[x, y], x]

x y + x y x y

D[f[x, y], y]

x y x2

D[f[x, y], {x, 2}]

2 x y y + x y x y2

D[f[x, y], {y, 2}]

x y x3

D[f[x, y], x, y]

2 x y x + x y x2 y

 10.2 The partial derivatives of f(x, y) are defined by the following limits:

f x y
f x h y f x y

h

f x y

x h

y

( , ) lim
( , ) ( , )

( , ) l

= + −

=

→0

iim
( , ) ( , )

h

f x y h f x y
h→

+ −
0
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 Compute the derivatives of f x y x y( , ) ln( )= +2 3  using the definition and verify using the 
Mathematica D command.

SOLUTION

f[x_, y_] = Log[x2 + y3];

Limit
f[x + h, y]– f[x, y]

h
, h 0ã⎡

⎣⎢
⎤
⎦⎥

2x
x +y2 3

D[f[x, y], x]

2x
x +y2 3

Limit
f[x, y + h]– f[x, y]

h
, h 0ã⎡

⎣⎢
⎤
⎦⎥

3y
x +y

2

2 3

D[f[x, y], y]

3y
x +y

2

2 3

 10.3 Let z  = ex y. Compute 
∂

∂ ∂
3

2

z
x y

.

SOLUTION

z = Exp[x y];

D[z, {x, 2}, y] or ì{x, 2}, y z

2x y y + x y x y2

 10.4 Verify that u e kxa k t= − 2 2 sin  is a solution of the heat equation: ∂
∂ = ∂

∂
u
t

a
u

x
2

2

2
.

SOLUTION

u[x_, t_] = Exp[–a2 k2 t] Sin[k x];

lhs = D[u[x, t], t]

–a2–a2 k
2

 t k2 Sin [k x] 

rhs = a2 D[u[x, t], {x, 2}]

–a2–a2 k
2

 t k2 Sin [k x]

lhs  rhs

True

 10.5 A function of three variables, f(x, y, z), is said to be harmonic if it satisfies Laplace’s equation: 
∂
∂ + ∂

∂ + ∂
∂ =

2

2

2

2

2

2 0
f

x
f

y
f

z
.  Let f x y z

x y z
( , , ) .=

+ +
1

2 2 2
 Compute fxx, fyy, and fzz and show that f is 

harmonic.

SOLUTION

f[x_,y_,z_]= 1
x + y +z

;

f[x,y,z] //To

2 2 2

ì{x,2} ggether
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2x –y –z
(x + y +z )

2 2 2

2 2 2 5/2

ì{y,2}f[x,y,z] //Toogether

{z,2

–x +2y –z
(x + y +z )

2 2 2

2 2 2 5/2

ì }}f[x,y,z] //Together

–x – y +2z
(x + y

2 2 2

2 2 2 5/2+ z )

0

%%% + %% + %//Together

 10.6 The plane tangent to the surface defined by z = f(x, y) at the point (x0, y0, z0) is

z z f x y x x f x y y yx y= + − + −0 0 0 0 0 0 0( , )( ) ( , )( )

 Determine the equation of the plane tangent to the paraboloid z = 10 − x2 − 2y2 at the point where 
x = 1 and y = 2. Sketch the paraboloid and its tangent plane.

SOLUTION

f[x_, y_] = 10 – x2 – 2 y2;

z = f[1, 2] + Derivative[1, 0][f][1, 2](x – 1)
 + Derivative[0, 1][f][1, 2](y – 2)//Expand

19 – 2x – 8y
 The tangent plane has equation z = 19 – 2 x – 8 y.

g1 = Plot3D[f[x, y], {x, – 5, 5}, {y, – 5, 5}];

g2 = Plot3D[z, {x, – 5, 5}, {y, – 5, 5}]

Show[g1, g2, PlotRange ã All, ViewPoint ã {2.330, – 2.223, 1.040}]

–5

0

5 –5

0

5

–50

0

50

 10.7 The plane tangent to the surface f(x, y, z) = 0 at the point (x0, y0, z0) is 

f x y z x x f x y z y y fx y( , , )( ) ( , , )( )0 0 0 0 0 0 0 0− + − + zz x y z z z( , , )( )0 0 0 0 0− =

 Sketch the sphere x y z2 2 2 14+ + =  and its tangent plane at the point (1, 2, 3).
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SOLUTION

The sphere is centered at the origin and has a radius of 14 . Its equation is rewritten as x y z2 2 2 14 0+ + − = . 
We can use the graphics primitive Sphere to construct its graph. (See Chapter 5.)

f[x_, y_, z_] = x2 + y2 + z2 – 14;

g1 = Graphics3D Sphere 0,0,0 , 14 ;{ }⎡⎣ ⎤⎦⎡⎣ ⎤⎦
a = Derivative[1, 0, 0][f][1, 2, 3];

b = Derivative[0, 1, 0][f][1, 2, 3];

c = Derivative[0, 0, 1][f][1, 2, 3];

Solve[a (x – 1) + b (y – 2) + c (z – 3)  0, z]

z 1
3
(14– x –2 y)→{ }{ }

g2= Plot3D 1
3
(14 – x – 2 y),{x,–5,5},{y,,–5,5} ;⎡

⎣⎢
⎤
⎦⎥

Show[g1, g2]

10.2 Maximum and Minimum Values
A function, f , has a relative (or local) maximum at (x0, y0) if there exists an open disk centered at (x0, y0) 
such that f(x, y) ≤ f (x0, y0) for all (x, y) in the disk. A similar definition (with the inequality reversed) holds 
for a relative minimum. If f has either a relative maximum or relative minimum at (x0, y0), we say that f 
has a relative extremum at (x0, y0). 

If f is differentiable, a necessary condition for f(x, y) to have a relative extremum at the point (x0, y0) is  
fx(x0, y0) = fy(x0, y0) = 0. The point (x0, y0) is called a critical point of f.

EXAMPLE 5 To find the critical point(s) for the function f(x, y) = x4 + y4 − 4xy, we compute the first-order partial 
derivatives, set them both equal to 0, and solve the resulting equations.
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f[x_, y_] = x4 + y4 – 4 x y

pdx = D[f[x, y], x]

4 x3 – 4 y

pdy = D[f[x, y], y]

–4 x + 4 y3

Solve[{pdx  0, pdy  0}, {x, y}]

{{x → –1, y → –1},{x → 0, y → 0},{x → –, y → }, {x → , y → –},
 {x → 1, y → 1},{x → –(–1)1/4, y → –(–1)3/4}, {x → (–1)1/4, y → (–1)3/4}, 
    {x → –(–1)3/4, y → –(–1)1/4}, {x → (–1)3/4, y → (–1)1/4}}

The only real critical points are (−1, −1), (0, 0), and (1, 1).

Not all critical points turn out to be relative extrema. To determine whether a function has a relative 
extremum at a critical point, and if so, whether it is a maximum or minimum, we use the Second Partial 
Derivatives Test:

Let D x y f x y f x y f x yxx yy xy( , ) ( , ) ( , ) [ ( , )]= − 2  and let (x0, y0) be a critical point of f.

1. If D(x0, y0) > 0 and fxx(x0, y0) > 0, then f has a relative minimum at (x0, y0).
2. If D(x0, y0) > 0 and fxx(x0, y0) < 0, then f has a relative maximum at (x0, y0).
3. If D(x0, y0) < 0, then f has neither a relative maximum nor a relative minimum at (x0, y0). We say that 

f has a saddle point at (x0, y0).

If D(x0, y0) = 0, the test is inconclusive.

EXAMPLE 6 Continuing with the previous example, we define D(x, y). (We use d to avoid conflict with D, 
Mathematica’s derivative operator.)

d[x_,y_]= f[x,y] f[x,y]–({x,2} {y,2} xì ì ì ,,y
2f[x,y]);

d[0, 0]

–16 ← Negative number; saddle point at (0, 0).

d[1, 1]

128

ì{x, 2}f[x, y] /.{x ã 1, y ã 1}

12 ← Relative minimum at (1, 1).

d[–1, –1]

128

ì{x, 2}f[x, y] /.{x ã –1, y ã –1}

12 ← Relative minimum at (−1, −1).

It is certainly worthwhile plotting this function. Mathematica makes it easy, although some experimentation with 
the options is necessary to show the details clearly.

Plot3D[f[x, y], {x,–2, 2}, {y, –2, 2}, PlotRange ã { –2, 5},

  ViewPoint ã {1.761, –2.816, 0.647}]

–2
–1

0
1

2

–2 –1 0 1 2

–2

0

2

4
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To find the maximum and minimum values of a function f(x, y) subject to the constraint g(x, y) = 0, the method of 
Lagrange multipliers can be used. Geometrically, it can be shown that the maximum (minimum) value of f will occur 
where the level curves of  f and the level curves of g share a common tangent line. At this point the gradient of f 1 and 
the gradient of g will be parallel and ∇ = ∇f x y g x y( , ) ( , )λ . It follows that 

f x y g x y

f x y g x y

x x

y y

( , ) ( , )

( , ) ( , )

=

=

λ

λ

Using these equations, together with g(x, y) = 0, λ can be eliminated and the values of x and y corresponding to the 
maximum and minimum values of f can be determined. The next example illustrates the procedure.

EXAMPLE 7 Suppose we wish to find the maximum and minimum values of f(x, y) = 2x2 + 3y2 subject to the 
constraint x2 + y2 = 4. We define g(x, y) = x2 + y2 − 4 and eliminate λ.

f[x_,y_]= 2 x + 3 y ;

g[x_,y_]= x + y –

2 2

2 2

x x

4;

conditions = Eliminate[ f[x,y] g[{ì kì xx,y], f[x,y] g[x,y],g[x,y]y yì kì 00 , ]} k

x 4 – y && xy 0&& –4y +y 02 2 3

points = Solve[conditions]

{{x ã –2, y ã 0}, {x → 0, y ã –2}, {x → 0, y ã 2}, {x ã 2, y ã 0}}

To determine the maximum and minimum values of f, we compute its values at these points.

functionvalues = f[x, y] /. points

{8, 12, 12, 8}

Max[functionvalues]

12

Min[functionvalues]

8

The method of Lagrange multipliers can be extended to functions of three (or more) variables.

EXAMPLE 8 To find the maximum and minimum values of f(x, y, z) = xyz, subject to the constraint x2 + 2 y2 + 3 z2 = 6, 
we define g(x, y, z) = x2 + 2 y2 + 3 z2 − 6.

f[x_,y_,z_]= x y z;

g[x_,y_,z_]= x + 2 y + 3z –2 2 2

x

6;

conditions = Eliminate[ f[x,y,z]{ì kìì

ì kì ì

x

y y z

g[x,y,z],

f[x,y,z] g[x,y,z], ff[x,y,z] g[x,y,z], g[x,y,z] 0 , ]z }kì k

xx 6–2 y –3z && 4 y z z(6–3z2 2 2 2 2))&& x(2 y –3z ) 0&& x y(–2+3z )2 2 2 0&&

x z(–2+3z ) 0&& y z(–2+3z )2 2 0&& 4z–8z +3z 0&& y +y(–3+3z3 5 3 2)) 0

points = Solve[conditions]

{{x → 0, y → 0, z → – 2},{x → 0, y → 0, z → – 2},

 {x → 0, y → 0, z → 2},{x → 0, y → 0, z → 2},{x → 0, y → – 3 , z → 0},

 







1The gradient of f (x, y) is the vector function ∇f (x, y) = f x(x, y) i + f y(x, y) j.
  The gradient of f (x, y, z) is ∇f (x, y, z) = f x(x, y, z) i + f y(x, y, z) j + f z(x, y, z) k.

Eliminate[equations, k] eliminates λ 
between a set of simultaneous equations. 
See Chapter 6.





   




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{x → 0, y → – 3 , z → 0},{x → 0, y → 3 , z → 0},{x → 0, y → 3 , z → 0},

{x → – 2, y → –1, z → – 2
3 },{x → – 2, y → –1, z → 

2
3 },

{x → – 2, y → 1, z → –
2
3 },{x → – 2, y → 1, z → 

2
3 },

{x → 2, y → –1, z → –
2
3 },{x → 2, y → -1, z → 

2
3 },

{x → 2, y → 1, z → –
2
3 },{x → 2, y → 1, z → 

2
3 },{x → – 6 , y → 0, z → 0},

{x → – 6 , y → 0, z → 0},{x → 6 , y → 0, z → 0},{x → 6 , y → 0, z → 0}}

functionvalues = f[x, y, z] /. points

0,0,0,0,0,0,0,0, 2
3
, 2

3
, 2

3
, 2

3
, 2– –

33
, 2

3
, 2

3
, 2

3
,0,0,0,0– –{ }

Max[functionvalues]

2
3

Min[functionvalues]

– 2
3

SOLVED PROBLEMS

 10.8 Find all relative extrema of the function f(x, y) = x2 − y2. Sketch the surface.

SOLUTION

f[x_, y_] =  x2 – y2;

Solve[{ìxf[x, y]  0, ìyf[x, y]  0}, {x, y}]

{{x → 0, y → 0}}

d[x_,y_]= f[x,y] f[x,y]–({x,2} (y,2}ì ì ììx, y
2f[x,y]);

d[0, 0]
–4 ← Negative number; saddle point at (0, 0).

Plot3D[f[x, y], {x, –5, 5}, {y, –5, 5}, BoxRatios ã {1, 1, 1}]

–5

0

5

–5

0

5

–20

0

20



CHAPTER 10  Multivariate Calculus 253

 10.9 Find all relative extrema of the function f x y xye x y( , ) .= − −2 2  Sketch the surface.

SOLUTION

f[x_, y_] = x y Exp[– x2 – y2]

pdx = ìx f[x, y] //Factor

––x
2

 – y
2
(–1 + 2 x2)y

pdy = ìy f[x, y] //Factor

––x
2

 – y
2 
x(–1 + 2 y2)

 If we try to use Solve to find where the partial derivatives are 0, we will get an error message due 
to the presence of the (non-algebraic) exponential. However, since ––x2 – y2 cannot equal zero, we 
can ignore its presence.
Solve[{–1 + 2 x2) y  0, x (–1 + 2 y2)  0, {x, y}]

x 0, y 0 , x 1
2
, y 1

2
, x 1

2
, y 1

2
,

x

→ →{ } → − → −{ } → − →{ }{
→ 11

2
, y 1

2
, x 1

2
, y 1

2
→ −{ } → → −{ }}

d[x_, y_]= f[x, y] f[x, y]–( f[x,{x,2} (y,2} x,yì ì ì yy]);2

d[0, 0]

–1 ← Negative number; no relative extremum.

d[–1/ 2, –1/ 2]

4

ì ã ã{x,2} f[x, y]/. x –1/ 2, y –1/ 2{ }
− 2

 
← Relative maximum at − −( )1

2
1
2

, .

d[–1/ 2, 1/ 2]

4

ì ã ã{x,2} f[x, y]/. x –1/ 2, y 1/ 2{ }
2
 

← Relative minimum at −( )1
2

1
2

, .

d[1/ 2, –1/ 2]

4

ì ã ã{x,2} f[x, y]/. x 1/ 2, y –1/ 2{ }
2
 

← Relative minimum at 1
2

1
2

, .
−( )

d[1/ 2, 1/ 2]

4

ì ã ã{x,2} f[x, y]/. x 1/ 2, y 1/ 2{ }
− 2

 
← Relative maximum at 1

2
1
2

, .( )



2



2

2

2







CHAPTER 10  Multivariate Calculus254

  We sketch the surface showing two views.

 Plot3D[f[x, y], {x, –3, 3}, {y, –3, 3}, PlotPoints ã 30, 
    ViewPoint ã {1.391, –3.001, 0.713}, PlotRange ã All]

 Plot3D[f[x, y], {x, –3, 3}, {y, –3, 3}, PlotPoints ã 30, 
    ViewPoint ã {0.617, –3.318, 0.245}, PlotRange ã All]

–2
0

2

0 2

–0.1

0.0

0.1

–2

    –2 0 2

–2 0 2

–0.1

0.0

0.1

10.10  Use Lagrange multipliers to find the points on the circle x2 + y2 − 2x − 4y = 0 closest to and farthest 
from P(4, 4).

SOLUTION

circle = ContourPlot[x2 + y2 – 2 x – 4 y  0, {x, –5, 5 }, {y, –1, 5}];  

 point = Graphics[{PointSize[.01], Point[{4, 4}]}];

Show[circle, point, Axes ã True, Frame ã False, AspectRatio ã Automatic]

–4 –2 2 4

–1

1

2

3

4

5

f[x_, y_] = (x – 4)2 + (y – 4)2;  ← We minimize the square of the distance from P.
g[x_, y_] = x2 + y2 – 2 x – 4 y;

conditions= Eliminate[ f[x, y] g[x, y],x x{ì kì

f[x, y] g[x, y], g[x, y] 0 , ]y y }ì kì k

2 x – + – + –4 3 y && 52 y 13 y 322

points = Solve[conditions]

x 1
13 13 3 65 , y 2

13 13 65 , x→ −( ) → −( ){ } →→ +( ) → +( ){ }{ }1
13 13 3 65 , y 2

13 13 65

f[x,y] /.points //N

{5.84162, 1.36948}

Based upon the computed distances, 
the first point is farthest from P and 
the second point is closest.

Based upon the computed distances, 
the first point is farthest from P and 
the second point is closest.





 



CHAPTER 10  Multivariate Calculus 255

10.11 Find the points on the sphere x2 + y2 + z2 = 1 that are closest to and farthest from (1, 2, 3).

SOLUTION

f[x_, y_, z_] = (x – 1)2 + (y – 2)2 + (z – 3)2;

g[x_, y_, z _] = x2 + y2 + z2 – 1;

conditions= Eliminate[ f[x,y,z] g[x x{ì ìλλ xx,y,z],

f[x,y,z] g[x,y,z],y yì kì ìì kìz zf[x,y,z] g[x,y,z], g[x,y,z] 00 , ]} k

3 x  z && 3 y  2 z && 14 z2  9
Points = Solve[conditions, {x, y, z}]

x – 1
14

, y – 2
7
, z – 3

14
,→ → →⎧

⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

x 1
14

, y 2
7
, z 3

14
→ → →⎧

⎨
⎩

⎫
⎬
⎭

⎫
⎬
⎭  

f[x,y,z] /.Points //N

{4.74166, 2.64166}

10.3 The Total Differential
The command D, discussed in Section 10.1, gives the partial derivative of a function of several variables. 
All variables other than the variable of differentiation are considered as constants. If f is a function, say, of 
two variables, x and y, but y is a function of x, D will compute an incorrect derivative.

Dt gives the total differential of a function. 

 Dt[f[x, y]] returns the total differential of f[x, y]. 
 Dt[f[x, y], x] returns the total derivative of f[x, y] with respect to x. 

Of course, f may be a function of more than two variables and the independent variable, listed as x in the 
above description, can be any of the variables defining f.

D[f[x, y], x] returns 
∂
∂
f
x

 but Dt[f[x, y], x] returns 
d
d
f
x

.

EXAMPLE 9
 Calculus equivalent

f[x_, y_] = x2 y3; f x y x y( , ) = 2 3

D[f[x, y], x] 

2 x y3
 

∂
∂ =f
x

xy2 3

D[f[x, y], y]

3 x2 y2
 ∂

∂ =f
y

x y3 2 2

Dt[f[x, y]]

2 x y3 Dt[x] + 3 x2 y2 Dt[y] df xy dx x y dy= +2 33 2 2

Dt[f[x, y], x]

2 x y3 + 3 x2 y2 Dt[y, x] 
df
dx

xy x y
dy
dx

= +2 33 2 2

Dt[f[x, y], y]

3 x2 y2 + 2 x y3 Dt[x, y] 
df
dy

x y xy dx
dy

= +3 22 2 3

← Farthest point.

← Closest point.



 
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EXAMPLE 10 Suppose f (x, y) = x4 y5 where y = x3. The following sequence gives an incorrect result for the 
derivative dz/dx.

z = x4 y5;

D[z, x] /. y ã x3 ← The partial derivative is computed, then y is replaced by x3.

4x18

In reality z = x19, so dz
dx

 should be 19 x18.
Dt[z, x] /. y ã x3 ← The total derivative is computed, then y is replaced by x3.

19 x18

In some expressions, constants represented by letters might cause confusion. The option Constants 
can be used to instruct Mathematica to treat a particular symbol as a constant.

• Constants ã { objectlist } causes all symbols in objectlist to be treated as constants.

EXAMPLE 11

Dt[xn, x] //Expand

n x−1 + n + xn Dt[n, x] Log[x]

Dt[xn, x, Constants ã {n}]

n x−1 + n 

SOLVED PROBLEMS

10.12  Let z = sin xy. Let x = 1, y = 2, dx = Δx = 0.03, dy = Δy = 0.02. Compute dz and compare it with the 
value of Δz.

SOLUTION

z = f[x_, y_] = Sin[x y];

Dz = f[x + D x, y + D y] – f[x, y];

Dt[z] /. {x ã 1, y ã 2, Dt[x] ã 0.03, Dt[y] ã 0.02}

 –0.0332917

Δz /. {x ã 1, y ã 2, Δ x ã 0.03, Δ y ã 0.02}

 –0.0364571

10.13 Use differentials to approximate e0 1 4 01. .  and determine the percentage error of the estimate.

SOLUTION

We take advantage of the fact that 0.1 is near 0 and 4.01 is near 4.

f[x_, y_] = Exp[x] Sqrt[y];

approximation = f[0, 4] + Dt[f[x, y]] /. {x ã 0, y ã 4, Dt[x] ã 0.1, Dt[y] ã 0.01}

2.2025

exactvalue = f[0.1, 4.01]

2.2131

percenterror = Abs[approximation – exactvalue]/exactvalue * 100;

Print["The error is  ",  percenterror, "%"]

The error is 0.479103 %

10.14  Use differentials to approximate the amount of metal in a tin can with height 30 cm and radius 10 cm 
if the thickness of the metal in the wall of the cylinder is 0.05 cm and the top and bottom are each 
0.03 cm thick.
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SOLUTION

v = π r2 h;

Dt[v] /. {h ã 30, r ã 10, Dt[r] ã 0.05, Dt[h] ã 0.06}

113.097

The amount of metal is approximately 113 cm3.

10.15  If three resistors of resistance, R1, R2, and R3 ohms are connected in parallel, their effective resistance 

is 
1

1 1 1
1 2 3R R R+ +  ohms. If a 20-ohm, 30-ohm, and 50-ohm resistor, each with maximum error of 1%, 

are connected in parallel, what range of resistance is possible from this combination?

SOLUTION

f[R1_, R2_, R3_]= 1
+ +

;1
R1

1
R2

1
R3

f[20, 30, 50]//N

9.67742

Dt[f[R1, R2, R3]] /. {R1 ã 20, R2 ã 30, R3 ã 50, Dt[R1] ã 0.2, 

  Dt[R2] ã 0.3, Dt[R3] ã 0.5}

0.0967742

The combined resistance is 9.67742 ± 0.0967742 ohms.

10.4 Multiple Integrals
Multiple integrals, or more precisely iterated integrals, are invoked by the Integrate command and are 
an extension of the command for a function of one variable.

 Integrate[f[x, y], {x, xmin, xmax}, {y, ymin, ymax}] evaluates the double integral 

f x y dy dx( , ) .
ymin

ymax

xmin

xmax

∫∫
 Integrate[f[x, y, z], {x, xmin, xmax}, {y, ymin, ymax}, {z, zmin, zmax}] 

evaluates the triple integral f x y z dz dy dx( , , )
zmin

zmax

ymin

ymax

xmin

xmax

∫∫∫∫ .

Higher order iterated integrals are evaluated in a similar manner. Note that the rightmost variable of 
integration in the Integrate command is the variable that is evaluated first.

As an alternative, the integral symbol from the Basic Math Input palette may be used repeatedly for 
the evaluation of multiple integrals.

EXAMPLE 12 To evaluate ( )x y dy dx
x

+∫∫ 11

2
, we would type 

Integrate[x + y, {x, 1, 2}, {y, 1, x}]

3
2

or

(x+y)
1

x

1

2

∫∫ y x

3
2

The change in height is the sum of the thicknesses 
of the top and bottom.
The change in height is the sum of the thicknesses 
of the top and bottom.
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EXAMPLE 13 To evaluate the triple integral xyz dz dy dx
xyx

000

2

∫∫∫ , we can type either

Integrate[x y z, {x, 0, 2}, {y, 0, x}, {z, 0, x y}]

4

or 

x y z
0

xy

0

x

0

2

∫∫∫  
z y x

4

If the integral is such that it’s exact value cannot be evaluated, numerical integration can be used instead.

 NIntegrate[f[x, y], {x, xmin, xmax}, {y, ymin, ymax}] returns a numerical approxi-

mation of the value of the double integral f x y dy dx( , ) .
ymin

ymax

xmin

xmax

∫∫
 NIntegrate[f[x, y, z], {x, xmin, xmax}, {y, ymin, ymax}, {z, zmin, zmax}]

returns a numerical approximation of the value of the triple integral
 

f x y z dz dy dx( , , )
zmin

zmax

ymin

ymax

xmin

xmax

∫∫∫∫ .

Higher-order iterated integrals are approximated in a similar manner. If the Basic Math Input pal-
ette is used, the N command (or //N to the right of the integral) may be used. All of the options for 
Nintegrate as applied to single integrals apply to multiple integrals.

EXAMPLE 14

NIntegrate[Exp[x^2 y^2], {x, 0, 1}, {y, 0, 1}] or ex y

0

1

0

1
2 2∫∫  
y x //N

1.1351

SOLVED PROBLEMS

10.16  Use a double integral to compute the area bounded by the parabola y = x2 + 2x + 3 and the line 
y = x + 1.

SOLUTION

f[x_] = x2 – 2 x + 2;

g[x_] = x + 1;

Plot[{f[x], g[x]}, {x, –1, 3}]

–1 1 2 3

1

2

3

4

5

intersections = Solve[f[x]  g[x]]

x 1
2
3 5 , x 1

2
(3 5)→{ } →{ }{ }( )– +

It is always a good idea to sketch the region under 
consideration before integrating.
It is always a good idea to sketch the region under 
consideration before integrating.
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xvalues = x /.intersections

1
2
3– 5 , 1

2
3+ 5( ) ( ){ }

a = xvalues[[1]]; b = xvalues[[2]];

f[x]

g[x]

a

b

∫∫
5 5
6

10.17  Find the center of mass of the lamina bounded by the parabola  y = 9 − x2 and the x-axis if the 
density at each point is proportional to its distance from the x-axis.

SOLUTION

Let R be the region bounded by y = 9 − x2 and the x-axis.

Plot[9 – x2, {x, –3, 3}]

–3 –2 –1 1 2 3

2

4

6

8

The graph intersects the x-axis at −3 and 3. The coordinates of the center of mass are 
M
M

M
M

y x,
⎛
⎝

⎞
⎠  where

M y x x y dA

M

y

R

x

= ∫∫moment about the -axis = ( , )ρ

==

=

∫∫moment about the -axis = ( , )

m

x y x y dA

M

R

ρ

aass of lamina = ( , )ρ x y dA
R
∫∫

The density function r (x,y) = ky.

q

q

[x_, y_]=ky;

my = x [x,y]

mx = y

0

9–x

–3

3

0

2

∫∫
0

99–x

–3

3

0

9–x

–

2

2

[x,y]

m = [x,y]

∫∫

∫

q

q

23328k
35

33

3

my
m
, mx
m

∫

{ }
{ }

648k
5

0,36
7

y x

y x

y x
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10.18  Compute the shaded area. The curve shown is the Spiral of Archimedes and has polar equation 
r = q. It is shown for 0 ≤ q ≤ 6p.

SOLUTION

The area inside a polar region, R, is r dr d
R

θ.∫∫  The smaller arc

of the shaded region is described by r = q, 2 p ≤ q ≤ 5 p/2 and the 
larger arc may be represented by r = q  + 2 p, 2 p ≤ q ≤ 5 p/2.  The 

enclosed area can be expressed as r dr dθ
θ

θ π

π

π +

∫∫
2

2

5 2/
.

θ

θ π

π

π +

∫∫
2

2

5 /2

 
r r p

 
13
4

3π

10.19  Compute the volume under the paraboloid z  =  x2  +  y2, above the region bounded by 
y = x2 and y x= + 1 .

SOLUTION

The volume bounded by a surface z = f(x, y) and the x-y plane, above a region R, is f x y dA
R

( , ) .∫∫
First let us look at R.

plot[ x , x +1 , x,1,2 ]{ } { }2

–1.0 –0.5 0.5 1.0 1.5 2.0

1

2

3

4

Next we find the points of intersection. Because of the complicated nature of the solution, we will obtain 
a numerical approximation.

NSolve[x x +1]2

{{x  → 1.22074}, {x  →  –0.724492}

Now we can express the volume as a double integral. Two solutions are shown.

(x +y )2 2

x

x+1

–.724492

1.22074

2∫∫ y x

1.11738

NIntegrate[x^2 + y^2, {x, –0.724492, 1.22074}, {y, x^2, Sqrt[x + 1]}]

1.11738

10

5

–5

–5 5 10 15–10–15

–10

–15


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10.20  Find the volume under the hemisphere z = 4 − x2 − y2 above the region in the x-y plane bounded by 
the cardioid  r = 1 − cos q.

SOLUTION

We will translate the problem into cylindrical coordinates. Since r2 = x2 + y2, the equation of the hemi-
sphere becomes z = 4 − r2. The region of integration, R, is the cardioid shown.

PolarPlot[1 – Cos[p], {p, 0, 2o}]

–2.0 –1.5 –1.0 –0.5

–1.0

–0.5

0.5

1.0

The volume, V r dA r r dr d
R

= − = −
−

∫∫∫∫ ( ) ( )
cos

4 42 2

0

1

0

2
θ

θπ

(4–r )2
0

1-Cos[ ]

0

2 θθ

∫∫
π

π61
16

r  r  p

10.21  Find the volume of the solid that lies under the paraboloid z = x2 + y2, above the x-y plane, and inside 
the cylinder (x−1)2 + y2 = 1.

SOLUTION

The cylinder (x−1)2 + y2 = 1 is a cylinder of radius 1 whose axis is translated from the z-axis by the vector 
(1, 0, 0).

s1 = Graphics3D[Cylinder[{{1, 0, 0}, {1, 0, 8}}]];

s2 = Plot3D[x2 + y2, {x, –2, 2}, {y, –2, 2}];
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Show[s1, s2, PlotRange ã {0,4}, ViewPoint ã {1.217, –3.125, 0.447}]

Now that we know what the region looks like, we must look at its projection in the x-y plane. 

ContourPlot[(x – 1)2 + y2  1, {x, 0, 2},{y, –1, 1},Frame ã False, Axes ã True]

0.5 1.0 1.5 2.0

–1.0

–0.5

0.5

1.0

Although the problem can be solved in rectangular coordinates, it is easier to solve it using cylindrical coordi-
nates. The equation of the circle can be expanded to x2 + y2 = 2x, which is equivalent, in polar coordinates, to 
r = 2 cos q, and the paraboloid z = x2 + y2 becomes z = r2. The complete circle is generated as q varies from

−p/2 to p/2. The required volume may be expressed as a double integral: ( )
cos

/

/
r rdr d2

0

2

2

2
θ

θ

π

π

∫∫−

  

r3

0

2Cos[ ]

/2

/2 θ

π

π

∫∫−

3
2
π

 r  p

10.22  The area of the surface z = f(x, y) above the region R in the x−y plane is [ ( , )] [ ( , )] .f x y f x yx y

R

2 2 1+ +∫∫  
Compute the surface area of a sphere of radius a.

SOLUTION

We compute the surface area of the portion of the sphere in the first octant and, by symmetry, multiply 
by 8. The equation of the sphere is x2 + y2 + z2 = a2. Solving for z we get z f x y a x y= = − −( , ) 2 2 2  as 
the function representing the upper hemisphere. Since the projection of the hemisphere onto the x−y plane 
is a circle of radius a centered at the origin, it is most convenient to use cylindrical coordinates.
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f[x_,y_]= a – x – y ;

1 +( f[x,y]) +(

2 2 2

x
2

yì ì ff[x,y]) //Together

% /. x

2

- a
-a + x y

2

2 2 2+

22 2 2+ y r //Simplifyã ← Replace by2 2 2 .x y r+

a22

2 2a – r

8 a
a –r

2

2 2
0

a

0

/2

∫∫
π

π4 a Abs[a]2

 

r  r  p

 

Simplify[%, Assumptions ã a > 0]

4 a2 p

10.23  Find the volume of the “ice cream cone” bounded by the cone z x y= +3 2 2  and the sphere 
x y z2 2 29 9+ + − =( ) .

SOLUTION

The required volume is represented by the triple integral dV
G
∫∫∫ .  Because of the nature of the bounding 

surfaces, this problem is done most conveniently using cylindrical coordinates. First, rewrite the equation of 
the sphere, solving for z in terms of x and y.

Solve[x2 + y2 + (z – 9)2  9, z]

z 9– 9– x – y , z 9+ 9– x – y2 2 2 2→{ } →{ }}{ }
Using the second solution (corresponding to the upper hemisphere), and replacing x2 + y2 by r2, the equation of 
the sphere becomes z r= + −9 9 2 .  The equation of the cone, z x y= +3 2 2 ,  becomes z = 3r. Now we can 
sketch the surfaces that form our region.

cone = RevolutionPlot3D[3 r,{r, 0, 3},{p, 0, 2 o}];

hemisphere =RevolutionPlot3D 9+ 9– r ,{r,2 00,3},{ ,0,2 } ;p o⎡⎣ ⎤⎦
Show [cone, hemisphere, PlotRange ã All, BoxRatios ã {1, 1, 2},
 Axes ã False, Boxed ã False]

 

8 1 2 2+ ∂ + ∂ =∫∫ ( [ ]) ( [ ])x yf x y f x y dA
R

, ,

88
00

2
2

2 2

a

a
a r

r dr d∫∫ −

π

θ

/
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To compute the volume, we observe that the projection of the region onto the x-y plane is a circle. To 
determine its radius, we find the intersection of the cone and the hemisphere.

Solve 3r 9+ 9– r2⎡⎣ ⎤⎦
{{r → 3}}

The projection onto the x-y plane is a circle of radius 3 centered at the origin. The required volume is

3r

9+ 9 – r

0

3

0

2 2

∫∫∫ r  z  r  p

45 π

10.24  A “silo” is formed above the x-y plane by the intersection of a right circular cylinder of radius 3 and 
a sphere of radius 5. Compute its volume.

SOLUTION

It is easiest to work in cylindrical coordinates. The equation of the spherical cap is z r= −25 2 .  It will 
intersect the cylinder when r = 3. The height of the cylinder will be 4.

cylinder = Graphics3D[Cylinder[{{0, 0, 0}, {0, 0, 4}}, 3]];

cap =RevolutionPlot3D[ 25 – r , r,0,3 ,2 { } {p,,0,2 ];}o

Show[cylinder, cap, Boxed ã False, PlotRange ã {0,5}]

 

The projection of the solid is a circle of radius 3, centered at the origin.

volume =
0

25–r

0

3

0

2 2

∫∫∫
ππ

122
3

π
 

r  z  r  p

10.25  Find the center of mass of a solid hemisphere of radius a if its density at each point is proportional 
to its distance above the x-y plane.

SOLUTION

The center of mass has coordinates ( , , )x y z  where 

x

x x y z dV

x y z dV
y

y
G

G

= =
∫∫∫
∫∫∫

( , , )

( , , )

(σ

σ

σ
,

xx y z dV

x y z dV
z

z x y z
G

G

, , )

( , , )

( , ,∫∫∫
∫∫∫

=
σ

σ
,

))

( , , )

dV

x y z dV
G

G

∫∫∫
∫∫∫σ

.





CHAPTER 10  Multivariate Calculus 265

The density function, σ ( , , ) ,x y z k z=  where k is the constant of proportionality. The problem is most 
conveniently solved by using spherical coordinates:

x y z= = =ρ φ θ ρ φ ρ φsin cos , sin sin cos,θ

x = Sin[ ]Cos[ ];

y = Sin[ ]Sin[ ];

z=

q e p

q e p

2

0

a

0

/2

0

Cos[ ];

= k z;

mass= Sin[ ]

q e

r

q e
o

σσ∫∫
22o

∫
1
4
a k4 π

q  e  p

centerofmass=
x Sin[ ]

mas

2

0

a

0

/2

0

2

r q e∫∫∫
ππππ

ss
,

y Sin[ ]

mass
,

z

2

0

a

0

/2

0

2

r q e∫∫∫⎧
⎨
⎪

⎩⎪

ππππ

2

0

a

0

/2

0

2

Sin[ ]

mass

r q e∫∫∫ ⎫
⎬
⎪

⎭⎪

ππππ

0,0,8aa
15{ }

10.26  Find the moment of inertia of a solid hemisphere of radius a about its axis if its density is equal to 
the distance from the center of its base.

SOLUTION

The moment of inertia about the z-axis is d ( , , ) ( , , )x y z x y z dV
G

( )∫∫∫ 2 σ  where d (x, y, z) is the distance from the

point (x, y, z) to the z-axis and σ(x, y, z) is the density at the point (x, y, z). In this problem we should 
use a spherical coordinate system:

x y z= = =r f q r f q r fsin cos , sin sin cos,

 
d r f q r f q r( , , ) ( sin cos ) ( sin sin ) sx y z x y= + = + =2 2 2 2 iinf

 s r( , , )x y z x y z= + + =2 2 2

c q e

r q

c r q e
0

a

0

/2

0

2
2

Sin[ ]

Sin[ ]

=

=

2∫∫∫
ππππ

22a
9

6π
  

q  e  θ

q  e  θ q  e  θ

q  e  θ
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Ordinary Differential Equations

11.1 Analytical Solutions
Simply put, a differential equation is an equation expressing a relationship between a function and one or 
more of its derivatives. A function that satisfies a differential equation is called a solution. 

The Mathematica command DSolve is used to solve differential equations. As with algebraic or tran-
scendental equations, a double equal sign, , is used to separate the two sides of the equation.

 DSolve[equation, y[x], x] gives the general solution, y[x], of the differential equation, equation, 
whose independent variable is x. 

 DSolve[equation, y, x] gives the general solution, y, of the differential equation expressed as a 
“pure” function (see appendix) within a list. ReplaceAll (/.) may then be used to evaluate the 
solution. Alternatively, one may use Part or [[ ]] to extract the solution from the list. 

EXAMPLE 1 To solve the first-order differential equation 
dy
dx

x y= + , we simply type

DSolve[y'[x]  x + y[x], y[x], x]

{{y[x] → –1 – x + x C[1]}}

EXAMPLE 2 To obtain the solution of 
dy
dx

x y= +  as a pure function (see appendix, Section A.1), we enter 

solution = DSolve[y'[x]  x + y[x], y, x]

{{y → Function[{x},–1 – x + x C[1]]}}

If we wish to evaluate the solution, we can type

y[x] /.solution

{{y[x]→ –1 – x + x C[1]}}

Using the pure function, we can evaluate the derivatives of the solution. This would be clumsy using the solution 
of Example 1.

y'[x]/.solution

{–1 + x C[1]}

y''[x]+ y'[x] /.solution

{–1 + 2 x C[1]}

We can define a function, f, representing the solution:

f = solution[[1, 1, 2]]

Function[{x}, –1 – x + x C[1]]

CHAPTER 11
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We can then directly evaluate f or any of its derivatives.

f[x]

–1 – x + x C[1]

f'[x]

–1 + x C[1]

f''[x]

x C[1]

It is extremely important that the unknown function be represented y[x], not y, within the differential 
equation. Similarly, its derivatives must be represented y'[x], y''[x], etc. The next example illustrates 
some common errors.

EXAMPLE 3

DSolve[y'[x] x + y, y[x], x]

DSolve õ dvnoarg : The function y appears with no arguments. 

DSolve[y'[x] x + y, y[x], x]        The function and its derivative must be specified as y[x] and 
y'[x], respectively.

DSolve[y'  x + y[x], y[x], x]

DSolve õ dvnoarg : The function y' appears with no arguments. 

DSolve[y' x + y, y[x], x]

The solution of a first-order differential equation without initial conditions involves an arbitrary 
constant, labeled, by default, C[1]. Additional constants (for higher-order equations) are labeled 
C[2], C[3], ... If a different labeling is desired, the option GeneratedParameters may be 
used.

• GeneratedParameters ã constantlabel specifies that the constants should be labeled 
constantlabel[1], constantlabel[2], etc. 

EXAMPLE 4

 DSolve[y'[x]  x + y[x], y[x], x, GeneratedParameters ã mylabel]
{{y[x]→ –1 – x + x mylabel[1]}}

Higher order differential equations are solved in a similar manner. The derivatives are represented as 
y'[x], y''[x], y'''[x], ... Alternatively, D, ì, or Derivative may be used.

EXAMPLE 5

DSolve[y''[x]+ y [x] 0, y[x], x]

{{y[x]→ C[1]Cos[x]+ C[2]Sin[x]}}

DSolve[D[y[x], {x, 2}]+ y[x] 0, y[x], x]

{{y[x]→ C[1]Cos[x] + C[2]Sin[x]}}

DSolve[ì{x, 2}y[x]+ y[x] 0, y[x], x]

{{y[x]→ C[1]Cos[x]+ C[2]Sin[x]}}

DSolve[Derivative[2][y][x]+ y[x] 0, y[x], x]

{{y[x]→ C[1]Cos[x]+ C[2]Sin[x]}}

More complicated differential equations are solved, if possible, using special functions. If Mathematica 
cannot solve the equation, it will return the equation either unsolved or in terms of unevaluated integrals. 
In such cases a numerical solution (see Section 11.2) may be more appropriate.
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EXAMPLE 6 x
d y
dx

x
dy
dx

x y2
2

2
2 4 0+ + − =( )  is a special case of Bessel’s equation. The solution is expressed in terms 

of Bessel functions of the first (BesselJ) and second (BesselY) kind.

DSolve[x2 y''[x]+ x y'[x]+(x2 – 4)y[x] 0, y[x], x]

{{y[x]→ BesselJ[2,x] C[1]+ BesselY[2,x] C[2]}}

EXAMPLE 7 
d y
dx

dy
dx

y
2

2
2 0+ + =  is a nonlinear differential equation that Mathematica cannot solve.

DSolve[y''[x] + y'[x] + y[x]2  0, y[x], x]

DSolve[[y[x]2 + y'[x] + y''[x] 0, y[x], x]

If values of y, and perhaps one or more of its derivatives, are specified along with the differential equa-
tion, the task of finding y is known as an initial value problem. The differential equation and the initial 
conditions are specified as a list within the DSolve command. A unique solution is returned, provided an 
appropriate number of initial conditions are supplied.

EXAMPLE 8 Solve the equation dy
dx

x y= + with initial condition y(0) = 2. Then plot the solution.

solution  =  DSolve[{y'[x] x + y[x], y[0] 2}, y[x], x]

{{y[x]→ –1 + 3 x – x}}

Plot[y[x] /. solution, {x, – 5, 2}, AxesOrigin ã {0, 0}]

–5 –4 –3 –2 –1 1 2

2
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8

Here is another way the solution can be plotted:

solution = DSolve[{y'[x] x + y[x], y[0] 2}, y, x]

{{y → Function[{x}, –1 + 3 x – x]}}

f = solution[[1, 1, 2]];

Plot[f[x],{x, – 5, 2}, AxesOrigin ã {0, 0}]

–5 –4 –3 –2 –1 1 2

2

4

6

8
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A useful way of visualizing the solution of a first-order differential equation is to introduce the concept 
of a vector field. A vector field on 2 is a vector function that assigns to each point (x, y) a two-dimensional 
vector F(x, y). By drawing the vectors F(x, y) for a (finite) subset of 2, one obtains a geometric interpretation 
of the behavior of F.

 VectorPlot[{Fx, Fy}, {x, xmin, xmax}, {y, ymin, ymax}] produces a vector field 
plot of the two-dimensional vector function F, whose components are Fx and Fy. The direction of 
the arrow is the direction of the vector field at the point (x, y). The size of the arrow is proportional 
to the magnitude of the vector field. 
• Axes ã Automatic may be used if axes are desired. By default, no axes are drawn.
• Frame ã False may be used if a frame around the plot is not desired. The default is 
Frame ã True. 

• VectorScale is an option that determines the length and arrowhead size of the field vectors 
that are drawn. The default is ScaleFactor ã Automatic. Options include Tiny, Small, 
Medium and Large.

Note: Starting with version 7, VectorPlot can be found in the Mathematica kernel. If you are using 
version 6, you must use VectorFieldPlot, located in the package VectorFieldPlots` which 
must be loaded prior to use. See the Documentation Center for appropriate usage.

EXAMPLE 9 Plot the vector field F(x, y) = – y i + x j . 

VectorPlot [{– y, x}, {x, – 5, 5}, {y, – 5, 5}]

Any first-order differential equation can be used to define a vector field. Indeed, the vector field i + f(x, y) j, 
corresponding to the equation dy

dx
f x y= ( , ) , generates a field whose vectors are tangent to the solution. The 

next example, although simple, illustrates this nicely.

–4 –2 0 2 4

–4

–2

0

2

4
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EXAMPLE 10 Plot the vector field of the solution of the equation dy
dx

x= 2 . The solutions to this equation, parabolas 
y = x2 + c, can be seen quite vividly.

VectorPlot[{1, 2 x}, {x, – 1, 1}, {y, – 1, 1}, Axes ã Automatic]
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EXAMPLE 11 In this example we plot the vector field generated by the equation dy
dx

x y= +2 . Then the solu-

tions with initial conditions y(0) = –2, –1, 0, 1, and 2 are plotted on the vector field for comparison.

vf = VectorPlot[{1, 2 x + y}, {x, – 2, 1}, {y, – 4, 6}, 
               Axes ã Automatic, VectorScale ã Small]
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solutions = Table[DSolve[{y'[x]  2 x + y[x], y[0]  k}, y[x], x], {k, –2, 2}];

Do[g[k]= Plot[solutions[[k, 1, 1, 2]], {x, – 2, 1}, PlotRange ã All, 
                                 Frame ã True, PlotStyle ã Thickness[.005]], {k, 1, 5}]

Show[g[1], g[2], g[3], g[4], g[5], vf, AspectRatio ã 1, PlotRange ã {–4,6}]

A system of differential equations consists of n differential equations involving n + 1 variables. Solving 
a system of differential equations with Mathematica is similar to solving a single equation. 

EXAMPLE 12 This example illustrates how to solve the system dx
dt

t
dy
dt

t= =2 3,  with initial conditions 

x(0) = 2, y(0) = 3. The equation and its initial conditions are contained within a list.

solution = DSolve[{x'[t] t2, y'[t] t3, x[0] 2, y[0] 3}, {x[t], y[t]}, t]

x[t] 1
3
6+t , y[t] 1

4
12+t3 4→ →{ }{ }( ) ( )

Instead of specifying the values of f and its derivatives at a single point, values at two distinct points 
may be given. The problem of solving the differential equation then becomes known as a boundary 
value problem. However, unlike initial value problems, which can be shown to have unique solutions 
for a wide variety of cases, a boundary value problem may have no solution even for the simplest of 
equations.

EXAMPLE 13 The equation d y
dx

y
2

2 0+ =  with boundary conditions y(0) = 0, y(π) = 1 has no solution.

DSolve[{y''[x]+ y[x] 0, y[0] 0, y[o] 1}, y[x], x]

DSolve õ bvnul : For some branches of the general solution, 
 the given boundary conditions lead to an empty solution.

{}

The same equation with y(0) = 0, y(π /2) = 1 has a unique solution.

DSolve[{y''[x]+ y[x] 0, y[0]  0, y[o/2] 1}, y[x], x]

{{y[x]→ Sin[x]}}
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SOLVED PROBLEMS

 11.1 Solve the differential equation dy
dx

x y= with initial condition y(1) = 2 and graph the solution for –2 ≤ x ≤ 2.

SOLUTION

solution = DSolve[{y'[x] x y[x], y[1] 2}, y[x], x]

y[x] 2 – +12
x2
2→{ }{ }

Plot[y[x] /.solution, {x, –2, 2}]

–2 –1 1 2

2

4

6

8

 11.2 Plot the vector field for the differential equation of Problem 11.1.

SOLUTION

VectorPlot[{1, x y}, {x, –2, 2}, {y, –10, 10}, VectorScale ã Tiny, 
                           Axes ã Automatic]


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10

 11.3 Plot the vector field for the equation dy
dx

x y= +2  together with its solutions for y(0) = 0, 1, 2, 3, and 4.

SOLUTION

vf = VectorPlot [{1, x2 +  y}, {x, 0, 1}, {y, 0, 12}, Axes ã Automatic, 

               VectorScale ã  Tiny];
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solutions = Table[DSolve[{y'[x] x2 + y[x], y[0] k}, y[x], x], {k, 0, 4}];

Do[g[k]= Plot[solutions[[k, 1, 1, 2]], {x, 0, 1}, 

                 PlotStyle ã Thickness[.007], PlotRange ã All], {k, 1, 5}]

Show[g[1], g[2], g[3], g[4], g[5], vf, Frame ã True, AspectRatio ã 1]

 11.4 The escape velocity is the minimum velocity with which an object must be propelled in order to 
escape the gravitational field of a celestial body. Compute the escape velocity for the planet Earth.

SOLUTION

We shall assume that the initial velocity is in a radial direction away from Earth’s center. According to Newton’s 
laws of motion, the acceleration of a particle is inversely proportional to the square of the distance of the 
particle from the center of Earth. If r represents that distance, R the radius of the earth (approximately 

3,960 miles), v the velocity of the particle, and a its acceleration, then a dv
dt

k
r

= = 2 . At Earth’s surface 

(r = R), a = –g, where g = 32.16 ft/sec2 = .00609 mi/sec2. It follows that k gR= − 2, so a
gR
r

= −
2

2 . Since 

a dv
dt

=  and v dr
dt

= , by the chain rule we have a dv
dt

dv
dr

dr
dt

v dv
dr

= = = . If v0 represents the escape velocity, 

we are led to the differential equation v dv
dr

gR
r

= −
2

2  with initial condition v = v0 when r = R.

DSolve[{v[r]v'[r] – g R2/r2, v[R] v0}, v[r], r]

v[r] –
–2g r R+2g R +r v0

r
, v[r]

–2g r R+2g2 2

→
⎧
⎨
⎩

⎫
⎬
⎭

→ RR +r v0
r

2 2⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

Since the velocity is positive at the surface of Earth (r = R), and must remain positive for the duration of 
the flight, we reject the first solution. Furthermore, v(r) will remain positive if and only if − + ≥2 00

2gR v ,  
so v gR0 2≥ .

2 g R /.{g .00609,R 3960}→→ →→

6.94498

The escape velocity is 6.94498 mi/sec.

 11.5 According to Newton’s law of cooling, the temperature of an object changes at a rate proportional 
to the difference in temperature between the object and the outside medium. If an object whose 
temperature is 70°F is placed in a medium whose temperature is 20°, and is found to be 40° after 
3 minutes, what will its temperature be after 6 minutes?
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SOLUTION

If u(t) represents the temperature of the object at time t, du
dt

k u= −( )20 . The initial condition is 
u(0) = 70.

solution1 = DSolve[{u'[t] k(u[t]– 20), u[0] 70}, u[t], t]

u[t] 10 2+5 k t→ ( ){ }{ }
u[t_]= solution1[[1, 1, 2]]

10(2+5 )k t

We determine k using the information about the temperature 3 minutes later. Since we are using 
Solve for the transcendental function ex, Mathematica supplies a warning that may safely be 
ignored.

solution2 = Solve[u[3] 40, k]

Solve õ ifun : Inverse functions are being used by Solve, so some solutions may not be found; 
 use Reduce for complete solution information. 

k – 1
3
Log 5

2
→ ⎡

⎣⎢
⎤
⎦⎥{ }{ }

u[6] /. k ã solution2[[1, 1, 2]]

28

The temperature 6 min later is 28°F.

 11.6 If air resistance is neglected, a freely falling body falls with an acceleration g, which is 
approximately 32.16 ft/sec2. If air resistance is considered, its motion is changed dramatically. 
If an object whose mass is 5 slugs is dropped from a height of 1000 ft, determine how long it 
will take to hit the ground (a) neglecting air resistance and (b) assuming that the force of air 
resistance is equal to the velocity of the object. Draw a graph of the height functions with and 
without air resistance.

SOLUTION

Let h(t) represent the height of the object at time t, v(t) its velocity, and a(t) its acceleration. Recall that 
v t h t( ) '( )= and a t v t h t( ) '( ) ''( )= =  and, by Newton’s law, the sum of the external forces acting upon the 
object is equal to its mass times its acceleration: ma t F( ) = ∑ .

(a)  If air resistance is neglected, the only force acting on the object is gravity, so ma t mg( ) = − . We can divide 
by m and solve the differential equation h t g' '( ) = −  with initial conditions h h'( ) , ( )0 0 0 1000= = . 
(Note: We take “up” to be the positive direction.)

g = 32.16;

solution = DSolve[{h''[t] – g, h'[0] 0, h[0] 1000}, h[t], t];

height1[t_]= solution[[1, 1, 2]]

1000 – 16.08t2

When the object reaches the ground its height will be 0.

Solve[height1[t] 0, t]

{{t → – 7.886}, {t → 7.886}}

It takes 7.886 sec to reach the ground. 

(b)  If air resistance is taken into account, there is an external force acting upon the object in addition 
to gravity, equal to v(t).  The differential equation becomes 

   or 
ma t mg v t

mh t mg h t

( ) ( )

''( ) '( )

= − −

= − −




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with initial conditions as in (a).

m = 5; g = 32.16;

solution = DSolve[{m h''[t] – m g – h'[t], h'[0] 0, h[0] 1000}, h[t], t];

height2[t_]= solution[[1, 1, 2]]

–0.2 t(–804. + 1804. 0.2 t – 160.8 0.2 t t)

FindRoot[height2[t]  0, {t, 10}]

{t → 10.6213}

It now takes 10.6213 sec to reach the ground. 

PlotLegends`

Plot[{height1[t], height2[t]}, {t, 0, 11}, 

 PlotStyle ã {Thick,Thin}, PlotRange ã {0,1000},
 AxesLabel ã {"Time","Height"},
 PlotLegend ã {"Without air resistance","Air resistance included"},
  LegendSize ã {1, .5}]
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 11.7 A baseball is hit with a velocity of 100 ft/sec at an angle of 30° with the horizontal. The height of 
the bat is 3 ft above the ground. Neglecting air and wind resistance, will it clear a 35-ft-high fence 
located 200 ft from home plate? (Assume g = 32.16 ft/sec2.)

SOLUTION

g = 32.16; h = 3; θ = 30 Degree; v0 = 100;

solution = DSolve[{x''[t] 0, y''[t] – g, x'[0] v0 Cos[θ], y'[0] v0 Sin[θ],
 x[0] 0, y[0] h}, {x[t], y[t]}, t];

xsolution[t_]= solution[[1, 1, 2]]

50 3 t

ysolution[t_]= solution[[1, 2, 2]]

3 + 50 t – 16.08 t2

ParametricPlot[{xsolution[t], ysolution[t]}, {t, 0, 3.2}, 
                AxesLabel ã {"x", "y"}]
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From the graph it is questionable whether y ≥ 35 when x = 200, so we compute precisely when the ball 
reaches the fence and then calculate its height at that instant.

Solve[xsolution[t] 200]

t 4
3

→{ }⎧
⎨
⎩

⎫
⎬
⎭

ysolution[t] /.%

{32.7101}

Since the height of the ball is less than 35 ft, the ball will not clear the fence.

 11.8 At what angle should the ball in the previous problem be hit so that it goes over the fence? 

SOLUTION

First we want to get a relationship between y and q. 

Clear[θ]

g = 32; h = 3; v0 = 100;

solution = DSolve[{x''[t] 0, y''[t] – g, x'[0]  v0 Cos[θ], 

 y'[0] v0 Sin[θ], x[0] 0, y[0] h}, {x[t], y[t]}, t]

x[t] 100t Cos[ ],y[t] 3–16t +1002→ →θ t Sin[ ]θ{ }{ }
horiz[t_]= solution[[1, 1, 2]];

vert[t_]= solution[[1, 2, 2]]

3 – 16 t2 + 100 t Sin[θ]
temp = Solve[horiz[t] 200, t] ← Solve for t as a function of q.

{{t → 2 Sec[θ]}}
height[p_]= vert[t] /. temp

{3 – 64 Sec[θ]2 + 200 Tan[θ]} 
←  Define a function representing the height as a 

function of θ.

NSolve[height[θ Degree]  35, p] ←  Find θ which gives a height of 35 ft. The value of
θ is expressed in degrees.

Solve õ ifun : Inverse functions are being used by Solve, so some solutions may not be found;
 use Reduce for complete solution information. 

{{θ → – 149.216}, {θ → – 111.694}, {θ → 30.7838}, {θ → 68.3065}}

The negative values of θ may be disregarded. The ball will go over the fence if θ lies between 30.6357° 
and 68.4546°. We conclude by sketching these two trajectories. The vertical line represents the 35-ft 
fence located 200 ft from home plate.

θ = 30.6357 Degree;

horiz[t_]= solution[[1, 1, 2]];

vert[t_]= solution[[1, 2, 2]];

graph1 = ParametricPlot[{horiz[t], vert[t]}, {t, 0, 6}];

θ = 68.4546 Degree;

horiz[t_]= solution[[1, 1, 2]];

vert[t_]= solution[[1, 2, 2]];

graph2 = ParametricPlot[{horiz[t], vert[t]}, {t, 0, 6}];

graph3 = Graphics[Line[{{200, 0}, {200, 35}}]];

This warning may be safely disregarded.
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 11.9 A culture of microorganisms grows at a rate proportional to the amount present at any given time. 
If there are 500 bacteria present after one day and 1200 after two days, how many bacteria will be 
present after four days?

SOLUTION

The differential equation described by this situation is dN
dt

kN= , where N is the number of bacteria present 
in the culture and k is a constant to be determined by the given information. The initial condition is N = 500 
when t = 1.

solution = DSolve[{n'[t] k n[t], n[1] 500}, n[t], t]

n[t] 500 –k+kt→{ }{ }
population[t_]= solution[[1, 1, 2]];

Solve[population[2] 1200, k]

Solve õ ifun : Inverse functions are being used by Solve, so some solutions may not be found;
 use Reduce for complete solution information. 

k Log 12
5

→ ⎡
⎣⎢

⎤
⎦⎥{ }{ }

population[4] /. k ã Log[12/5]

6912

11.10 The equation governing the amount of current, I, flowing through a simple resistance–inductance 

circuit when an EMF (voltage) E is applied is L
dI
dt

RI E+ = . The units for E, I, and L are, 

respectively, volts, amperes, and henries. If R = 10 ohms, L = 1 henry, the EMF source is an 

alternating voltage whose equation is E(t) = 10 sin 5t, and the current is initially 4 amperes, find an 
expression for the current at time t and plot the graph of the current for the first 3 seconds.

SOLUTION

Note: Care must be taken not to use the conventional symbols E or I to represent voltage and current.

r = 10; l = 1; e[t_] = 10 Sin[5t];

solution = DSolve[{l i'[t] + r i[t]  e[t], i[0]  4}, i[t], t]

i[t] – 2
5

–11+ Cos[5t]–2 Si–10t –10t 10t→ nn[5t]( ){ }{ }
i[t_] = solution[[1, 1, 2]]

  

Show[graph1, graph2, graph3, PlotRange ã { – 50, 150}, AxesLabel ã {"x", "y"}]
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11.11 If a spring with mass m attached at one end is suspended from its other end, it will come to rest in 
an equilibrium position. If the system is then perturbed by releasing the mass with an initial velocity 
of v0 at a distance y0 below its equilibrium position, its motion satisfies the differential equation 

m
d y
dt

a
dy
dt

ky y v y y
2

2 0 00 0 0+ + = = ='( ) ( ), , . a is a damping constant (determined experimentally) 

due to friction and air resistance, and k is the spring constant given in Hooke’s law. 
  A mass of ¼ slug is attached to a spring with a spring constant, k, of 6 lb/ft. The mass is pulled 

downward from its equilibrium position 1 ft and then released. Assuming a damping constant, a, of 
½, determine the motion of the mass and sketch its graph for the first 5 seconds.

SOLUTION

m = 1/4; y0 = –1; v0 = 0; a = 1/2; k = 6;

solution = DSolve[{m y''[t]+ a y'[t]+ k y[t] 0, y'[0]  v0, y[0] y0}, y[t], t]

y[t] – 1
23 23Cos 23 t + 23 Sin 23 t–t→ [ ] [ ]( )){ }{ }

height[t_]= solution[[1, 1, 2]];

Plot[height[t], {t, 0, 5}, AxesLabel ã {"t","Height"}]
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11.12 If a cable of uniform cross-section is suspended between two supports, the cable will sag 
forming a curve called a catenary. If we assume the lowest point on the curve to lie on the 
y-axis, a distance y0 above the origin, the differential equation governing its shape can be shown 

to be d y
dx a

dy
dx

2

2

21
1= + ⎛

⎝
⎞
⎠

y y y( ) , '( )0 0 00= = , where a is a positive constant dependent upon the 

physical properties of the cable. Find an equation of the catenary and sketch its graph.



Plot[i[t], {t, 0, 3}, AxesLabel ã {"t", "Current"}]
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SOLUTION

solution = DSolve y''[x] 1
a

1+ y'[x] ,y'[0] 0,2 yy[0] y0 ,y[x],x{ }⎡
⎣⎢

⎤
⎦⎥

Solve õ ifun : Inverse functions are being used by Solve, so some solutions may not be found; 
 use Reduce for complete solution information. 

y[x] a + y0– a Cosh x
a

, y[x] –a→ ⎡
⎣⎢

⎤
⎦⎥{ } → + y0+ a Cosh x

a
⎡
⎣⎢

⎤
⎦⎥{ }{ }

Since = y0 > 0, the second solution applies. We take y0 = a = 1 and plot its graph.

catenary[x_]= solution[[2, 1, 2]] /. {a ã 1, y0 ã 1};

Plot[catenary[x], {x, –1, 1},Ticks ã {Automatic, {0, 1, 2}}, PlotRange ã {0, 2}]
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11.13  The logistic equation for population growth, 
dp
dt

ap bp= − 2, was discovered in the mid-nineteenth 

century by the biologist Pierre Verhulst. The constant b is generally small in comparison to a so that 
for small population size p the quadratic term in p will be negligible and the population will grow 
approximately exponentially. For large p, however, the quadratic term serves to slow down the rate of 
growth of the population. Solve the logistic equation and sketch the solution for a = 2, b = .05, and an 
initial population p0 = 1 (thousand). Then determine the limiting value of the population as t → ∞.

SOLUTION

solution = DSolve[{p'[t] a p[t] – b p[t]2, p[0] p0}, p[t],t]

Solve õ ifun : Inverse functions are being used by Solve, so some solutions may not be found; 
 use Reduce for complete solution information. 

p[t]
a p0

a – b p0+ b p0

at

at→{ }⎧
⎨
⎩

⎫
⎬
⎭

population[t_] = solution[[1, 1, 2]];

Plot[population[t]/.{p0 ã 1, a ã 2, b ã .05}, {t,0,5}, PlotRange ã All]

1 2 3 4 5

10

20

30

40

Limit[population[t] /. {p0 ã 1, a ã 2, b ã .05}, t ã ∞]
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  
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11.14 Solve the boundary value problem 
d y
dx

y
2

2
24 0+ =π , y(0) = y(1) = 0.

SOLUTION

DSolve[{y''[x] + 4 o2 y[x] 0, y[0] 0, y[1] 0}, y[x], x]

{{y[x]→ C[2] Sin[2 π  x]}}

11.2 Numerical Solutions
Although certain types of differential equations can be solved analytically in terms of elementary functions, 
the vast majority of equations that arise in applications cannot. Even if unique solutions can be shown to 
exist, it may only be possible to obtain numerical approximations. The command NDSolve is designed 
specifically for this purpose.

 NDSolve[equations, y, {x, xmin, xmax}] gives a numerical approximation to the solution, 
y, of the differential equation with initial conditions, equations, whose independent variable, x, satisfies 
xmin ≤ x ≤ xmax.

Because NDSolve yields a numerical solution to a differential equation, or system of differential equa-
tions, an appropriate set of initial conditions that guarantees uniqueness must be specified.

EXAMPLE 14 In this example we consider the differential equation dy
dx

x y= +2 with initial condition y(0) = 1. 

Although this equation has a unique solution, it cannot be found in terms of elementary functions using DSolve.

DSolve y'[x] x + y[x],y[0] 1 ,y[x],2{ } xx⎡⎣ ⎤⎦

DSolve y'[x] x + y[x],y[0] 1 ,y[x]2{ } ,,x⎡⎣ ⎤⎦

We can only obtain a numerical approximation to the solution of this equation. Because numerical tech-
niques construct approximations at only a finite number of points, Mathematica interpolates, i.e., constructs 
a smooth function passing through these points and returns the solution as an InterpolatingFunction 
object.

EXAMPLE 15

temp = NDSolve {y'[x] x + y[x], y[0] 1},y2 ,,{x,0,1}⎡⎣ ⎤⎦

{{y → InterpolatingFunction[{{0.,1.}}, <> ]}}

The actual interpolating function can now be extracted from this expression:

solution = temp[[1, 1,2]]

InterpolatingFunction[{{0.,1.}}, <> ]

Only the domain of an InterpolatingFunction object is printed explicitly. The remain-
ing elements are represented as < >. To see the data used in its construction, enter the command 
FullForm[solution]. Using the interpolated solution, solution, we can compute the solution at one 
or more points, and we can even plot it. One must be careful, however, to stay within the domain of the 
interpolating function or a warning will be generated.

solution[0.5]

1.60643

solution[1.5]

InterpolatingFunction õ dmval : Input value {1.5} lies outside the range of data in the
 interpolating function. Extrapolation will be used. 

4.32575     ←  An extrapolated value is not as reliable as an interpolated value, in terms of accuracy.

 



 
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list = Table[{x, solution[x]}, {x, 0, 1, .1}];

TableForm[list, TableSpacing ã {1, 5}]

0 1.

0.1 1.10284

0.2 1.21273

0.3 1.33181

0.4 1.46228

0.5 1.60643

0.6 1.76656

0.7 1.94504

0.8 2.14429

0.9 2.36672

1. 2.61479

Plot[solution[x], {x, 0, 1}, AxesOrigin ã {0,0}]

Although the default settings for NDSolve work nicely for most differential equations, Mathematica 
provides some options that can be used to set parameters to handle abnormal situations.

• WorkingPrecision is an option that specifies how many digits of precision should be maintained 
internally in computation. The default (on most computers) is WorkingPrecision ã 16.

• AccuracyGoal is an option that specifies how many significant digits of accuracy are to 
be obtained. The default is AccuracyGoal ã Automatic, which is half the value of 
WorkingPrecision. AccuracyGoal effectively specifies the absolute error allowed in a 
numerical procedure.

• PrecisionGoal is an option that specifies how many effective digits of precision should be sought 
in the final result. The default is PrecisionGoal ã Automatic, which is half the value of 
WorkingPrecision. PrecisionGoal effectively specifies the relative error allowed in a numeri-
cal procedure.

• MaxSteps is the maximum number of steps to take in obtaining the solution. The default is 
MaxSteps ã Automatic, which, for ordinary differential equations, is 10,000.

• MaxStepSize specifies the maximum size of each step in the iteration. 
• StartingStepSize specifies the initial step size. The default is StartingStepSize ã Automatic. 

(Mathematica automatically determines the best step size for the given equation.)
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EXAMPLE 16 The differential equation d y
dx

y
2

2 0+ =  with initial conditions y(0) = 0, y'(0) = 1 has a unique solution 

y = sin x. We attempt to solve it for 0 ≤ x ≤ 10,000.

equation = NDSolve[{y''[x] + y[x]  0, y[0]  0, y'[0]  1}, y, {x, 0, 10 000}]

NDSolve õ mxst : Maximum number of 10000 steps reached
 at the point x  1422.780656413783`

{{y → InterpolatingFunction[{{0. ,1422.78}}, <>]}}

Because of the wide interval, [0, 10000], over which the solution is to be obtained, more than 10,000 
steps are necessary.

equation = NDSolve[{y''[x] + y[x]  0, y[0]  0, y'[0]  1}, y, 
                                  {x, 0, 10  000}, MaxSteps ã 100 000]

InterpolatingFunction[{{0.,10  000.}},<>]}}

Having obtained a solution, we check it for accuracy. The solution at x k= +( )4 1 2
π  should be 1.

f = equation[[1, 1, 2]];

f[633 o/2]

1.00002

SOLVED PROBLEMS

11.15 Solve the differential equation 
dy
dx

y y= + = =1
1
2 0 0 12 , ( ) , 0 ≤ x ≤ 1, using DSolve and NDSolve 

and compare the results.

SOLUTION

equation1= DSolve y'[x] 1+ 1
2
y[x],y[0] 1 ,2{ } y[x],x⎡

⎣⎢
⎤
⎦⎥

Solve õ ifun : Inverse functions are being used by Solve, so some solutions may not be found;
 use Reduce for complete solution information. 

y[x] 2 Tan 1
2

2x +2 ArcTan 1
2

→ ⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

solution1[x_] = equation1[[1, 1, 2]];

equation2 = NDSolve y'[x] 1+ 1
2
y[x],y[0]2 11 ,[y[x], x,0,1{ }{ }⎡

⎣⎢
⎤
⎦⎥

{{y[x] → InterpolatingFunction[{{0., 1.}},<>][x]}}

solution2[x_]= equation2[[1, 1, 2]];

tabledata = Table[{x, solution1[x], solution2[x]}, {x,0,1,.1}];

TableForm[tabledata, TableSpacing ã {1, 15}, 
          TableHeadings ã {None, {"x","analytic", "numerical"}}]

 X analytic numerical

 0 1 1.
 0.1 1.15817 1.15817
 0.2 1.33582 1.33582
 0.3 1.53895 1.53895
 0.4 1.77601 1.77601
 0.5 2.05935 2.05935
 0.6 2.40786 2.40786
 0.7 2.85196 2.85196
 0.8 3.44406 3.44406
 0.9 4.28301 4.28301
 1. 5.58016 5.58016

 

 
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11.16 Plot the solution to the differential equation 
d y
dt

dy
dt

dy
dt

y y y
2

2

2

1 0 0 1 0+ +⎛
⎝

⎞
⎠ + = =, ( ) , '( ) == 0  for 

0 ≤ t ≤ 10.

SOLUTION

solution1 = NDSolve[y''[t]+(y'[t]+ 1)2 y'[t] + y[t] 0,y[0] 1, y'[0] 0},
                  y[t],{t, 0, 10)]

{{y[t] → InterpolatingFunction[{{0.,10.}}, <>][t]}}

Plot[y[t] /. solution,{t, 0, 10}, PlotRange ã All]

2 4 6 8 10

–0.5

0.5

1.0

11.17 Plot the (five) solutions to 
d y
dx

dy
dx

y
2

2 0 3 0+ + =. sin  for 0 ≤ x ≤ 30 using initial conditions y'(0) = 0, 
y(0) = –2, –1, 0, 1, and 2.

SOLUTION

Do[{solution = NDSolve[{y''[x]+ 0.3 y'[x]+ Sin[y[x]] 0, y[0] i, y'[0] 1},
                                                    y[x], {x, 0, 30}];

    f[x_]= solution[[1,1,2]];

    graph[i]= Plot[f[x], {x, 0, 30}, PlotStyle ã Hue[.2 i +.5], 
                                    PlotRange ã All]}, {i, –2, 2}];

Show[graph[–2], graph[–1], graph[0], graph[1], graph[2]]

5 10 15 20 25 30

–2

–1

1

2

When plotted in color, the five graphs are clearly 
distinguishable.
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11.3 Laplace Transforms
In this section we describe an ingenious method for solving differential equations. Although the procedure 
can be used in a wide variety of problems, its real power lies in its ability to solve a differential equation 
whose “right hand side” is either discontinuous or zero except on a very short interval when its value is 
large. Because most of these types of problems arise within the context of time as the independent variable, 
we will express y and its derivatives as functions of t. We shall discuss Laplace transforms heuristically, 
and shall not concern ourselves with conditions sufficient for existence.

If f is defined on the interval [0, ∞), the Laplace transform of f(t) is defined

f t e f t dtst( ) ( ){ } = −
∞

∫0

Its usefulness lies in the following properties, which we list without proof:

1 1

1

2 2

2

{ } = { } = −

{ } = { } =

s
bt b

s b

t
s

bt

sinh( )

cosh( ) ss
s b

t n
s

n
n

2 2

1

−

{ } = +
! for positive integers n e bt b

s a b

e
s a

e

a t

a t a t

sinh( )
( ){ } = − −

{ } = −

2 2

1 ccosh( )
( )

sin( )

bt s a
s a b

bt b
s b

f

{ } = −
− −

{ } = +

2 2

2 2 ''( ) ( ) ( )

cos( ) '

t s f t f

bt s
s b

f

{ } = { } −

{ } = +

 0

2 2 ''( ) ( ) ( ) '( )

sin( )

t s f t sf f

e bta t

{ } = { } − −

{

2 0 0

}} = − + +{ } = { } +b
s a b

af t bg t a f t b
( )

( ) ( ) ( )2 2 g t

e bt s a
s a b

a t

( )

cos( )
( )

{ }

{ } = −
− +2 2 ( ) ( ) ( )If , thenF s f t e f ta t= { } {{ } = −F s a( )

Mathematica computes the Laplace transform of a function, f, by the invocation of the command 
LaplaceTransform.

 LaplaceTransform[f[var1], var1, var2] computes the Laplace transform of the function f, 
with independent variable var1, and expresses it as a function of var2.

EXAMPLE 17 The following agree with the properties listed previously.

LaplaceTransform[Exp[2t] Sin[3t], t, s] //ExpandDenominator

3
13– 4s+s2

LaplaceTransform[Exp[2t]Cos[3t], t, s] //ExpandDenominator

–2+s
13– 4s+s2

LaplaceTransform[a f[t] + b g[t], t, s]

a LaplaceTransform[f[t], t, s] + b LaplaceTransform[g[t], t, s]

LaplaceTransform[f'[t], t, s]

– f[0] + s LaplaceTransform[f[t], t, s]

LaplaceTransform[f''[t], t, s]

– s f[0] + s2 LaplaceTransform[f[t], t, s] – f'[0]

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

LL

L

L

L

L
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The power of the Laplace transform is derived from the fact that there is a one-to-one correspondence 
between f (t) and ( )f t{ }. This means that if ( )f t{ } is known, then f (t) is uniquely determined. If 
F s f t( ) ( )= { }, then f t F s( ) ( )= { }−1 . L–1 is called the inverse Laplace transform.

 InverseLaplaceTransform[F[var1], var1, var2] computes the inverse Laplace transform 
of the function F, with independent variable var1, and expresses it as a function of var2.

EXAMPLE 18

InverseLaplaceTransform 1
s –3

, s, t⎡
⎣⎢

⎤
⎦⎥

3t

InverseLaplaceTransform 1
s –8

, s, t3
⎡
⎣⎢

⎤
⎦⎥

1
12

– Cos 3 t – 3 Sin 3 t–t 3 t [ ] [ ]( )
The next example illustrates how the Laplace transform can be used to solve a simple differential 

equation.

EXAMPLE 19 Solve the differential equation d y
dt

dy
dt

y t y y
2

2
23 2 0 1 0 2− + = = =, '( ) , ( ) . First we compute the 

Laplace transform of both sides of the equation. This can be done in one step.

equation = y''[t]– 3 y'[t]+ 2 y[t] t2;

temp = LaplaceTransform[equation, t, s] 

2 LaplaceTransform[y[t], t, s]+ s2 LaplaceTransform[y[t], t, s]–

 3(s LaplaceTransform[y[t], t, s]– y[0])– s y[0] – y'[0] 2
s3

Then we solve for the Laplace transform satisfying the given initial conditions.

temp2 = Solve[temp, LaplaceTransform[y[t], t, s]] /. {y'[0] ã 1, y[0] ã 2}

LaplaceTransform[y[t], t, s] 2–5s +23

→ ss
s (2–3s+s )

4

3 2{ }{ }
Next we extract the transform as a function of s.

temp3 = temp2[[1, 1, 2]]

2–5s + 2s
s (2–3s+s )

3 4

3 2

Finally, we compute the inverse Laplace transform to get the solution of the equation.

InverseLaplaceTransform[temp3, s, t]
1
4
7+ 4 –3 +6t+ 2tt 2t 2( )

As indicated at the beginning of this section, Laplace transforms are the ideal tool to use when dealing 
with discontinuous “right-hand sides.” In this context we shall find it convenient to introduce the Heaviside 
theta function and the unit step function.

 UnitStep[x] returns a value of 0 if x < 0 and 1 if x ≥ 0.
 HeavisideTheta[x] returns a value of 0 if x < 0 and 1 if x > 0.

The unit step function, which we represent as u(t), offers a convenient way to define piecewise defined 
functions.

 

 

L
L L

L

Traditionally, one would factor the denominator, ex-
pand into partial fractions, and find the inverse trans-
formation separately for each term. Mathematica 
does it all automatically.
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It is easily shown that ( )u t c
e

s

cs

−{ } =
−

 and, if F s f t( ) ( )= { } , then ( ) ( ) ( )u t c f t c e F scs− −{ } = − . 
These properties make it convenient to solve differential equations involving piecewise continuous 
functions.

EXAMPLE 21 Solve d y
dt

dy
dt

y g t y y g
2

2 3 2 0 0 0− + = ( ) (, ( ) = ' ( ) = where tt
t

t
) =

≤ <
>

⎧
⎨
⎩

1 0 1

0 1

if

if
Plot the solution for 0 ≤ t ≤ 2.

For t ≥ 0, g(t)= UnitStep[1 – t]. 

temp = LaplaceTransform[y''[t] – 3 y'[t] + 2 y[t]  UnitStep[1 – t], t, s]

2 LaplaceTransform[y[t],t,s]+s Laplace2 TTransform[y[t],t,s]–

3(s LaplaceTransforrm[y[t],t,s]- y[0])–s y[0]– y'[0] 1–Cosh[s]+Sinh[s]
s

temp2=Solve[temp, LaplaceTransform[y[t], t, s]] /. {y'[0] ã 0, y[0] ã 0}

LaplaceTransform[y[t],t,s 1– Cosh[s]+→ SSinh[s]
s(2–3s+s )2{ }{ }

temp3 = temp2[[1, 1, 2]]

1– Cosh[s]+ Sinh[s]–3s y[0]
s(2–3s 2+ s )

f[t_] = InverseLaplaceTransform[temp3, s, t]

1
2

–1+ – –1+ HeavisideTheta[–1t 2 –1+t 2( ) ( ) +t]( )
Plot[f[t], {t, 0, 2}]

0.5 1.0 1.5 2.0

2

4

6

8

0.5 1.0 1.5 2.0

5

10

15 Observe that the solution is continuous, 
even though the equation involves a 
discontinuous function.

 

L

EXAMPLE 20 Plot the graph of g x
x x
x x

( ) =
<
≥{ if

if
1
13  for 0 ≤ x ≤ 2.

g[x_] = UnitStep[1 – x]x + UnitStep[x – 1]x3;

Plot[g[x], {x, 0, 2}]



LL
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In physical and biological applications, we are often led to differential equations whose right-hand side, 
f(t), is a function of an impulsive nature, that is, f(t) has zero value everywhere except over a short interval 
of time where its value is positive. 

The Dirac delta function is an idealized impulse function. Although not a true function in the classical 
sense, its validity is justified by the theory of distributions, developed by Laurent Schwartz in the mid-
twentieth century. It is defined by the following pair of conditions:

δ

δ

( )

( )

t t t t

t t dt

− = ≠

− =
−∞

∞

∫

0 0

0

0

1

if

An immediate consequence of the definition is the result that f t t t dt f t( ) ( ) ( )δ − =
−∞

∞

∫ 0 0
. It follows, there-

fore, that δ δ( ) ( )t t e t t dt est st−{ } = − =− −
∞

∫0 00
0 , provided that t0 ≥ 0. Otherwise its value is 0.

 DiracDelta[t] returns δ ( )t , the Dirac delta function, which satisfies δ δ( ) , ( )t t t dt= ≠ =
−∞

∞

∫0 0 1if .

EXAMPLE 22

DiracDelta[t]dt
−−∞∞

∞∞

∫
1

f[t] DiracDelta[t– 5]dt
−−∞∞

∞∞

∫
f[5]

EXAMPLE 23

LaplaceTransform[DiracDelta[t – a], t, s]
–a s HeavisideTheta[a]

LaplaceTransform[DiracDelta[t – 3], t, s]
–3 s

LaplaceTransform[DiracDelta[t + 3], t, s]

0

Since we know the Laplace transform of the Dirac delta function, we can solve differential equations 
involving impulses much the same way as described in Example 19. The following example illustrates 
the method.

EXAMPLE 24 Find the solution of the differential equation 
d y
dt

dy
dt

y t y y
2

2 2 1 0 0 0− + = − = =δ ( ), ( ) '( ) .

equation = y''[t] – 2 y'[t] + y[t]  DiracDelta[t – 1];

temp = LaplaceTransform[equation, t, s] 

LaplaceTransform[y[t],t,s]+s LaplaceTr2 aansform[y[t],t,s]–

2(s LaplaceTransform[[y[t],t,s]– y[0])–s y[0]– y'[0] –ss

temp2 = Solve[temp, LaplaceTransform[y[t], t, s]] /. {y'[0]ã 0, y[0]ã 0}

LaplaceTransform[y[t],t,s]
1–2s+

–s

→
ss2{ }{ }

temp3 = temp2[[1, 1, 2]] 

–s

21 – 2s+s

solution[t_] = InverseLaplaceTransform[temp3, s, t]
–1+t(–1+t)HeavisideTheta[–1+t]

←  Since Mathematica does not know 
whether a is negative or non-negative, 
HeavisideTheta[a] is included in the 
Laplace transform. 









L




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Laplace transforms can be used to solve systems of differential equations. The technique is similar to 
that of a single equation, except that a different transform is defined for each dependent variable. The next 
example illustrates the method for solving a system of two first-order equations. It generalizes in a natural 
way to larger and higher-order systems.

EXAMPLE 25 Solve the system 

dx
dt

y t

x
dy
dt

+ =

+ =

⎧
⎨
⎪

⎩⎪4 0
 with initial condition x (0) = 1,  y (0) = –1.

system = {x'[t] + y[t]  t, 4 x[t] + y'[t]  0};

temp = LaplaceTransform[system, t, s]

{s LaplaceTransform[x[t],t,s]+ LaplaceTrannsform[y[t],t,s]– x[0] 1
s
,

4 LaplaceTra

2

nnsform[x[t],t,s]+s LaplaceTransform[y[t]],t,s]– y[0] 0}

temp2 = Solve[temp, {LaplaceTransform[x[t], t, s], 
                               LaplaceTransform[y[t], t, s]}] /. {x[0] ã 1, y[0] ã – 1}

LaplaceTransform[x[t],t,s] –
–1 –s –s
s(–4 +

2

→
ss )

,

LaplaceTransform[y[t],t,s] –
4

2{⎧
⎨
⎩

→ ++4 s + s
s (–4 + s )

2 3

2 2 }⎫
⎬
⎭

temp3a = temp2[[1, 1, 2]]

–1–s –s
s(–4+s )

2

2

temp3b = temp2[[1, 2, 2]]

–4+ 4s +s
s (–4+s )

2 3

2 2

InverseLaplaceTransform[temp3a, s, t]

–1
4
+ 3

8
+ 7

8

–2t 2t

InverseLaplaceTransform[temp3b, s, t]

3
4

– 7
4

+t
–2 t 2 t

The solution to the system is 

x e e y e et t t t
= + + = +– –1

4
3

8
7

8
3

4
7

4
2 2 2 2– –

, tt

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

2.5

 

 

Plot[solution[t], {t, 0, 2}, PlotStyle ã Thickness[.01]]




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SOLVED PROBLEMS

11.18 Solve the equation 
d y
dt

y t
2

2 + = sin  with initial conditions y y( ) , '( )0 0 0 2= = .

SOLUTION

equation = y''[t]+ y[t] Sin[t];

temp = LaplaceTransform[equation, t, s] 

LaplaceTransform[y[t],t,s]+

s LaplaceTran2 ssform[y[t],t,s]–s y[0]– y'[0] 1
1+s2

temp2 = Solve[temp, LaplaceTransform[y[t], t, s]] /. {y'[0] ã 2, y[0] ã 0}

LaplaceTransform[y[t],t,s] 3+2s
(1+

2

→ 2 2s ){ }{ }
temp3 = temp2[[1, 1, 2]];

InverseLaplaceTransform[temp3, s, t]

1
2
(–t Cos[t]+5Sin[t])

11.19 Solve 
d y
dt

dy
dt

y e y yt
2

2 0 3 0 2+ + = = =, ( ) , '( ) .

SOLUTION

equation = y''[t]+ y'[t] + y[t] Exp[t];

temp = LaplaceTransform[equation, t, s] 

LaplaceTransform[y[t],t,s]+s LaplaceTrannsform[y[t],t,s]+

s LaplaceTransform[y[2 tt],t,s]– y[0]–s y[0]– y'[0] 1
–1+s

temp2 = Solve[temp, LaplaceTransform[y[t], t, s]] /. {y'[0]ã 2, y[0]ã 3}

{{LaplaceTransform[y[t],t,s] –4+2s+→
2

2
3s

(–1+s)(1+s+s )
}}

temp3 = temp2[[1, 1, 2]];

InverseLaplaceTransform[temp3, s, t]

1
3 +8 Cos

3t
2

+ 6 3 Sin
3t
2

–t/2 3t/2 ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎛
⎝

⎞
⎠

11.20 Solve the equation 
d y
dt

dy
dt

y g t y y
2

2 2 0 0 0− + = = =( ), ( ) '( ) , where g t
t t
t t

( ) =
≤ ≤

>{ if
if

0 1
12

 and plot 

the solution for 0 ≤ x ≤ 4.

SOLUTION

equation = y''[t] – 2y'[t] + y[t]  t UnitStep[1 – t] + t2 UnitStep[t – 1];

temp = LaplaceTransform[equation, t, s]

LaplaceTransform[y[t],t,s]+s LaplaceTransfo2 rrm[y[t],t,s]–

2(s LaplaceTransform[y[t],t,ss]– y[0])– s y[0]– y'[0]

(2+2s+s )
s

–s 2

3 ++
1– Cosh[s]-s Cosh[s]+Sinh[s]+sSinh[s]

s2

temp2 = Solve[temp, LaplaceTransform[y[t], t, s]] /.{y'[0]ã 0, y[0] ã 0}

{{LaplaceTransform[y[t], t, s]→

 –s s 2 s s 2 s(2 + 2s + s + s – sCosh[s]– s Cosh[s] + sSinhh[s] + s Sinh[s])
s(1–2s+s )

}}
s 2

3 2

 









     
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temp3 = temp2[[1, 1, 2]] 

–s s 2 s s 2 s(2 + 2s + s + s – sCosh[s]– s Cosh[s] + sSinh[s]] + s Sinh[s])
s(1–2s+s )

}}
s 2

3 2

f[t_] = InverseLaplaceTransform[temp3, s, t]

(2 + t(–2 + t)+ t)+(t(–11 + 3 t)+ (4 + 3 t + t2)) HeavisideTheta[–1 + t]

Plot[f[t], {t, 0, 4}]

1 2 3 4

20

40

60

80

100

11.21 Solve the system 

  
dx
dt

y t t

x
dy
dt

t t
x y

+ =

+ =

⎧

⎨
⎪

⎩
⎪

= =
sin

cos
( ) ( )0 0 0

SOLUTION

system = {x'[t] + y[t] t Sin[t], x[t]+ y'[t] t Cos[t]};

temp = LaplaceTransform[system, t, s]

{s LaplaceTransform[x[t], t, s]+ LaplaceTransform[y[t], t, s]– 

 x[0] 
2s

(1+s )2 2 , LaplaceTransform[x[t], t, s]+

 s LaplaceTransform [y[t], t, s]– y[0] –1+s
(1+s )

2

2 2 }

temp2 = Solve[temp, {LaplaceTransform[x[t], t, s], 

  LaplaceTransform[y[t], t, s]}] /. {x[0] ã 0, y[0] ã 0}

{{LaplaceTransform[x[t], t, s]→ 1
(–1+s )(1+s )

,2 2

  LaplaceTransform[y[t], t, s]→ – 3s–s
(–1+s )(1+s )

3

2 2 2
}}

temp3a = temp2[[1, 1, 2]];

temp3b = temp2[[1, 2, 2]];

InverseLaplaceTransform[temp3a, s, t] //Simplify

1
4
(––t + t – 2 Sin [t])

InverseLaplaceTransform[temp3b, s, t] //Simplify

1
4
(––t – t + 2 Cos [t]+ 4 t Sin[t])

The solution of the system is 

x e e t

y e e t t

t t

t t

= − + −

= − − + +

−

−

1
4 2

1
4 2 4

( sin )

( cos sin tt)

⎧
⎨
⎪

⎩⎪



     
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11.22 The equation governing the amount of current, I, flowing through a simple resistance-inductance 
circuit when an EMF (voltage) E is applied is L dI

dt
RI E+ = . The units for E, I, and L are, respectively, 

volts, amperes, and henries. Suppose L = 1 and R = 10. If 1 volt is applied at time t = 0 and removed 
1 sec later, plot the current in the circuit during the first 2 seconds.

SOLUTION

e[t_] = UnitStep[1 – t];

Plot[e[t], {t, 0, 2}, PlotStyle ã Thickness[.01]];

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

l = 1; r = 10;

equation = l i'[t]+ r i[t] e[t];

temp = LaplaceTransform[equation, t, s]

–i[0]+10 LaplaceTransform[i[t], t, s]+

 s LaplaceTransform[i [t], t, s] 1– Cosh[s]+Sinh[s]
s

temp2 = Solve[temp, LaplaceTransform[i[t], t, s]] /. i[0] ã 0

LaplaceTransform[i[t], t, s
1–cosh[s]+Sinh[→ ss]

s(10+s){ }⎧
⎨
⎩

⎫
⎬
⎭

temp3 = temp2[[1, 1, 2]] // Expand

1– Cosh[s]+Sinh[s]
s(10+s)

f[t_] = InverseLaplaceTransform[temp3, s, t]

1
10

–10t(–1 + 10t +(10 – 10t) HeavisideTheta[–1 + t])

Plot[f[t], {t, 0, 2}, PlotStyle ã Thickness[.01], 
     AxesLabel ã {"Time","Current"}]

0.5 1.0 1.5 2.0
Time

0.02

0.04

0.06

0.08

0.10
Current

The initial current is assumed 
to be 0.
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11.23 A particle of mass m is attached to one end of a spring and allowed to come to rest in an equilibrium 
position. If an external force, f( t), is then applied to the particle, its motion is described by the 

equation m
d y
dt

a
dy
dt

k y f t y y
2

2 0 0 0 0+ + = = =( ) '( ) ( ), ,  where a is a damping constant and k is the spring’s 

stiffness constant. Assuming m = 1, a = 2, k = 1, and f t e t( ) = − , describe the motion of the spring. Then 
determine the motion of the spring if an impulse of 1 lb-sec is applied after 1 sec. Plot both graphs 
on one set of axes.

SOLUTION

m = 1; a = 2; k = 1;

equation = m y''[t]+ a y'[t]+ k y[t] Exp[– t]; (* without impulse *)

temp = LaplaceTransform[equation, t, s];

temp2 = Solve[temp, LaplaceTransform[y[t], t, s]] /. {y'[0]ã 0, y[0]ã 0};

temp3 = temp2[[1, 1, 2]];

Print["Solution Without Impulse (dashed)"]

f1[t_]= InverseLaplaceTransform[temp3, s, t]

g1 = Plot[f1[t], {t, 0, 10}, PlotStyle ã Dashing[{.01}];

equation = m y''[t]+ a y'[t]+ k y[t] 
 Exp[– t]+ DiracDelta[t – 1]  (* with impulse *)

temp = LaplaceTransform[equation, t, s];

temp2 = Solve[temp, LaplaceTransform[y[t], t, s]] /. {y'[0] ã 0, y[0] ã 0};

temp3 = temp2[[1, 1, 2]];

Print["Solution With Impulse (solid)"]

f2[t_] = InverseLaplaceTransform[temp3, s, t]

g2 = Plot[f2[t], {t, 0, 10}];

Solution Without Impulse (dashed)
1
2
–t t2

Solution With Impulse (solid)
1
2
–t t2 + 1 – t(–1 + t) UnitStep[–1 + t]

Show[g1, g2 ,PlotRange ã All]

2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6
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Linear Algebra

12.1 Vectors and Matrices 
Vectors and matrices are represented as lists (Chapter 3) in Mathematica. A vector is a simple list and a 
matrix is a list of vectors.

The elements of a vector or a matrix may be entered manually as a list or, more conveniently, by the 
use of built-in commands. 

Vectors

 Table[expression, {i, n}] constructs an n-dimensional vector whose elements are the values 
of expression for i = 1, 2, 3,..., n.

 Array[f, n] generates an n-dimensional vector whose elements are f[1], f[2], ... , f[n]. 
f is a function of one variable.

Matrices

 Table[expression, {i, m}, {j, n}] constructs an m × n matrix whose elements are the values 
of expression for (i, j) = (1, 1),...,(m,n).

 Array[f, {m, n}] generates an m × n matrix whose elements are f[1,1], ... , f[m,n]. 
f is a function of two variables.

 DiagonalMatrix[list] creates a diagonal matrix whose diagonal entries are the elements of the 
one-dimensional array list.

 IdentityMatrix[n] creates an n × n identity matrix.

Although matrices are represented as lists, they may be viewed as matrices by using the MatrixForm 
command.

 MatrixForm[list] prints the elements of the two-dimensional array list in a rectangular arrangement 
enclosed by brackets. If list is a simple (one-dimensional) array,  MatrixForm prints it as a column 
vector, i.e., an n × 1 matrix.

Using //MatrixForm to the right of list is equivalent to MatrixForm[list] and is a bit more 
convenient. Care must be taken, however, not to use //MatrixForm  in the definition of the matrix. This 
command is for display purposes only. (See Problem 12.3.)

EXAMPLE 1

m = {{1, 1}, {1, 2}};
m //MatrixForm

1 1
1 2

⎛
⎝⎜

⎞
⎠⎟

CHAPTER 12
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Additionally, a matrix can be introduced via the menu  Insert ⇒ Table/Matrix ⇒ New . . . (On a PC, 
a matrix can also be inserted by right-clicking the mouse and selecting Insert Table/Matrix . . .)

⎛

⎝⎜
⎞

⎠⎟

This produces a grid as shown. Once the grid has been set up, you can conveniently enter the numbers, 
using the [TAB] key to go from cell to cell. Options for filling with 0s and 1s are particularly convenient 
for large, sparse matrices.

  
  
  

EXAMPLE 2 A matrix is a list in Mathematica. Even if it is input via the Create Table/Matrix menu, it is repre-
sented internally as a list of depth 2.

m =
1 2 3
4 5 6
7 8 9

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
 ← Matrix m is created using the Create Table/Matrix menu.

{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}

EXAMPLE 3 A vector can be represented as a simple list or as an n × 1 matrix. Either way, MatrixForm will print 
it as a column vector.

v = {1, 2, 3, 4, 5};

v // MatrixForm

1
2
3
4
5

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

v =

1
2
3
4
5

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 ← v is input using Create Table/Matrix.

{{1}, {2}, {3}, {4}, {5}} ← v is output as a list.

v // MatrixForm

1
2
3
4
5

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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EXAMPLE 4 To generate a vector whose entries are the squares of the first five consecutive integers, we could 
simply enter them by hand.

squares = {1, 4, 9, 16, 25}
{1, 4, 9, 16, 25}

More conveniently, however, we can use the Table or Array command.

squares = Table[i2, {i, 5}]

{1, 4, 9, 16, 25}

f[i_] = i2;

squares = Array[f, 5]

{1, 4, 9, 16, 25}

To view as a vector,

MatrixForm[squares] or squares //MatrixForm

1

4

9

16

25

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

EXAMPLE 5 We will construct a 5 × 7 matrix whose entries are the sum of its row and column positions. For 
example, a2,3 = 5. We could, of course, input the entries directly using the tool in Insert ⇒ Table/Matrix ⇒ New . . . ,
but it is certainly preferable to use one of the standard Mathematica commands. Here are two ways it can be 
done:

matrix = Table[i + j, {i, 5}, {j, 7}]

{{2, 3, 4, 5, 6, 7, 8}, {3, 4, 5, 6, 7, 8, 9}, {4, 5, 6, 7, 8, 9, 10}, {5, 6, 7, 8, 9, 10, 11}, 
 {6, 7, 8, 9, 10, 11, 12}}

f[i_, j_] = i + j;

matrix = Array[f, {5, 7}]

{{2, 3, 4, 5, 6, 7, 8}, {3, 4, 5, 6, 7, 8, 9}, {4, 5, 6, 7, 8, 9, 10}, {5, 6, 7, 8, 9, 10, 11},
 {6, 7, 8, 9, 10, 11, 12}}

Either way we can view the generated array as a matrix.

matrix //MatrixForm

2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

⎛

⎝

⎜⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

EXAMPLE 6 Submatrices can be constructed from a given matrix by careful implementation of [[ ]] (see the 
Part command, Chapter 3). First we construct a 5 × 5 matrix of consecutive integers.

matrix = Partition[Range[25],5];

matrix // MatrixForm

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

⎛

⎝

⎜⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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We can obtain a particular element of the matrix, say the element in row 3, column 4.

matrix[[3, 4]]
14

If we want the entire fourth row, we extract the fourth sublist from matrix.

matrix[[4]]

{16, 17, 18, 19, 20}

The entire fourth column can be obtained using the All directive.

matrix[[All, 4]]

{4, 9, 14, 19, 24}

We can obtain the submatrix whose elements are in rows 1, 3, and 5 and columns 2 and 4.

matrix[[{1, 3, 5}, {2, 4}]] // MatrixForm

2 4
12 14
22 24

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Or we can obtain the 3 × 5 matrix consisting of matrix with rows 2 and 4 deleted.

matrix[[{1, 3, 5}, All]] // MatrixForm

1 2 3 4 5
11 12 13 14 15
21 22 23 24 25

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

With careful use of the Take command (Chapter 3) we can even construct the submatrix of matrix consisting 
of those elements in rows 2 through 4 and columns 3 through 5.

Take[matrix, {2, 4}, {3, 5}] // MatrixForm

8 9 10
13 14 15
18 19 20

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Although many matrices can be created using Table or Array, Mathematica offers some commands 
for constructing certain specialized matrices.

 ConstantArray[c, {m, n}] generates an m × n array, each element of which is c.
 HilbertMatrix[n] creates an n × n Hilbert matrix
 HilbertMatrix[m, n] creates an m × n Hilbert matrix.
 HankelMatrix[n] creates a Hankel matrix whose first row (and column) is {1, 2, 3, . . . , n}
 HankelMatrix[n, list] creates a Hankel matrix whose first row (and column) is list.

EXAMPLE 7

ConstantArray[0, {3, 5}] //MatrixForm

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎛

⎝
⎜

⎞

⎠
⎟

HilbertMatrix[5] //MatrixForm

1 1
2

1
3

1
4

1
5

1
2

1
3

1
4

1
5

1
6

1
3

1
4

1
5

1
6

1
7

1
4

1
5

1
6

1
7

1
8

1
5

1
6

11
7

1
8

1
9

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
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HankelMatrix[{a, b, c, d, e}] //MatrixForm

a b c d e
b c d e 0
c d e 0 0
d e 0 0 0
e 0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

SOLVED PROBLEMS

 12.1 Construct a ten-dimensional vector of powers of 2.

SOLUTION

powersof2 = Table[2k, {k, 1, 10}]
{2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}

powersof2 // MatrixForm

2
4
8
16
32
64
128
256
512
1024

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟

 12.2 Construct a 5 × 5 matrix of random digits.

SOLUTION

Table[RandomInteger[9], {i, 5}, {j, 5}] // MatrixForm

5 7 9 9 4
2 8 6 9 7
1 0 8 2 2
7 8 8 8 1
9 2 2 3 4

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

12.3 What happens if //MatrixForm is included within the definition of a matrix?

SOLUTION

m1 = {{1, 1}, {1, 2}} //MatrixForm

m2 = {{2, 3}, {4, 5}} //MatrixForm

1 1
1 2

⎛
⎝⎜

⎞
⎠⎟

2 3
4 5

⎛
⎝⎜

⎞
⎠⎟

m1 + m2

1 1
1 2

+
2 3
4 5

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
  ← We do not get the sum of the two matrices.
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Mathematica cannot perform the indicated operation because m1 and m2 are not lists. Now we do it correctly.

m1 = {{1, 1}, {1, 2}}

m2 = {{2, 3}, {4, 5}}

{{1, 1}, {1, 2}}

{{2, 3}, {4, 5}}

m1 + m2 //MatrixForm

3 4
5 7

⎛
⎝⎜

⎞
⎠⎟

12.4 Construct a 10 × 10 diagonal matrix whose diagonal entries are the first ten primes.

SOLUTION

primelist = Array[Prime, 10]       Prime is a built-in Mathematica function.

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29}

DiagonalMatrix[primelist] // MatrixForm

2 0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0 0 0
0 0 5 0 0 0 0 0 0 0
0 0 0 7 0 0 0 0 0 0
0 0 0 00 11 0 0 0 0 0
0 0 0 0 0 13 0 0 0 0
0 0 0 0 0 0 17 0 0 0
0 0 0 0 0 0 0 19 0 0
0 00 0 0 0 0 0 0 23 0
0 0 0 0 0 0 0 0 0 29

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟

12.5 Construct a 5 × 5 upper triangular matrix of 1s with 0s below the main diagonal.

SOLUTION

m = Table[If[i < = j, 1, 0], {i, 5}, {j, 5}];

m // MatrixForm

1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 12.6 Construct a 7 × 7 tridiagonal matrix with 2s on the main diagonal, 1s on the diagonals adjacent to 
the main diagonal, and 0s elsewhere.

SOLUTION

m = Table[If[Abs[i – j] 1, 1, If[i  j, 2, 0]], {i, 1, 7}, {j, 1, 7}];

m // MatrixForm

2 1 0 0 0 0 0

1 2 1 0 0 0 0

0 1 2 1 0 0 0

0 0 1 2 1 0 0

0 0 0 1 2 1 0

0 0 0 0 1 2 1

0 00 0 0 0 1 2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
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12.7 Let M be the 6 × 6 matrix containing the integers 1 through 36. Construct a 3 × 3 matrix consisting 
of the elements in the odd rows and even columns of M.

SOLUTION

m = Table[6i + j, {i, 0, 5}, {j, 1, 6}];

m // MatrixForm

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 227 28 29 30

31 32 33 34 35 36

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

m[[{1, 3, 5}, {2, 4, 6}]] // MatrixForm

2 4 6
14 16 18
26 28 30

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

12.2 Matrix Operations
Since vectors and matrices are stored as lists in Mathematica, all list operations described in Chapter 3 
apply. In addition, there are some specialized commands that are applicable specifically to matrices. Since 
n-dimensional vectors can be considered to be n × 1 matrices, many of these commands apply to vectors as 
well. In the following descriptions, m, m1, and m2 denote matrices and v1 and v2 denote vectors.

 m1 + m2 computes the sum of two matrices.
 m1 – m2 computes the difference of two matrices.
 c m multiplies each element of m by the scalar c.
 m1. m2 computes the matrix product of m1 and m2. v1.v2 computes the dot product of v1 and v2. 

For matrices, the operation returns a list; for vectors, a single number is returned.
 Cross[v1, v2] or v1 × v2 returns the cross product of v1 and v2. (This applies to three-

dimensional vectors only.) The cross product symbol, ×, can be inserted into the calculation by 
typing (without spaces) the key sequence [ESC]c-r-o-s-s[ESC] . (Do not confuse this with the × on 
the Basic Math Input palette. The latter represents simple multiplication.)

EXAMPLE 8 First we generate two 3 × 3 “random” matrices as lists.

m1 = Table[RandomInteger[9], {i, 1, 3}, {j, 1, 3}]

{{9, 4, 2}, {2, 9, 3}, {0, 1, 4}}

m2 = Table[RandomInteger[9], {i, 1, 3}, {j, 1, 3}]

{{2, 8, 1}, {8, 3, 4}, {6, 4, 0}}

Now we look at them in matrix form.

m1 // MatrixForm

9 4 2
2 9 3
0 1 4

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

m2 // MatrixForm

2 8 1
8 3 4
6 4 0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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The next operation multiplies each element of m1 by 5.

5 m1

45 20 10

10 45 14

0 5 20

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Next compute their sum, difference, and product.

m1 + m2 // MatrixForm

11 12 3

10 12 7

6 5 4

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

m1 - m2 // MatrixForm

7 –4 1

–6 6 –1

–6 –3 4

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

m1. m2 // MatrixForm

62 92 25

94 55 38

32 19 4

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Care must be taken not to use * between the matrices to be multiplied, as this simply multiplies corresponding 
entries of the matrices, in accordance with list conventions.

m1 * m2 // MatrixForm

18 32 2

16 27 12

0 4 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

EXAMPLE 9

v1 = {1, 2, 3};

v2 = {4, 5, 6};

v1.v2

32   ←  Mathematica expresses the dot product as a number rather 
than as a list containing a single entry.

Cross[v1, v2]

{– 3, 6, – 3}

Mathematica makes no distinction between row and column vectors. Therefore, if v is an n-dimensional 
vector and m is an n × n  matrix, both v.m  and m .v are defined (although they generally yield differ-
ent results). Furthermore, if v1 is an n × 1 matrix (row vector) and v2 is a 1 × n matrix (column vector), 
v1.v2 should be an n × n matrix, but Mathematica still computes a dot product. The command Outer 
can be used to compute the “outer” product of two vectors.

 Outer[Times, v1, v2] computes the outer product of v1 and v2. (Outer is much more 
general and can be used for other purposes. See the Documentation Center for additional 
information.)
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EXAMPLE 10

v1 = {1, 2, 3};

v2 = {4, 5, 6};

m = {{1, 2, 2}, {2, 3, 3}, {3, 1, 2}};

m //MatrixForm

1 2 2
2 3 3
3 1 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

m.v1                       1 2 2

2 3 3

3 1 2

1

2

3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟=

11

17

11
⎟⎟

{11, 17, 11}

v1.m

{14, 11, 14}                   1 2 3 =

14

11

14

( )
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1 2 2

2 3 3

3 1 2

Outer[Times, v1, v2] // MatrixForm

4 5 6
8 10 12
12 15 18

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
                   

1

2

3

4 5 6

4 5 6

8 10 12

12 15 18

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

( )
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=

 Inverse[matrix] computes the inverse of matrix.
 Det[matrix] computes the determinant of matrix. 
 Transpose[matrix] computes the transpose of matrix.
 Tr[matrix] computes the trace of matrix.
 MatrixPower[matrix, n] computes the nth power of matrix.
 Minors[matrix] produces a matrix whose (i, j)th entry is the determinant of the submatrix obtained 

from matrix by deleting row n – i +1 and column n – j +1. (matrix must be square.)
 Minors[matrix, k] produces the matrix whose entries are the determinants of all possible k × k 

submatrices of matrix. (matrix need not be square.)

EXAMPLE 11

m1 =
1 2 2
2 3 3
3 4 5

;

m2=
1 2 3 4
5 6 7 8
9 10 11 12

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞⎞

⎠
⎟
⎟
;

 
These, and subsequent examples, were created 
using Create  Table/Matrix in the Insert menu.  

Inverse[m1] //MatrixForm

–3 2 0
1 1 –1
1 –2 1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Tr[m1]

9

MatrixPower[m1, 3] // MatrixForm

97 142 160
151 221 249
231 338 381

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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Transpose[m2] //MatrixForm

1 5 9
2 6 10
3 7 11
4 8 12

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Tr[m2] 

18 
The matrix does not have to be square 
in order for its trace to be defi ned.

EXAMPLE 12

m = Table[a[i, j], {i, 1, 3}, {j, 1, 3}];

m //MatrixForm

a[1,1] a[1,2] a[1,3]

a[2,1] a[2,2] a[2,3]

a[3,1] a[[3,2] a[3,3]

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

Minors[m] //MatrixForm

–a[1,2]a[2,1]+a[1,1]a[2,2] –a[1,3]a[2,1]+a[1,,1]a[2,3] –a[1,3]a[2,2]+a[1,2]a[2,3]

–a[1,2]aa[3,1]+a[1,1]a[3,2] –a[1,3]a[3,1]+a[1,1]a[3,,3] –a[1,3]a[3,2]+a[1,2]a[3,3]

–a[2,2]a[3,1]++a[2,1]a[3,2] –a[2,3]a[3,1]+a[2,1]a[3,3] –a[22,3]a[3,2]+a[2,2]a[3,3]

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

SOLVED PROBLEMS

 12.8 The (Euclidean) norm of a vector is the square root of the sum of the squares of its components. 
Compute the norm of the vector (1, 3, 5, 7, 9, 11, 13, 15).

SOLUTION

v = Table[2k – 1, {k, 1, 8}]

{1, 3, 5, 7, 9, 11, 13, 15}

norm = v.v

2 170

 12.9 Prove that the cross product of two vectors in 3 is orthogonal to each of the vectors that 
form it. 

SOLUTION

Let u = (a, b, c) and v = (d, e, f) and compute w = u ë v. Then verify that w^u and w^v. Two vectors are 
orthogonal (^) if their dot product is 0.

u = {u1, u2, u3};
v = {v1, v2, v3};

w = Cross[u, v]

{– u3 v2 + u2 v3, u3 v1 – u1 v3, – u2 v1 + u1 v2}

w.u // Expand

0

w.v // Expand

0
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12.10 It can be shown that the volume of a parallelepiped formed by u, v, and w is | u • (v ë w) |. Compute 
the volume of the parallelepiped formed by i + 2 j – 3 k, 2 i – 5 j + k , and 3 i + j + 2 k. (The quantity 
u • (v × w) is called the scalar triple product.)

SOLUTION

u = {1, 2, –3};
v = {2, –5, 1};
w = {3, 1, 2};
volume = Abs[u.Cross[v, w]]
64

12.11 Let u = (u1, u2, u3), v = (v1, v2, v3), and w = (w1, w2, w3). Prove that the scalar triple product, 

u • (v ë w) = 
u1 u2 u3
v1 v2 v3
w1 w2 w3

.

SOLUTION

u = {u1, u2, u3};
v = {v1, v2, v3};
w = {w1, w2, w3};
matrix = {{u1, u2, u3}, {v1, v2, v3}, {w1, w2, w3}};
lhs = u.Cross[v, w] // Expand;
rhs = Det[matrix] // Expand;
lhs  rhs
True

12.12 Construct the Hilbert matrix of order 6, and compute its determinant and its inverse.

SOLUTION

hilbert = HilbertMatrix[6];
hilbert // MatrixForm

1 1
2

1
3

1
4

1
5

1
6

1
2

1
3

1
4

1
5

1
6

1
7

1
3

1
4

1
5

1
6

1
7

1
8

1
4

1
5

1
6

1
7

11
8

1
9

1
5

1
6

1
7

1
8

1
9

1
10

1
6

1
7

1
8

1
9

1
10

1
11

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

Det[hilbert]

1
186 313420 339 200000

MatrixForm[Inverse[hilbert], TableAlignments ã Right]

36 –630 3360 –7560 7560 -2772

–630 14 700 -882200 211680 –220500 83160

3360 –88200 5644800 –1411200 1512000 –582120

–7560 211680 –11411200 3628800 –3969000 1552320

7560 ––220500 1512000 –3969000 4410000 –1746360

–2772 83160 –582120 1552320 –17463600 698544

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟⎟
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12.13 Construct a table that shows the determinant of the Hilbert matrices  of orders 1 through 10.

SOLUTION

TableForm[Table[{k, Det[HilbertMatrix[k]] // N}, {k, 1, 10}], 
                        TableSpacing ã {1, 5}, TableHeadings ã {None, {"k", "determinant"}}]

 k determinant

 1 1.

 2 0.0833333

 3 0.000462963

 4 1.65344 × 10–7

 5 3.7493 × 10–12

 6 5.3673 × 10–18

 7 4.8358 × 10–25

 8 2.73705 × 10–33

 9 9.72023 × 10–43

 10 2.16418 × 10–53

12.14 Let M =

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
10

2
10

7
10

3
10

3
10

4
10

5
10

4
10

1
10

. Compute lim
n

nM
→∞

. (M is a stochastic matrix.)

SOLUTION

m = 1
10

1 2 7
3 3 4
5 4 1

;
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Limit[MatrixPower[m, n], n ã Ç // MatrixForm

47
150

23
75

19
50

47
150

23
75

19
50

47
150

23
75

19
50

⎛

⎝

⎜
⎜
⎜⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

12.15 Let A =

− −
−

− −
− −

− −

⎛

⎝

⎜
⎜
⎜
⎜

⎞1 2 1 2 3
2 1 2 2 0
0 1 2 3 1
1 1 1 2 3
2 2 1 1 2⎠⎠

⎟
⎟
⎟
⎟

 and  f x x x x x x( ) = + − + − +5 4 3 22 3 2. Compute f(A).

SOLUTION

a =

1 2 –1 –2 3
2 1 2 –2 0
0 1 –2 3 –1
1 –1 1 2 –3
–2 –2 1 1 2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠⎠

⎟
⎟
⎟
⎟
;

Since the determinants are nonzero, each Hilbert 
matrix is invertible. The Hilbert matrix is a classic 
example of an ill-conditioned matrix.
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m = MatrixPower[a, 5]+ 2 MatrixPower[a, 4]– MatrixPower[a, 3]+ 
   MatrixPower[a, 2]– 3 a + 2 IdentityMatrix[5] ;
MatrixForm[m, TableAlignments ã Right]

–496 –948 –189 1776 –1695
–726 –862 288 714 –66
–117 3999 –103 –648 1233
–174 324 315 –1216 1875
1419 1068 –2267 –702 –1069

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

12.16 It can be shown that the complex number a + bi and the matrix 
a b
b a–

⎛
⎝⎜

⎞
⎠⎟  have the same algebraic 

properties. Compute (2 + 3i ) 5 using matrices and verify using complex arithmetic that this value is 
correct.

SOLUTION

a =
2 3
–3 2

;
⎛
⎝⎜

⎞
⎠⎟

MatrixPower[a, 5];

122 –597
597 122

⎛
⎝⎜

⎞
⎠⎟        ← This represents the number 122 – 597 i.

(2 + 3I)5

122 – 597‰

12.17 Compute the determinants

1 1 1 1

1 2 3

1
2

2
2

3
2 2

. .

. .

. .
. . . . . .
. . . . . .

x x x x
x x x x

x

n

n

11
1

2
1

3
1 1n n n

n
nx x x– – – –. .

 for n = 2, 3, 4, and 5. Can you determine a pattern? These are known as Vandermonde determinants.

SOLUTION

m[n_]  Table[x[i]^j, {j, 0, n – 1}, {i, 1, n}];

m[2] //MatrixForm

1 1
x[1] x[2]

⎛
⎝⎜

⎞
⎠⎟

m[3] //MatrixForm

1 1 1
x[1] x[2] x[3]
x[1] x[2] x[3]2 2 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Det[m[2]] // Factor

– x[1]+ x[2]

Det[m[3]] // Factor

–(x[1] – x[2])(x[1]– x[3])(x[2]– x[3])

Det[m[4]] // Factor

(x[1]– x[2])(x[1]– x[3])(x[2]– x[3])(x[1]– x[4])(x[2]– x[4])(x[3]– x[4])
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Det[m[5]] // Factor

(x[1]– x[2])(x[1]– x[3])(x[2]– x[3])(x[1]– x[4]) 
(x[2]– x[4])(x[3]– x[4])(x[1]– x[5])(x[2]– x[5]) 
(x[3]– x[5])(x[4]– x[5])

In general Det m[n] = x[i]–x[j]
i>j

[ ] ( )∏ . 

12.18 A theorem of linear algebra says that the determinant of a matrix is the sum of the products 
of each entry of any row or column by its corresponding cofactor. (The cofactor, Ci j , of ai j is 
(–1)i + j Mi j where Mi j is the corresponding minor.)  Use this to compute the determinant of a 
randomly generated 5 × 5 matrix and verify its value.

SOLUTION

n = 5;
a = TableRandomInteger[9], {i, 1, n}, {j, 1, n}];

a // MatrixForm

4 6 5 3 3

5 3 0 5 6

1 6 9 7 7

7 9 7 1 2

0 9 4 5 6

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

matrixofminors = Minors[a];

MatrixForm[matrixofminors, TableAlignments ã Right]

171 159 –174 –283 –216

–1350 –1584 –270 –140 –48

669 5449 342 293 –78

–561 –339 96 –143 –168

–3231 –3333 –4388 –497 246

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

signs = Table[(– 1)^(i + j), {i, 1, n}, {j, 1, n}];

cofactors = matrixofminors * signs;

MatrixForm[cofactors, TableAlignments ã Right]

171 –159 –174 283 –216

1350 –1584 270 –140 48

669 –549 3342 –293 –78

561 –339 –96 –143 168

–3231 3333 –438 4977 246

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

i=3 (* we expand using the third row *)

determinant = a[[n –i+1,n –j+1]]*cofactors[[i,j]]]
j=1

n

∑
2082

Det[a]

2082

The (i,  j)th element of Minors[a] gives the determinant of the matrix 
obtained by deleting row n – i + 1 and column n – j + 1.



CHAPTER 12  Linear Algebra 307

12.19 Let x =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1
2
3
4
5

. Compute x xT = [ ]
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 2 3 4 5

1
2
3
4
5

 and xxT =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

[ ]
1
2
3
4
5

1 2 3 4 5 .

SOLUTION

xTx is the dot product of the vector x with itself. xxT, however, is a 5 × 5 matrix.

x.x

55

Outer[Times, x, x] // MatrixForm

1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20
5 10 15 20 25

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟⎟
⎟
⎟
⎟

12.3 Matrix Manipulation
Mathematica offers a variety of matrix manipulation commands that are quite useful when working prob-
lems in linear algebra. Since matrices are actually lists, many of the commands are the same as described 
in Chapter 3.

 Join[list1, list2] combines the two lists list1 and list2 into one list consisting of the elements from 
list1 and from list2. For matrices, this has the effect of placing the rows of list2 under the rows of list1.

 Join[list1, list2, n] joins the objects at level n in each list. If n = 2, this has the effect of placing 
the columns of list2 to the right of the columns of list1.

 ArrayFlatten[{{m11, m12,...}, {m21, m22,...},...}]creates a single flattened matrix 
from a matrix of matrices mi j. All the matrices in the same row must have the same first dimension, 
and all the matrices in the same column must have the same second dimension.

EXAMPLE 13 The following examples illustrate the commands described previously. To see their effects 
more clearly, the matrices are shown as lists.

m1 = 

a b c
d e f
g h i

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

{{a, b, c}, {d, e, f}, {g, h, i}}

m2 = 

aa bb cc
dd ee ff
gg hh ii

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

{{aa, bb, cc}, {dd, ee, ff}, {gg, hh, ii}}

Join[m1, m2]

{{a, b, c}, {d, e, f}, {g, h, i}, {aa, bb, cc}, {dd, ee, ff}, {gg, hh, ii}}

% //MatrixForm

a b c
d e f
g h i
aa bb cc
dd ee ff
gg hh ii

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
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Join[m1, m2, 2]

{{a, b, c, aa, bb, cc},{d, e, f, dd, ee, ff},{g, h, i, gg, hh, ii}}

% //MatrixForm

a b c aa bb cc

d e f dd ee ff

g h i gg hh ii

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

ArrayFlatten[{{m1, m2}, {m2, m1}}]

{{a, b, c, aa, bb, cc}, {d, e, f, dd, ee, ff}, {g, h, i, gg, hh, ii}, 

 {aa, bb, cc, a, b, c}, {dd, ee, ff, d, e, f}, {gg, hh, ii, g, h, i}}

% //MatrixForm

a b c aa bb cc

d e f dd ee ff

g h i gg hh ii

aa bb cc a b c

dd ee ff f ee f

gg hh ii g h i

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

The following commands can be used to form submatrices:

 Take[matrix, n] returns the first n rows of matrix.
 Take[matrix, –n] returns the last n rows of matrix.
 Take[matrix, {m, n}] returns rows m through n of matrix.
 Take[matrix, m, n] returns a submatrix containing rows 1 through m and columns 1 through n of 

matrix.
 Take[matrix, {m, n}, {p, q}] returns rows m through n and colums p through q of  matrix.
 Drop[matrix, n] returns matrix with its first n rows deleted. 
 Drop[matrix, –n] returns matrix with its last n rows deleted. 
 Drop[matrix, {n}] returns matrix with its nth  row deleted. 
 Drop[matrix, {–n}] returns matrix with the nth row from the end deleted. 
 Drop[matrix, {m, n}] returns matrix with rows m through n deleted. 
 Drop[matrix, m, n] returns matrix with rows 1 through m and columns 1 through n deleted.
 Drop[matrix, {m},{n}] returns matrix with row m and column n deleted. 
 Drop[matrix, {m, n}, {p, q}] returns matrix with rows m through n and columns p through q 

deleted.
 Delete[matrix, n] deletes the nth row of matrix. 
 Delete[matrix, –n] deletes the nth from the last row of matrix.
 Delete[matrix, {{p1},{p2}, ...}] deletes rows p1, p2 ... 

EXAMPLE 14

m = Partition[Range[20],5];

m //MatrixForm

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Take[m, 3] //MatrixForm

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

The arrangement of the lists indicates that 
the two blocks on top, left to right, are m1 
and m2. The bottom blocks are m2 and m1.
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Take[m, {1, 4}, {3, 5}] //MatrixForm

3 4 5
8 9 10
13 14 15
18 19 20

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Take[m, {2, 3}] // MatrixForm

6 7 8 9 10
11 12 13 14 15

⎛
⎝⎜

⎞
⎠⎟

Take[m, 3, {2, 3}] //MatrixForm

2 3
7 8
12 13

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Take[m, {2, 3}, {2, 4}] //MatrixForm

7 8 9
12 13 14

⎛
⎝⎜

⎞
⎠⎟

SOLVED PROBLEMS

12.20 Construct a 10 × 10 upper triangular matrix whose nonzero entries are random digits. Show that its 
determinant is equal to the product of the entries on its main diagonal.

SOLUTION

f[i_ , j_ ] Random[Integer,{0,9}] /; i < j

f[i_ , j_ ] 0/; i ê j

m = Array[f, {10, 10}];

m //MatrixForm 

3 1 6 7 0 6 4 8 9 1
0 1 7 5 1 9 9 0 5 8
0 0 5 6 9 5 3 3 3 5
0 0 0 1 5 7 2 5 3 4
0 0 0 00 6 8 4 0 9 0
0 0 0 0 0 5 2 0 5 0
0 0 0 0 0 0 3 5 5 7
0 0 0 0 0 0 0 3 6 8
0 0 0 0 0 00 0 0 3 7
0 0 0 0 0 0 0 0 0 4

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

det[m] m[[i,i]]
i=1

10

∏
True

12.21 Construct a 9 × 9 block diagonal matrix with a 2 × 2 block of 2s, a 3 × 3 block of 3s and a 4 × 4 block 
of 4s. (A block diagonal matrix is a square partitioned matrix whose diagonal matrices are square 
and all others are zero matrices.)

SOLUTION

m2 = Table[2, {2}, {2}];

m3 = Table[3, {3}, {3}];


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m4 = Table[4, {4}, {4}];

z27 = ConstantArray[0, {2, 7}]; ← z27 is a 2 × 7 array of zeros, etc.

z32 = ConstantArray[0, {3, 2}];

z34 = ConstantArray[0, {3, 4}];

z45 = ConstantArray[0, {4, 5}];

top = ArrayFlatten[{{m2, z27}}];

middle = ArrayFlatten[{{z32, m3, z34}}];

bottom = ArrayFlatten[{{z45, m4}}];

ArrayFlatten[{{top}, {middle}, {bottom}}] //MatrixForm

2 2 0 0 0 0 0 0 0

2 2 0 0 0 0 0 0 0

0 0 3 3 3 0 0 0 0

0 0 3 3 3 0 0 0 0

0 0 3 3 3 0 0 00 0

0 0 0 0 0 4 4 4 4

0 0 0 0 0 4 4 4 4

0 0 0 0 0 4 4 4 4

0 0 0 0 0 4 4 4 4

⎛

⎝

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

12.22 Let M

a b c d e

f g h i j

k l m n o

p q r s t

u v w x y

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

. 

 Find the matrix P obtained from M by deleting its fourth row and third column. 

SOLUTION

temp = CharacterRange["a", "y"]; ← Generates a list of alphabet letters.

m = Partition[temp, 5]; ← Forms five sublists of five letters each.

m // MatrixForm

a b c d e

f g h i j

k l m n o

p q r s t

u v w x y

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

Drop[m,{4},{3}] //MatrixForm

a b d e

f g i j

k l n o

u v x y

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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12.4 Linear Systems of Equations
Mathematica offers a number of ways to solve systems of linear equations. Solve, discussed in Chapter 6, 
offers one alternative, but it is somewhat clumsy and inefficient for use on large systems. In this section 
we discuss a number of other procedures for solving systems of linear equations.

 LinearSolve[a, b] produces vectors, x, such that a.x = b.
 LinearSolve[a] produces a LinearSolveFunction that can be used to solve a.x = b  for 

different vectors b.

Here a is the matrix of coefficients of the unknowns, and b is the “right-hand side” of the linear system. 
If a is invertible, LinearSolve will produce a unique solution to the linear system. If a is singular, 
either no solution exists or there are an infinite number of solutions.

If a system has a unique solution, Mathematica returns the solution. If no solution exists, Mathematica 
returns an error message.

EXAMPLE 15 The system 2 x + y + z = 7, x – 4 y + 3 z = 2, 3 x + 2 y + 2 z = 13 has a unique solution. 

                     The system 2 x + y + z = 7, x – 4 y + 3 z = 2, 3 x – 3 y + 4 z = 13 has no solution.

a1 =
2 1 1
1 –4 3
3 2 2

;

a2=
2 1 1
1 –4 3
3 –3 4

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟⎟
;

b ={7,2,13};

LinearSolve[a1, b]

{1, 2, 3}

LinearSolve[a2, b]

LinearSolve õ nosol : Linear equation encountered that has no solution. 

LinearSolve[{{2, 1, 1}, {1, – 4, 3}, {3, – 3, 4}}, {{7}, {2}, {13}}]

If the system a.x = b has an infinite number of solutions, the treatment is a bit more complicated. In this case, 
Mathematica returns one solution, known as a particular solution. The full set of solutions is constructed by add-
ing to the particular solution the set of all solutions of the corresponding homogeneous system, a.x = 0.

The set of all vectors, x, such that a.x = 0, is called the null space of a and is easily determined by 
the command NullSpace.

 NullSpace[a] returns the basis vectors of the null space of a.

The nullity of a, the dimension of the null space of a, can be found by computing Length[NullSpace[a]]. 
The rank of a may be computed as n – Length[NullSpace[a]] where n represents the number of 
columns of a.

EXAMPLE 16 2 x + y + z = 7, x – 4 y + 3 z = 2, 3 x – 3 y + 4 z = 9 has an infinite number of solutions.

a =
2 1 1
1 –4 3
3 –3 4

; b ={7,2,9};
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

nullspacebasis = NullSpace[a]

{{– 7, 5, 9}} 

particular = LinearSolve[a, b]

10
3
, 1
3
, 0{ }                   ← This is a particular solution.

Because the null space contains a nonzero vector, 
there is no unique solution.
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The full set of solutions to the system is of the form  t*nullspacebasis + particular where t is an 
arbitrary parameter. However, to express as a single list, we must first flatten nullspacebasis.

generalsolution = t*Flatten[ nullspacebasis]+ particular

10
3

7t, 1
3
+5t, 9t−{ }

As a check, we substitute our general solution back into the original system.

a.generalsolution // Expand

{7, 2, 9}

The Gauss-Jordan method for solving the linear system a.x = b is based upon the reduction of the 
augmented matrix [a|b] into reduced row echelon form by a series of elementary row operations. The 
three basic elementary row operations are:

1. interchanging two rows
2. multiplying a row by a non-zero constant
3. replacing one row by itself plus a multiple of another row

It is easily seen that elementary row operations have no effect upon the solution of the system.

A matrix is said to be in reduced row echelon form if

1. all zero rows are placed at the bottom of the matrix
2. each leading nonzero entry is 1 (called a leading 1)
3. each entry above and below a leading 1 is 0
4. if two rows have leading 1s, the lower row has its leading 1 farther to the right

To solve a linear system, we use elementary row operations to reduce the augmented matrix to reduced row 
echelon form. The solution(s) of the system, or the fact that no solution exists, may then be easily determined.

Every student of linear algebra knows that row reduction is a time-consuming, tedious process that is 
highly prone to error. However, the Mathematica command RowReduce quickly reduces any matrix to 
reduced row echelon form.

 RowReduce[matrix] reduces matrix to reduced row echelon form.

EXAMPLE 17 Determine the reduced row echelon form of the 4 × 5 matrix whose general entry ai,j = |  i – j  |.

a = Table[Abs[i – j], {i, 1, 4}, {j, 1, 5}];
a // MatrixForm

0 1 2 3 4
1 0 1 2 3
2 1 0 1 2
3 2 1 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

RowReduce[a]

1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

We now illustrate how row reduction can be used to solve a linear system. For comparison purposes we 
use the three examples previously considered in Examples 15 and 16.
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EXAMPLE 18

(a) 2 x + y + z = 7, x – 4 y + 3 z = 2, 3 x + 2 y + 2 z = 13  (unique solution)
(b) 2 x + y + z = 7, x – 4 y + 3 z = 2, 3 x – 3 y + 4 z = 13  (no solution)
(c) 2 x + y + z = 7, x – 4 y + 3 z = 2, 3 x – 3 y + 4 z = 9    (infinite number of solutions)

We find the augmented matrix for each of the three systems.

a1=
2 1 1 7
1 –4 3 2
3 2 2 13

; a2=
2 1 1 7
1 –4 3 2
3 –3 4

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ 113

; a3=
2 1 1 7
1 –4 3 2
3 –3 4 9

;
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

RowReduce[a1] //MatrixForm

1 0 0 1
0 1 0 2
0 0 1 3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

RowReduce[a2] //MatrixForm

1 0 0
0 1 – 0
0 0 0 1

7
9
5
9

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

RowReduce[a3] //MatrixForm

1 0
0 1 –
0 0 0 0

7
9

10
3

5
9

1
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 x t y t z t= − = + =10
3

7
9

1
3

5
9

, , .

Note: Although the solution looks slightly different than the solution obtained previously, it is equivalent in the 
sense that it describes precisely the same solution set.

Another popular method, LU decomposition, is useful, particularly if you have many systems, all having 
the same coefficient matrix. The idea behind the method is simple.

If A is a square matrix, it may be possible to factor A = LU where L is lower triangular with 1s on the main 
diagonal and U is upper triangular. The system Ax = b then reads (LU)x = b, which can be written L(Ux) = b. 
If we let y = Ux, we can solve Ly = b for y. Once we have determined y, we solve Ux = y for x.

Even though the solution of a system by LU decomposition involves solving two systems of equations, 
each involves a triangular matrix so the computation is efficient. 

Thus, there are two steps to solving a system of equations by LU decomposition: factorization 
and back substitution. The corresponding Mathematica commands are LUDecomposition and 
LUBackSubstitution.

 LUDecomposition[matrix] finds the LU decomposition of matrix.
 LUBackSubstitution[data, b]uses the output of LUDecomposition[matrix] to solve the 

system matrix.x = b.

The output of LUDecomposition consists of three parts: (1) the matrices L and U “packed” as a 
single matrix, (2) a permutation vector, and (3) the L∞ condition number of the matrix. The output of 
LUDecomposition, data, is fed into LUBackSubstitution to solve the system.

The permutation vector rearranges the rows in order to ensure a maximum degree of numerical stability. 
The condition number will be of no concern to us in this chapter. 
LUDecomposition and LUBackSubstitution cannot be used on systems that possess an infiite 

number of solutions.

This reduced matrix, when interpreted as a system of 
equations, reads: x = 1, y = 2, z = 3.

The bottom row reads 0x + 0y + 0z = 1, which, of course, 
is impossible. This contradiction (a row of 0s and a fi nal 1) 
reveals that no solution is possible. 

The bottom row of 0s is not a contradiction. However, there 
cannot be a unique solution. If we let z = t, an independent 
parameter, the solution may be put into the form
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EXAMPLE 19 To solve the system 2 7 4 3 2 3 2 2 13x y z x y z x y z+ + = − + = + + =, ,  using LU decomposition, we 
must first obtain the matrix factorization of the coefficient matrix.

a =
2 1 1
1 –4 3
3 2 2

; b ={7,2,13};
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

data = LUDecomposition[a]

{1,–4,3},{2,9,–5}, 3,14
9
,7
9

,{2,1{ }{ } ,,3},1{ }
LUBackSubstitution[data, b]

{1, 2, 3}

The next two examples illustrate the structure of data.

EXAMPLE 20

m =
2 3 4
4 11 14
6 29 43

;
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

{lu, p, cond} = LUDecomposition[m]
{{{2, 3, 4}, {2, 5, 6}, {3, 4, 7}}, {1, 2, 3}, 1}

In this example, no rearrangement of the rows was performed because the permutation vector, p, is 
{1, 2, 3). 

The first part of LUDecomposition[m] is given in a “packed” format. Since LU is known to be 

of the form 
1 0 0

1 0
1

0
0 0

x
x x

x x x
x x

x

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ , only nine entries (represented by x) need be specified. The first part of 

LUDecomposition[m] specifies these nine numbers as a single matrix.

lu //MatrixForm

2 3 4
2 5 6
3 4 7

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

The numbers, although combined into one matrix, are in their correct positions. 

l = 
1 0 0
2 1 0
3 4 1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
 and u = 

2 3 4
0 5 6
0 0 7

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

EXAMPLE 21

m =
2 1 1
1 –4 3
3 2 2

;
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

{lu, p, cond} = LUDecomposition[m]

{1,–4,3},{2,9,–5}, 3,14
9
,7
9

,{2,{ }{ } 1,3},1{ }
lu // MatrixForm
1 –4 3
2 9 –5

3 14
9

7
9

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
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If we proceed as in the previous example, we would be tempted to say that 

l=
1 0 0
2 1 0

3 14
9

1

u =
1 –4 3
0 9 –5

0 0 7
9

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜and
⎜⎜
⎜

⎞

⎠

⎟
⎟
⎟

However, multiplying l by u does not give back the original matrix:

l.u //MatrixForm

1 –4 3
2 1 1
3 2 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

The permutation vector, p = {2, 1, 3}, indicates that the rows of the matrix have been interchanged. Indeed rows 1 
and 2 have been switched. If we permute the rows of l, we should get back our original matrix upon multiplication by u.

l=
2 1 0
1 0 0

3 14
9

1

; u =
1 –4 3
0 9 –5

0 0 7
9

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
;

l.u // MatrixForm

2 1 1
1 –4 3
3 2 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

SOLVED PROBLEMS

12.23 Describe the set of vectors, S, spanned by (1, 2, 1, 2, 1), (1, 3, 2, 4, 2), and (1, 4, 3, 6, 3).

SOLUTION

a = {1, 2, 1, 2, 1};

b = {1, 3, 2, 4, 2};

c = {1, 4, 3, 6, 3};

m = {a, b, c};

m // MatrixForm

1 2 1 2 1
1 3 2 4 2
1 4 3 6 3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

rref = RowReduce[m];

rref // MatrixForm

1 0 –1 –2 –1
0 1 1 2 1
0 0 0 0 0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

rref[[1]]

{1, 0, –1, –2, –1}

rref[[2]]

{0, 1, 1, 2, 1}

s * rref[[1]]+ t * rref[[2]]

{s, t, – s + t, – 2 s + 2 t, – s + t} ← Every vector in S is of this form.

Form a matrix, m, using the given vectors as 
rows. The row space of m is the space spanned 
by a, b, and c. Then reduce the matrix to 
reduced row echelon form. The non-zero rows 
form a basis for the row space. Every vector in 
S is a linear combination of its basis vectors.
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12.24 A theorem of linear algebra says that every vector in the row space of A is orthogonal to every 
vector in the null space of A. Verify this result for

A =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

⎛⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

SOLUTION

It suffices to show that each basis vector of the row space is orthogonal to every basis vector in the null space.

a = Partition[Range[25], 5];
a // MatrixForm

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

⎛

⎝

⎜⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

rowspacebasis = RowReduce[a];

rowspacebasis // MatrixForm 

1 0 –1 –2 –3
0 1 2 3 4
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

nullspacebasis = NullSpace[a];

nullspacebasis // MatrixForm

3 –4 0 0 1
2 –3 0 1 0
1 –2 1 0 0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

rowspacebasis.Transpose[nullspacebasis] // MatrixForm

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

12.25 Construct a 5 × 5 matrix of random digits, a, and a 5 × 1 matrix of random digits, b, and solve the 
linear system ax = b using LinearSolve. Then verify that your solution is correct.

SOLUTION

a = Table[RandomInteger[9], {i, 1, 5}, {j, 1, 5}];

a // MatrixForm

0 9 5 0 2
7 7 5 9 3
0 6 6 2 6
5 8 4 3 9
3 0 8 1 5

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Det[a] 0

False                      ← Since the determinant ≠ 0, the system has a unique solution.

To show that each vector in rowspacebasis is 
orthogonal to every vector in nullspacebasis, 
we must show that every dot product is 0. The easiest 
way is to multiply rowspacebasis by the transpose 
of nullspacebasis. The bottom three rows of 
zeros may be ignored.
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b = Table[RandomInteger[9], {i, 1, 5}];

b // MatrixForm

1
2
4
6
1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

x = LinearSolve[a, b]

– 58
217

, 65
651

, 187
651

, 111
434

, 143
186

−{ }
a.x  b

True

12.26 Solve the system Ax = b where A = −
−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1 2 3
2 1 4
3 4 5

 and b = 
14
12
13

9
17
28

10
22
38

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
, , and ⎜⎜

⎜

⎞

⎠
⎟
⎟
.

SOLUTION

a =
1 2 3
2 –1 4
3 –4 6

;
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

f = LinearSolve[a]

LinearSolveFunction[{3,3}, <>]

f[{14, 12, 13}]

{1, 2, 3}

f[{9, 17, 28}]

{2, –1, 3}

f[{10, 22, 38}]

{2, –2, 4}

12.27 Find the general solution of the system 

⎧

⎨
⎪⎪

⎩
⎪
⎪

 

w x y z
w x y z
w x y z

+ + + =
+ + + =
+ + +

2 3 3 9
2 2 5 10
2 2 2 ==

− − + = −
7

2 3 1w x y zSOLUTION

a =

1 2 3 3
2 1 2 5
2 2 1 2
2 –1 –3 1

; b ={9,10

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

,,7,–1};

Det[a] 0
True

nullspacebasis = NullSpace[a]

{{–13, 11, –10, 7}}

particular = LinearSolve[a, b]

20
7
, – 4

7
, 17

7
, 0{ }

generalsolution = t * Flatten[nullspacebasis] + particular

20
7
–13t,– 4

7
+11t,17

7
–10t,7t{ }

←  Since the determinant is 0, we anticipate either
no solution or an infinite number of solutions.

←  Since the null space contains a non-zero vector,
there will be an infinite number of solutions.
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12.28 Find the general solution of the system 

w x y z
w x y z
w x y z
w

+ + + =
+ + + =
+ + + =
+

2 3 3 9
3 4 4 5 16
2 2 2 7
4 66 7 25x y z+ + =

⎧

⎨
⎪

⎩
⎪

8

SOLUTION

a =

1 2 3 3
3 4 4 5
2 2 1 2
4 6 7 8

; b ={9,16,7,25}

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

;;

Det[a] 0

True

nullspacebasis = NullSpace[a]

{{1, –2, 0, 1}, {4, –5, 2, 0}}

particular = LinearSolve[a, b]

–2,11
2
,0,0{ }

generalsolution = s * nullspacebasis[[1]]+ 
                  t * nullspacebasis[[2]] + particular

–2+s+ 4t,11
2
– 2s –5t,2t,s{ }

12.29 Let A be a 7 × 7 tridiagonal matrix having 3s on the main diagonal and –1s on the diagonals adjacent 
to the main diagonal. Let ei be a 7-dimensional vector having 1 in the ith position and 0s elsewhere. 
Solve Ax = ei , i = 1, . . . , 7.

SOLUTION

a = Table[If[Abs[i – j] 1, – 1, If[i  j, 3, 0]], {i, 1, 7}, {j, 1, 7}];
a // MatrixForm

3 –1 0 0 0 0 0
–1 3 –1 0 0 0 0
0 –1 3 –1 0 0 0
0 0 –1 3 –1 0 0
0 0 0 –1 3 –1 00
0 0 0 0 –1 3 –1
0 0 0 0 0 –1 3

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

ludata = LUDecomposition[a];

b = Table[KroneckerDelta[i, j], {i, 1, 7}, {j, 1, 7}];

LUBackSubstitution[ludata, b] // TableForm

377
987

48
329

55
987

1
47

8
987

1
329

1
987

48
329

144
329

555
329

3
47

8
329

3
329

1
329

55
987

55
329

440
987

8
47

64
9877

8
329

8
987

1
47

3
47

8
47

21
47

8
47

3
47

1
47

8
987

8
329

64
9887

8
47

440
987

55
329

55
987

1
329

3
329

8
329

3
47

55
329

1444
329

48
329

1
987

1
329

8
987

1
47

55
987

48
329

377
987

 

The ith column of the table represents the solution of Ax = ei.

KroneckerDelta[i, j]= 1 if i = j and 0 otherwise.
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12.5 Orthogonality
Two vectors are orthogonal if their inner product is 0. Orthogonal vectors possess useful properties that 
make working with them convenient. For example, if u and v are orthogonal, they satisfy the (generalized) 
Theorem of Pythagoras: || u + v ||2 = || u ||2 + || v ||2.

Orthogonality also allows us to introduce the concept of projection. 

In 2 it is easy to visualize what projection means. If a = PQ
→

 and 

b = PR
→

 are two vectors with the same initial point P, then if S is the 

foot of the perpendicular from R to PQ
→

, the projection of b onto a is 

the vector PS
→

. This vector is often represented as projab.
The projection vector can be computed using the Mathematica command Projection. 

 Projection[vector1, vector2] returns the orthogonal projection of vector1 onto vector2.

EXAMPLE 22 Compute the projection of (1, 2, 3) onto (–2, 3, –1).

a = {1, 2, 3};
b = {– 2, 3, – 1};
Projection[a, b]

–1
7
, 3
14
,– 1

14{ }
The concept of orthogonality depends upon the definition of inner product for the space under consider-

ation. By default, Mathematica uses the Euclidean inner product (dot product) in linear algebra commands. 
However, this can be changed by including an alternate definition in the third argument of Projection.

 Projection[vector1, vector2, f ] returns the orthogonal projection of vector1 onto vector2 with 
respect to an inner product defined by f.

It can be shown that if c1, c2, and c3 are positive real numbers, then

<a, b> = c1 a1 b1 + c2 a2 b2 + c3 a3 b3

defines an inner product on 3. To compute the orthogonal projection of (1, 2, 3) onto (–2, 3, –1) using this 
inner product, we must define an appropriate function describing the inner product. To do this, we compute 
a * b and then take the dot product with c = (c1, c2, c3). 

EXAMPLE 23 Compute the projection of (1, 2, 3) onto (–2, 3, –1) using the inner product <a, b> = 2a1b1 + 3a2b2 + 4a3b3.

a = {1, 2, 3};

b = {– 2, 3, – 1};

f[a_, b_] {2, 3, 4}.(a * b)    â Note: It is important to use  here.

Projection[a, b, f]

– 4
39
, 2
13
, – 2

39{ }
EXAMPLE 24 A useful inner product often used in function spaces is <f, g> = f x g x dx( ) ( )

−∫ 1

1
. Using this inner 

product, compute the projection of x2 on x3 + 1.

a = x2;
b = x3 + 1;

f[p1_, p2_] p1 p2 x
–1

1

∫
Projection[a, b, f]

7
24
(1+x )3

S

Q

R

P


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A finite dimensional vector space, by definition, has a finite basis. However, except for the trivial vector 
space that contains only the zero vector, an infinite number of different bases are possible.

The most convenient basis for any vector space is an orthonormal basis. The Gram-Schmidt orthogo-
nalization process provides a “recipe” for converting any basis into an orthonormal basis.

 Normalize[vector] converts vector into a unit vector.
 Normalize[vector, f] converts vector into a unit vector with respect to the norm function f.
 Orthogonalize[vectorlist] uses the Gram-Schmidt method to produce an orthonormal set of 

vectors whose span is vectorlist.
 Orthogonalize[vectorlist, f] produces an orthonormal set of vectors with respect to the inner 

product defined by f. 
 Norm[v] returns the Euclidean norm of v. || ||v =

=
∑ vi
i

n
2

1

.

EXAMPLE 25 To normalize (3, 4, 12) with respect to the Euclidean inner product, we type 

Normalize[{3, 4, 12}]

3
13
, 4
13
,12
13{ }

To normalize with respect to the norm  || || ,v = + +2 3 41
2

2
2

3
2v v v  we define

f[v_]= 2,3,4 .(v *v){ }

Normalize[{3, 4, 12}, f]

3
214

, 2 2
321

, 2 6
107{ }

EXAMPLE 26 Find an orthonormal basis for the space spanned by (1, 1, 1, 0, 0), (0, 1, 1, 1, 0), and (0, 0, 1, 1, 1), 
and verify that the result is correct.

v = {{1, 1, 1, 0, 0}, {0, 1, 1, 1, 0}, {0, 0, 1, 1, 1}};
w = Orthogonalize[v]

{ { } { }1

3
,

1

3
,

1

3
, 0, 0 , –

2

15
,

1

15
,

1

15
,

3

5
, 0 ,,

1

2 10
, –

3

2 10
,

1

10
,

1

2 10
,

5

2
2{ } }

To verify that the result is correct, we compute six dot products.

w[[1]].w[[1]]

1

w[[2]].w[[2]]

1

w[[3]].w[[3]]

1                                         The vectors are all unit length.

w[[1]].w[[2]]

0

w[[1]].w[[3]]

0

w[[2]].w[[3]]

0                                         The vectors are mutually orthogonal.
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SOLVED PROBLEMS

12.30 Compute the norm of the vector (1, 2, 3, 4, 5) with respect to (a) the Euclidean inner product and 
(b) <u, v> = 2u1v1 + 3u2v2 + u3v3 + 3u4v4 + 2u5v5.

SOLUTION

(a) u = {1,2,3,4,5};

norm = u.u

55

 (b) u = {1,2,3,4,5};

c = {2,3,1,3,2};

norm = c.(u** u)

11

12.31 Find the projection of the vector (3, 4, 5) onto each of the coordinate axes.

SOLUTION

v = {3, 4, 5};

Projection[v, {1, 0, 0}]

{3, 0, 0}

Projection[v, {0, 1, 0}]

{0, 4, 0}

Projection[v, {0, 0, 1}]

{0, 0, 5}

12.32 Find a unit vector having the same direction as (1, –2, 2, –3).

SOLUTION

Normalize[{1, – 2, 2, – 3}]

1
3 2

, – 2
3
, 2

3
, – 1

2
⎧
⎨
⎩

⎫
⎬
⎭

12.33 If a = (1, 2, 3) and b = (1, –2, 5), compute the length of the vector v shown in the diagram.

SOLUTION

Since b + v = projab, it follows that v = projab – b.

a = {1, 2, 3}; b = {1, – 2, 5};
v = Projection[b, a]– b;
Norm[v]

138
7

12.34 Find an orthonormal basis for the space spanned by (1, 2, 1, 3), (2, 2, 2, 2), (1, –1, 1, –1), and (3, 4, 3, 5). 

SOLUTION

v1 = {1, 2, 1, 3}; 

v2 = {2, 2, 2, 2}; 

v

b

a
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v3 = {1, – 1, 1, – 1}; 

v4 = {3, 4, 3, 5}; 

v = {v1, v2, v3, v4};

w = Orthogonalize[v]

1

15
,

2

15
,

1

15
,

3
5

,
8

165
,

1

165
,

8

165
,–2

3
55

⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩⎩

⎫
⎬
⎭

⎧
⎨
⎪

⎩⎪
, 

          
1

22
,–2

2
11
,

1

22
,

2
11

, {0,0,0,0}
⎧
⎨
⎩

⎫
⎬
⎭

⎫
⎬
⎪

⎭⎪
 

The set v is linearly dependent, so Orthogonalize 
can only produce three basis vectors. (0, 0, 0, 0} 
can be disregarded.

12.35 Construct an orthonormal basis for P5, the set of all polynomials of degree ≤ 5 with respect to the 
inner product <p, q> = p q( ) ( )x x dx

0

1

∫ .

SOLUTION

One basis for P5 is the set v = {1, x, x2, x3, x4, x5}. They comprise a linearly independent set that 
spans P5.
v = {1, x, x2, x3, x4, x5};

f[p_,q_] p q x
0

1

∫
Orthogonalize[v, f] //Simplify

{1, 3(–1+2x), 5(1–6x+6x ), 7(–1+12x–30x +20x )2 2 3 ,,

3(1–20x+90x –140x +70x ), 11(–1+30x–210x +2 3 4 2 5560x –630x +252x )}3 4 5

 

12.6 Eigenvalues and Eigenvectors
λ is said to be an eigenvalue of a square matrix, A, if there exists a non-zero vector, x, such that Ax = λx. 
As powerful as the eigenvalue concept is in linear algebra, the computation of eigenvalues and their cor-
responding eigenvectors can be extremely difficult if the matrix is large.

One way to determine the eigenvalues of a matrix is to solve the characteristic equation det(A – λI) = 0. 
Once the eigenvalues are determined, the eigenvectors can be found by solving a homogeneous linear 
system. 

EXAMPLE 27

a =
4 1 –1
2 5 –2
1 2 2

;
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

length = Length[a];
Solve[Det[a – k IdentityMatrix[length]] 0, k]

{{λ → 3}, {{λ → 3}, {λ → 5}}

The eigenvalues are 3 (with multiplicity 2) and 5. To find the eigenvectors, we look at the null space 
of A – λI:

NullSpace[a – 3 IdentityMatrix[length]]

{{1, 0, 1}, {– 1, 1, 0}}

NullSpace[a – 5 IdentityMatrix[length]]

{{1, 2, 1}}

 
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Of course, as one might expect, Mathematica contains commands that automatically compute eigenvalues, 
eigenvectors, and some other related items.

 CharacteristicPolynomial[matrix, var] returns the characteristic polynomial of matrix 
expressed in terms of variable var.

 Eigenvalues[matrix] returns a list of the eigenvalues of matrix.
 Eigenvectors[matrix] returns a list of the eigenvectors of matrix.
 Eigensystem[matrix] returns a list of the form {eigenvalues, eigenvectors}.

EXAMPLE 28

a =
4 1 –1
2 5 –2
1 2 2

;
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

CharacteristicPolynomial[a, x]
45 – 39 x + 11 x2 – x3

Eigenvalues[a]

{5, 3, 3}

Eigenvectors[a]

{{1, 2, 1}, {1, 0, 1}, {– 1, 1, 0}}

Eigensystem[a]

{{5, 3, 3}, {{1, 2, 1},{1, 0, 1}, {– 1, 1, 0}}}

If the entries of the matrix are expressed exactly, i.e., in non-decimal form, Mathematica tries to deter-
mine the eigenvalues and eigenvectors exactly. If any of the entries of the matrix are expressed in decimal 
form, Mathematica returns decimal approximations. Alternatively, one can use  N[matrix] as the argument 
of CharacteristicPolynomial, Eigenvalues, Eigenvectors, and Eigensystem to force 
Mathematica to return decimal eigenvalues and eigenvectors. If k digit precision is desired, N[matrix, k] 
will return k significant digits.

EXAMPLE 29

a =
1 1
1 3

;
⎛
⎝⎜

⎞
⎠⎟

Eigenvalues[a]

2+ 2,2– 2{ }
Eigenvectors[a]

–1+ 2, 1 , –1– 2, 1{ } { }{ }
Eigenvalues[N[a]]

{3.41421, 0.585786}

Eigenvectors[N[a]]

{{0.382683, 0.92388}, {– 0.92388, 0.382683}}
Eigenvalues[N[a, 20]]

{3.4142135623730950488, 0.58578643762690495120}

Eigenvectors[N[a, 20]]

{{– 0.38268343236508977173, – 0.92387953251128675613}, 
   {– 0.92387953251128675613, 0.38268343236508977173}}

Eigensystem[N[a]]

{{3.41421, 0.585786}, {{0.382683, 0.92388}, {– 0.92388, 0.382683}}}
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Note: Because different algorithms are used for computing numerical eigenvalues, they some-
times emerge in a different order. Furthermore, since eigenvectors are not uniquely determined, 
the numerical eigenvectors may appear to be multiples or linear combinations of those obtained 
previously. 

SOLVED PROBLEMS

12.36 What is the characteristic polynomial of the matrix A, whose entries are the first 25 consecutive 
integers?

SOLUTION

a = Partition[Range[25], 5];
a // MatrixForm

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

⎛

⎝

⎜⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

CharacteristicPolynomial[a, x]

250 x3 + 65 x4 – x5

12.37 Consider the tridiagonal 5 × 5 matrix whose main diagonal entries are 4, with 1s on the adjacent 
diagonals. Show the eigenvalues and corresponding eigenvectors in a clear, unambiguous 
manner.

SOLUTION

m = Table[If[Abs[i – j] 1, 1, If[i  j, 4, 0]], {i, 1, 5}, {j, 1, 5}];

m // MatrixForm

4 1 0 0 0

1 4 1 0 0

0 1 4 1 0

0 0 1 4 1

0 0 0 1 4

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

data = Eigensystem[m]

{{4+ 3,5,4,3,4,– 3},{{1, 3,2, 3,1},{–1,–1,0,1,1}},

{1,0,–1,0,1},{–1,1,0,–1,1},{1,– 3,2,– 3,1}}}}

 

Do[Print["eigenvalue #", k, "is", data[[1, k]], 

"with corresponding eigenvector:", data[[2, k]]], {k, 1, 5}] 

eigenvalue #1 is 4 + 3  with corresponding eigenvector: {1, 3 , 2, 3 , 1}

eigenvalue #2 is 5 with corresponding eigenvector: {–1, –1, 0, 1, 1}

eigenvalue #3 is 4 with corresponding eigenvector: {1, 0, –1, 0, 1}

eigenvalue #4 is 3 with corresponding eigenvector: {–1, 1, 0, –1, 1}

eigenvalue #5 is 4 – 3  with corresponding eigenvector: {1, – 3 , 2, – 3 , 1}



CHAPTER 12  Linear Algebra 325

12.38 An important theorem in linear algebra, the Cayley-Hamilton theorem, says that every square matrix 
satisfies its characteristic equation. Verify the Cayley-Hamilton theorem for

 A =

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1 2 1 2
3 1 3 1
2 5 7 1
1 2 3 6

– –

SOLUTION

a =

1 2 1 2
3 –1 3 –1
2 5 7 1
1 2 3 6

;

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

CharacteristicPolynomial[a, x]
– 196 + 161 x + 15 x2 – 13 x3 + x4

– 196 IdentityMatrix[4]+ 161 a + 15 MatrixPower[a, 2]– 13 MatrixPower[a, 3]+ 
    MatrixPower[a, 4] // MatrixForm

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

12.39 Approximate the eigenvalues of the 10 × 10 Hilbert matrix: h
i ji j = +

1
1–

.

SOLUTION

hilbert = HilbertMatrix[10];
hilbert // MatrixForm

1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

11
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
112

1
13

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
6

1
7

1
8

1
9

1
10

1
111

1
12

1
13

1
14

1
15

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
88

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
9

1
10

1
11

1
12

1
13

1
114

1
15

1
16

1
17

1
18

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
18

1
119

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟

 

Eigenvalues[N[hilbert]]

{1.75192,0.34293,0.0357418,0.00253089, 0.00012875,4.72969×10–6,1.22897×10–7,
  2.14744×10–9,2.26675×10–11,1.09287×10–13}
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12.40 Approximate the eigenvalues of the 10 × 10 matrix A such that a
i j i j

i j i ji j, = + − + ≤
+ >{ 1 11

21 11
if
if– –

SOLUTION

f[i_ , j_ ] i + j – 1 /; i + j Ä 11
f[i _, j_ ] 21 – i – j /; i + j > 11

a = Array[f, {10, 10}];

a // MatrixForm

1 2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10 9
3 4 5 6 7 8 9 10 9 8
4 5 6 7 8 9 10 9 8 77
5 6 7 8 9 10 9 8 7 6
6 7 8 9 10 9 8 7 6 5
7 8 9 10 9 8 7 6 5 4
8 9 10 9 8 7 6 55 4 3
9 10 9 8 7 6 5 4 3 2
10 9 8 7 6 5 4 3 2 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

Eigenvalues[N[a]]

{67.8404, – 20.4317, 4.45599, – 2.42592, 1.39587, – 1., 0.756101, 
   – 0.629808, 0.55164, – 0.512543}

12.7 Diagonalization and Jordan Canonical Form 
Given an n × n matrix, A, if there exists an invertible  matrix, P, such that A = PDP –1, where D is a diagonal 
matrix, we say that A is diagonalizable. 

Not every matrix is diagonalizable. However, it can be shown that if A has a set of n linearly independent 
eigenvectors, then A is diagonalizable. P is the matrix whose columns are the eigenvectors of A, and D is 
the diagonal matrix whose main diagonal entries are their respective eigenvalues.

EXAMPLE 30

 a =

18 –51 27 –15
8 –24 14 –8
15 –48 28 –15
15 –47 25 –12

⎛

⎝

⎜
⎜⎜
⎜

⎞

⎠

⎟
⎟
⎟
;

Eigenvalues[a]

{4, 3, 2, 1}

Eigenvectors[a]

{{3, 1, 2, 3},{1, 0, 0, 1}, {0, 1, 3, 2},{3, 2, 3, 2}}

p = Transpose[Eigenvectors[a]]            

{{3, 1, 0, 3}, {1, 0, 1, 2}, {2, 0, 3, 3}, {3, 1, 2, 2}}

d = DiagonalMatrix[Eigenvalues[a]]

{{4, 0, 0, 0}, {0, 3, 0, 0}, {0, 0, 2, 0}, {0, 0, 0, 1}}

p.d.Inverse[p] // MatrixForm

18 –51 27 –15

8 –24 14 –8

15 –48 28 –15

15 –47 25 –12

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟

 ← p.d.Inverse[p]= a

←  Since the eigenvalues are distinct, the 
corresponding eigenvectors will be 
linearly independent.

←  The transpose makes the eigenvectors 
columns.
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To summarize,

MatrixForm[a] MatrixForm[p].MatrixForm[d].MatrixForm[Inverse[p]]

18 –51 27 –15
8 –24 14 –8
15 –48 28 –15
15 –47 25 –12

⎛

⎝

⎜
⎜
⎜

⎞⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

•=

3 0 1 3
1 0 1 2
2 0 3 3
3 1 2 2

4 0 0 0
0 33 0 0
0 0 2 0
0 0 0 1

3 –9 5 –3
–5 15 –9 6
–1 2 –1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

•
11

–1 4 –2 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Unfortunately, not every matrix can be diagonalized. However, there is a standard form, called Jordan 
canonical form, that every matrix possesses.

A Jordan block is a square matrix whose elements are zero except for the main diagonal, where all numbers 
are equal, and the superdiagonal, where all values are 1:

λ
λ

λ

1 0 0
1 0

.

.

.

.

. 0 0
0 . 0 0
0 0 1 . 0 0
. . . . 1 0
0 0 0 0 ..

.
. 1
.

.

λ
λ0 0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

If A is any n × n matrix, there exists a matrix Q such that A QJ Q= −1  and 

J

J
J

J

Jk

=

⎛

⎝

1

2

3

0 0 0
0

. .
0 . . 0
0 0 . . 0
. . . . . .
0 0 0 . .

⎜⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

The Ji s are Jordan blocks. The same eigenvalue may occur in different blocks. The number of distinct 
blocks corresponding to a given eigenvalue is equal to the number of independent eigenvectors belonging 
to that eigenvalue.

EXAMPLE 31

a =
5 4 3

–1 0 –3
1 –2 1

;
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Eigensystem[a]

{{– 2, 4, 4}, {{– 1, 1, 1}, {1, – 1, 1}, {0, 0, 0}}}

The eigenvalues are –2 and 4 with eigenvectors, respectively, (–1, 1, 1) and (1, –1, 1). The vector 
{0, 0, 0} is not an eigenvector; its presence simply indicates that a third linearly independent eigenvector 
cannot be found. To construct Q, the standard procedure is to find a vector x such that (A – 4 I) x = (1, –1, 1).

LinearSolve[a – 4 IdentityMatrix[3], {1, – 1, 1}]

{1, 0, 0}

The matrices Q and J may now be constructed:

q =
–1 1 1
1 –1 0
1 1 0

;

j=
–2 0 0
0 4 1
0 0 4

;

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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q.j.Inverse[q] // MatrixForm

5 4 3
–1 0 –3
1 –2 1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 JordanDecomposition[matrix] computes the Jordan canonical form of matrix. The output is 
a list {q, j} where q and j correspond to Q and J as described previously.

EXAMPLE 32 (Continuation of Example 31)

a =
5 4 3
–1 0 –3
1 –2 1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

{q, j} = JordanDecomposition[a]

q // MatrixForm

–1 1 1
1 –1 0
1 1 0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

j // MatrixForm

–2 0 0
0 4 1
0 0 4

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

EXAMPLE 33

 a =

65 88 –129 –23 –1 –97 –19
86 124 –180 –32 –4 –134 –21
299 39 –54 –11 2 –43 –13
36 50 –77 –11 –3 –56 –5
63 88 –131 –224 0 –97 –16
58 85 –126 –21 –6 –91 –9
63 87 –129 –24 –1 –966 –16

;

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

{q, j} = JordanDecomposition[a];

MatrixForm[a] MatrixForm[q].MatrixForm[j].MatrixForm[Inverse[q]]

65 88 –129 –23 –1 –97 –19

86 124 –180 –32 –4 –134 –21

29 399 –54 –11 2 –43 –13

36 50 –77 –11 –3 –56 –5

63 88 –131 –24 00 –97 –16

58 85 –126 –21 –6 –91 –9

63 87 –129 –24 –1 –96 –116

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

 == 

4 2 –2 –2 1 0 0

5
11
2

–
3
4

–
29
8

3 –1 –1

0 –4 –2 0 -1 1 1

3
13
2

11
4

–
119
8

2 –1 1

3
5
2

3
4

–
3
8

2 –1 0

6 10 0 –4 4 –2 –2

2 0 0 0 1 0 0

⎛

⎝

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

2 1 0 0 0 0 0

0 2 1 0 0 0 0

0 0 2 1 0 0 0

0 0 0 22 0 0 0

0 0 0 0 3 1 0

0 0 0 0 0 3 1

0 0 0 0 0 0 3

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

•

–
17
2

–
25
2

18
7
2

0
27
2

3

19
2

25
2

–19 –
7
2

0 –14 –3

–
9
2

–6 99 2 0
13
2

3
2

5 6 –10 –2 0 –7 –1

17 25 –36 –7 0 –27 –5

27 37 –55 ––10 –1 –41 –7

19 26 –38 –7 1 –29 –7

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟

Of course this agrees with the results of Example 31.
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Other decompositions such as QR decomposition and Schur decomposition are available in Mathematica, 
but shall not be discussed in this book. Their respective command names are QRDecomposition and 
SchurDecomposition.

SOLVED PROBLEMS

12.41 Construct a 5 × 5 matrix whose eigenvalues are –2, –1, 0, 1, 2 with respective eigenvectors (1, 1, 0, 0, 0), 
(0, 1, 1, 0, 0), (0, 0, 1, 1, 0), (0, 0, 0, 1, 1), and (1, 0, 0, 0, 1).

SOLUTION

d = DiagonalMatrix[{– 2, – 1, 0, 1, 2}];

p = Transpose[{{1, 1, 0, 0, 0}, {0, 1, 1, 0, 0}, {0, 0, 1, 1, 0}, {0, 0, 0, 1, 1}, 
             {1, 0, 0, 0, 1}}];

a = p.d.Inverse[p];

a // MatrixForm

0 –2 2 –2 2

–1
2

–3
2

1
2

–1
2

1
2

1
2

–1
2

–1
2

1
2

–1
2

–1
2

1
2

–1
2

1
2

11
2

1
2

–1
2

1
2

–1
2

3
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

12.42 Show that the matrix a b
c d

⎛
⎝⎜

⎞
⎠⎟

 has real eigenvalues if and only if a2 + 4bc – 2ad + d2  ≥  0.

SOLUTION

m = {{a, b}, {c, d}};

Eigenvalues[m]

1
2

a + d – a + 4 b c –2a d+ d , 1
2

a +2 2( ) 2 2d + a + 4 b c –2a d+ d( ){ }
The eigenvalues will be real if and only if the expression inside the radical symbol is non-negative.

12.43 Construct a 7 × 7 matrix of random digits and show that the sum of its eigenvalues is equal to its 
trace and the product of its eigenvalues is equal to its determinant.

SOLUTION

a = Table[RandomInteger [9], {i, 1, 7}, {j, 1, 7}];
a // MatrixForm

2 9 8 0 7 6 2
2 3 5 1 9 5 1
3 8 5 0 8 3 1
6 3 9 3 6 5 9
4 2 9 9 6 9 4
4 1 7 6 7 3 7
1 55 8 3 9 9 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

eigenvalues = Eigenvalues[N[a]]

{34.6689, –1.97195 + 6.25152 , –1.97195 – 6.25152,–6.08883,
     –2.35886, –0.138652 + 0.334612 , –0.138652 – 0.334612 }

eigenvalues[[i]]
i=1

7

∑  or Total[eigenvalues]

22 + 0. ‰
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Tr[a]

22

eigenvalues[[i]]
i=1

7

∏  or Product[eigenvalues[[i]], {i, 1, 7}]

2807. + 1.42585×10–13 

Det[a]

2807

12.44 A matrix, P, is said to be orthogonal if PTP = I. If it is possible to find an orthogonal matrix P that 
diagonalizes A, then A is said to be orthogonally diagonalizable. However, only symmetric matrices 
are orthogonally diagonalizable. (A matrix is symmetric if AT = A. If A is symmetric, it can be 
shown that the eigenvectors corresponding to distinct eigenvalues are orthogonal.) Find a matrix P 
that orthogonally diagonalizes 

A =

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

3 1 0 0 0
1 3 0 0 0
0 0 2 1 1
0 0 1 2 1
0 0 1 1 2

SOLUTION

a =

3 1 0 0 0
1 3 0 0 0
0 0 2 1 1
0 0 1 2 1
0 0 1 1 2

;

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

{values, vectors} = Eigensystem[a]

{{4, 4, 2, 1, 1}, {{0, 0, 1, 1, 1}, {1, 1, 0, 0, 0},{–1, 1, 0, 0, 0}, 
   {0, 0, –1, 0, 1}, {0, 0, –1, 1, 0}}}

eigenspace1 = {vectors[[1]], vectors[[2]]};

eigenspace2 = {vectors[[3]]};

eigenspace3 = {vectors[[4]], vectors[[5]]};

v1 = Orthogonalize[eigenspace1];

v2 = Orthogonalize[eigenspace2];

v3 = Orthogonalize[eigenspace3];

p = Transpose[Join[v1, v2, v3]];

p // MatrixForm

0
1

2
–
1

2
0 0

0
1

2

1

2
0 0

1

3
0 0 –

1

2
–
1

6

1

3
0 0 0

2
3

1

3
0 0

1

2
–
1

6

⎛

⎝

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

There are five eigenvalues, two of 
which have multiplicity 2. We group 
their eigenvectors into three eigen-
spaces and apply the Gram-Schmidt 
process to each. The orthogonal matrix 
is the matrix whose columns are the 
vectors from Orthogonalize.
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Transpose[p].p // MatrixForm

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

       ← Just a check to see if the matrix is orthogonal.

d = DiagonalMatrix[values];

p.d.Transpose[p] // MatrixForm

3 1 0 0 0
1 3 0 0 0
0 0 2 1 1
0 0 1 2 1
0 0 1 1 2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
        ← This gives us back our original matrix.

MatrixForm[a] MatrixForm[p]. MatrixForm[d]. MatrixForm[Transpose[p]]

3 1 0 0 0
1 3 0 0 0
0 0 2 1 1
0 0 1 2 1
0 0 1 1 2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

0
1

2
–
1

2
0 0

0
1

2

1

2
0 0

1

3
0 0 –

1

2
–
1

6

1

3
0 0 0

2
3

1

3
0 0

1

2
–
1

6

⎛

⎝

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

•

4 0 0 0 0
0 4 0 0 0
0 0 2 0 0
0 0 00 1 0
0 0 0 0 1

0 0
1

3

1

3

1

3
1

2

1

2
0 0 0

–
1

2

1

2
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

• 00 0

0 0 –
1

2
0

1

2

0 0 –
1

6

2
3

–
1

6

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
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A.1 Pure Functions
A function is a correspondence between two sets of numbers A and B such that for each number in A there 
corresponds a unique number in B. For example, the “squaring” function: For each real number there 
corresponds a unique non-negative real number called its square.

While it is customary to write f(x) = x2, one must understand that there is no special significance to the 
letter x. It is the process of squaring that defines the function.

Although Mathematica allows a function to be defined in terms of a variable, as in f[x_]=  x2, the 
variable x acts as a “dummy” and is insignificant. The function would be the same had we used y, z, or 
any other symbol.

A “pure” function is defined without reference to any specific variable. Its arguments are labeled #1, 
#2, #3, and so forth. To distinguish a pure function from any other Mathematica construct, an ampersand, 
&, is used at the end of its definition. Once defined, we can deal with a pure function as we would any 
other function.

Although the concept of a pure function is a natural one, it is possible to use Mathematica and never be 
concerned with it. Occasionally, however, Mathematica will express an answer as a pure function and it 
is therefore worthy of a brief mention. The interested reader can find more information in Mathematica’s 
Documentation Center.

EXAMPLE 1

f = #12 &;

f[3]

9

f[x]

x2

f[a + b]

(a + b)2 

EXAMPLE 2

g = #1 #22 + 3&;

g[3, 4]

51

g[u, v]

3 + u v2

Appendix
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Another way of specifying a pure function is by use of Mathematica’s Function command.

 Function[x, body]is a pure function with a single parameter x. 
 Function[{x1, x2,...}, body] is a pure function with a list of parameters x1, x2,... 

EXAMPLE 3 Express the solution of the differential equation

d y
dx

y y y
2

2 0 0 0 1+ = = =; '( ) ( )

as a pure function and evaluate it for x = π/4.

DSolve[{y''[x]+ y[x] 0, y[0] 1, y’[0]= 1}, y, x]

{{y → Function[{x}, Cos[x] + Sin[x]]}}

Function[{x}, Cos[x]+ Sin[x]][o/4]

2

SOLVED PROBLEMS

A.1 Express as a pure function the process of adding the square of a number to its square root and 
compute its value at 9.

SOLUTION

f = #1^2 + Sqrt[#1] &;

f[9]

84

A.2 A number is formed from two other numbers by adding the square of their sum to the sum of their 
squares. Express this operation as a pure function and compute its value for the numbers 3 and 4.

SOLUTION

g =(#1 + #2)^2 + #1^2 + #2^2 &;

g[3, 4]

74

A.3 Express the derivative of the function Sin as a pure function and compute its vale at π /6.

SOLUTION

f = Sin'

Cos[#1]&

f[o/6]

3
2

A.4 Define f (x) = (1 + x + x2)5 and express its second derivative as a pure function.

SOLUTION

f[x_] = (1 + x + x2)5;

f''

20(1 + 2 #1)2 (1 + #1 + #12)3 + 10(1 + #1 + #12)4 & 
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A.2 Patterns
You have certainly noticed the use of the underscore ( _ ) character when defining functions in Mathematica. 
The use of the underscore is an important concept in Mathematica called pattern matching. 

A pattern is an expression such as x_ that contains an underscore character. The pattern can stand for 
any expression. Thus, f[x_] specifies how the function f should be applied to any argument. When you 
define a function such as f[x_]= x2, you are telling Mathematica to automatically apply the transformation 
rule f[x_]→ x2 whenever possible.

In contrast, a transformation rule for f[x] without an underscore specifies only how the literal expres-
sion f[x] should be transformed, and does not say anything about the transformation of f[y], f[z], etc.

EXAMPLE 4

Clear[f]  Clear[f]

f[x_]= x2; f[x]= x2;

f[x] f[x]

x2  x2

f[y]  f[y]

y2 f[y]

f[a + b]  f[a + b]

(a + b)2 f[a + b]

x_ is matched by any expression.  x is matched only by x.

EXAMPLE 5 

1 + xp + xq /. xq _ ã Log[q]

1 + Log[p] + Log[q] ← All exponentials are transformed to Log.

1 + xp + xq /. xq ã Log[q] 

1 + xp + Log[q]  ← Only xq is transformed.

Patterns can specify the type of an expression as well as its format. For example, _Integer stands for 
an integer pattern. Similarly, _Rational, _Real, and _Complex are acceptable patterns representing 
other types of numbers.

EXAMPLE 6 The Mathematica function Factorial[n] computes n! if n is a positive integer and Γ[1 + n] if n is 
a positive real number. For certain applications, it might be useful to leave the factorial of a non-integer undefined.

fact[n_Integer]= Factorial[n]; Factorial[5]

fact[n_Real] = "undefi ned"; 120

fact[5] Factorial[5.5]

120 287.885

fact[5.5]

undefi ned

EXAMPLE 7 This example defines the function 

f x y

x y x y

x y( , ) =

if both and are integers

+ if bboth and are real

– if or is an in

x y

x y x y tteger and the other is real

⎧

⎨
⎪⎪

⎩
⎪
⎪
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f[a_Integer, b_Integer]= a b;

f[a_Real, b_Real]= a + b;

f[a_Real, b_Integer]= f[a_Integer, b_Real]= a – b;

f[2, 3]

6

f[2., 3.]

5.

f[2., 3]

–1.

f[2, 3.]

–1.

f[I, 1]

f[,1] ← f is undefi ned for complex arguments.

A.3 Contexts
It is common practice to define symbols using names that are reminiscent of the symbol’s purpose. Sometimes, 
however, the names get unwieldy and cumbersome to work with. Contexts are used as a tool to help organize 
the symbols used in a Mathematica session.

The complete name of a symbol is divided into two parts, a context and a shorter name, separated by a 
backquote ( ` ) character. Used for this purpose the backquote is called a context mark.

EXAMPLE 8 atomicnumber`au and atomicweight`au are two distinct symbols with a common short name, 
au. (Au is the chemical symbol for gold.)

atomicnumber`au = 79;

atomicweight`au = 196.967;

atomicnumber`au

79

atomicweight`au

196.967

When you begin a Mathematica session, the default context is Global`. Thus, for example, the 
symbol object is equivalent to Global`object. The default can be changed by redefining the symbol 
$Context.

 $Context is the current default context.
 Context[symbol] returns the context of symbol.

EXAMPLE 9 

atomicnumber`au = 79;

atomicweight`au = 196.967;

$Context = "atomicweight`"  ;   ← Context names are strings; quotes are important.

au

196.967

$Context = "atomicnumber`"  ;

au

79

“Built-in” Mathematica symbols have context System`. 
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EXAMPLE 10

Context[Pi]

System`

It is common for symbols in different contexts to have the same short name. If only the short name is 
referenced, Mathematica decides which is called by its position in a list called $ContextPath.

 $ContextPath is the current search path.

EXAMPLE 11 

au = "gold";

atomicnumber`au = 79;

atomicweight`au = 196.967;

$ContextPath

{PacletManager`, WebServices`, System`, Global`}     ← Default context path.

$ContextPath = Join[$ContextPath, {"atomicweight`"}, {"atomicnumber`"}]

{PacletManager`, WebServices`, System`, Global`, atomicweight`, atomicnumber`}

au

gold

Remove[Global`au]

au 

196.967

Remove[atomicweight`au]

au 

79

A.4 Modules 
Mathematica, by default, assumes that all objects are global. This means, for example, that if you define 
x to have a value of 3, x will remain 3 until its value is changed. In contrast, a local object has a limited 
scope valid only within a certain group of instructions.

Modules allow you to define local variables whose values are defined only within the module. Outside 
of the module, the object may either be undefined or have a completely different value.

 Module[{var1, var2, . . .}, body] defines a module with local variables var1, var2, . . .
 Module[{var1 = v1, var2 = v2, . . .}, body] defines a module with local variables var1, var2, . . . 

initialized to v1, v2, . . . , respectively.

EXAMPLE 12 

x = 3; ← Global variable x is set to 3.

Module[{x = 8}, x + 1] ← Module is defi ned with local variable x initialized to 8.

9 ← x is incremented.

x ← Global x is called.

3 ← Original value of x is returned.

It is often useful to group several commands into one unit to be executed as a group. This is especially 
true if complicated structures involving loops are involved. Several commands may be incorporated within 
body if they are separated by semicolons. 

EXAMPLE 13

Module[{x = 1, y = 2}, x = x + 3; y = y + 4; Print[x y]]

24

←  atomicweight is now the fi rst element of $ContextPath in which 
au appears.

x and y are initialized to 1 and 2, respectively; x is incremented by 
3,  y is incremented by 4, and the two are multiplied.

←  atomicnumber is now the fi rst element of $ContextPath in 
which au appears.

←  Global` comes before atomicweight` and atomicnumber` 
in $ContextPath.
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It is often convenient to define a function whose value is a module. This allows considerably more flex-
ibility when dealing with functions whose definitions are complicated. When defining a function in this 
manner, it is important that the delayed assignment,  , be used.

EXAMPLE 14 The following defines the factorial function. The value of x0 is assumed to be a non-negative integer. 
The variables fact and x, which are initialized to be 1 and x0, respectively, are local so there is no conflict with any 
variables of the same name elsewhere in the program. x0 is a “dummy” variable.

f[x0_]   Module[{fact = 1, x = x0}, While[x > 1, fact = x * fact; x = x – 1]; 
                                     Print[fact]]

f[0]

1

f[5]

120

f[10]

3 628 800

To clarify how a module works, consider the next example. Although the same module is executed three 
times, the variable, which appears as x, is actually assigned three different local names. Because of this 
clever “bookkeeping,” all three are independent and none will conflict with global variable x.

EXAMPLE 15

x = 3

3

Module[{x}, Print[x]]

x$342

Module[{x}, Print[x]]

x$344

Module[{x}, Print[x]]

x$346

x

3

SOLVED PROBLEMS

A.5 Write a module that will take an integer and return all its factors.

SOLUTION

factorlist[x0_]   Module[{x = 1}, 
                                                           While[x Ä x0, If[Mod[x0, x]  0, Print[x]]; x++]]

factorlist[1]

1

factorlist[10]

1

2

5

10

factorlist[11]

1

11

Since all three values of x are given different internal  
names, there can be no conflict.
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factorlist[90]

1

2

3

5

6

9

10

15

18

30

45

90

A.6 A very crude way of determining the position of a prime within the sequence of primes is to examine 
the list of all primes up to and including the prime in question and determine its position in the list. 
If the number is not in the list, then the number is not prime. Construct a module that will determine 
whether a number is prime, and if so, determine its position. If not, return a message indicating that 
it is not prime.

SOLUTION

pos[x0_] Module[{x = 1, prm}, prm = False; 
While[Prime[x] Ä x0 && Not[prm], 
              If[Prime[x] x0, prm = True]; x ++];
              If[prm, Print[x – 1], Print["Not a Prime"]]]

pos[1]

Not a Prime

pos[2]

1

pos[3]

2

pos[101]

26

pos[1001]

Not a Prime

A.7 A famous conjecture asserts that if you start with a positive integer, n, and replace it by n /2 if n is 
even and by 3 n + 1 if n is odd, and repeat the process over and over in an iterative manner, then 
you will always wind up with 1. (This conjecture has never been proven or disproved.) Construct a 
module that simulates this iterative process.

SOLUTION

We first define a function, successor, that will define one iteration step.

successor[n_] If[EvenQ[n], n/2, 3n + 1]

Next we introduce a module, allvalues, that will produce a list of all successors, starting with the 
successor of n.
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allvalues[n_] :=  Module[{m = n}, While[m ñ 1, m = successor[m]; Print[m]]]
allvalues[6]

3

10

5

16

8

4

2

1

Since this list might be long if n is large, and all we are really interested in is the final value and the number 
of iterations it takes to get there, another module might be more appropriate.

finalvalue[n_]   Module[{m = n, k = 0}, While[m ñ 1, m = successor[m]; k++]; 

                                                        Print["final value = ", m, ", # iterations = ", k]]

finalvalue lists the final value of the process, together with the number of iterations needed to reach 
the final value.

finalvalue[6]

final value = 1, # iterations = 8

finalvalue[100]

final value = 1, # iterations = 25

finalvalue[1000]

final value = 1, # iterations = 111

A.5  Commands Used in This Book
Options are not included in this list. Please refer to the index.

 $Context is the current default context.
 $ContextPath is the current search path.
 Abs[x] returns x if x ≥ 0 and –x if x < 0.
 Accumulate[list] returns a list having the same length as list containing the successive partial 

sums of list. 
 AddTo[x,y] or x + = y adds y to x and returns the new value of x.
 AffineShape[object, {xscale, yscale, zscale}] scales the x-, y-, and z-coordinates by xscale, 

yscale, and zscale, respectively.
 And[p, q] or p && q or p ∂ q is True if both p and q are True; False otherwise. 
 Animate[expression, {k, m, n, i}] displays several different graphics images rapidly in suc-

cession, producing the illusion of movement.
 Animate[expression, {k1, m1, n1, i1}, {k2, m2, n2, i2], . . . ,] allows multiple para-

meters which can be independently controlled.
 Apart[ fraction] writes fraction as a sum of partial fractions. 
 Append[list, x] returns list with x inserted to the right of its last element. 
 ArcSin, ArcCos, ArcTan, ArcSec, ArcCsc, and ArcCot are the inverse trigonometric func-

tions. Only the principal values, expressed in radians, are returned by these functions.
 ArcSinh, ArcCosh, ArcTanh, ArcSech, ArcCsch, and ArcCoth are the inverse hyperbolic 

functions. 
 Array[f, n] generates a list consisting of n values, f[1], f[2], . . . , f[n]. 
 Array[f, n, r] generates a list consisting of n values, f[i] starting with f[r], i.e., f[r], 
f[r + 1],. . . ,f[r + n – 1].
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 Array[f,{m, n}] generates a nested list consisting of an array of m elements, each of which is an 
array of n elements, whose values are f[i,j] as j goes from 1 to n and i goes from 1 to m. Here 
f is a function of two variables. The second index varies most rapidly.

 Array[f,{m, n},{r, s}] generates a nested list consisting of an array of m elements, each of 
which is an array of n elements. The first element of the first sublist is f[r, s]. 

 ArrayFlatten[{{m11, m12,...}, {m21, m22,...},...}]creates a single flattened matrix 
from a matrix of matrices mi j. All the matrices in the same row must have the same first dimension, 
and all the matrices in the same column must have the same second dimension. 

 BarChart[datalist] draws a simple bar graph. datalist is a set of numbers enclosed within braces.
 BarChart[{datalist1, datalist2,...}] draws a bar graph containing data from multiple data 

sets. Each data list is a set of numbers enclosed within braces.
 BarChart3D[datalist] draws a 3-D bar graph corresponding to the numbers in datalist.
 BarChart3D[{datalist1, datalist2,...}] draws a bar graph containing data from multiple data sets.
 Cancel[  fraction] cancels out common factors in the numerator and denominator of fraction. The 

option Extension ã Automatic allows operations to be performed on algebraic numbers that 
appear in fraction. 

 CartesianProduct[list1, list2] returns the Cartesian product of list1 and list2. 
 Catalan is Catalan’s constant and is approximately 0.915966. It is used in the theory of combinatorial 

functions. 
 Ceiling[x] returns the smallest integer not less than x. Many textbooks represent this by ⎡x⎤.
 CharacteristicPolynomial[matrix, var] returns the characteristic polynomial of matrix 

expressed in terms of variable var.
 CharacterRange["char1", "char2"] produces a list of characters from char1 to char2, based 

upon their standard ASCII values (assuming an American English alphabet). 
 Characters[string] produces a list of characters in string. 
 ChebyshevT[n, x] gives the Chebyshev polynomial (of the first kind) of degree n.
 Clear[symbol] clears symbol’s definition and values, but does not clear its attributes, messages, or defaults. 

symbol remains in Mathematica’s symbol list. Typing symbol =. will also clear the definition of symbol. 
 Coefficient[polynomial, form] gives the coefficient of form in polynomial. 
 Coefficient[polynomial, form, n] gives the coefficient of form to the nth power in polynomial. 
 CoefficientList[polynomial, variable] gives a list of the coefficients of powers of variable 

in polynomial, starting with the 0th power. 
 Collect[poly, var] takes a polynomial having two or more variables and expresses it as a poly-

nomial in var. 
 ColumnForm[list] presents list as a single column of objects.
 ColumnForm[list, horizontal] specifies the horizontal alignment of each row. Acceptable values 

of horizontal are Left (default), Center, and Right. 
 ColumnForm[list, horizontal, vertical] allows vertical alignment of the column. Acceptable 

values of vertical are Above, Center, and Below (default). 
 Complement[universe, list] returns a sorted list consisting of those elements of universe that are 

not in list. In this context, universe represents the universal set. 
 Complement[universe, list1, list2] returns a sorted list consisting of those elements of universe 

that are not in list1 or list2. This command extends in a natural way to more than two sets. 
 Composition[f1, f2, f3,...] constructs the composition f1 o f2 o f3...
 ConstantArray[c, {m, n}] generates an m × n array, each element of which is c.
 Context[symbol] returns the context of symbol.
 ContourPlot[equation, {x, xmin, xmax}, {y, ymin, ymax}] plots equation by treating 

the equation as a function in three-dimensional space, and generates a contour of the equation cutting 
through the plane where z equals zero. 

 ContourPlot[{equation1, equation2,...}, {x, xmin, xmax}, {y, ymin, ymax}]
 plots several implicitly defined curves.
 ContourPlot[f[x, y], {x, xmin, xmax}, {y, ymin, ymax}] draws a contour plot of 

f (x, y) in a rectangle determined by xmin, xmax, ymin, and ymax. 
 ContourPlot3D[f[x, y, z], {x, xmin, xmax}, {y, ymin, ymax}, {z, zmin, zmax}] 

draws a three-dimensional contour plot of the level surface f(x, y, z) = 0 in a box determined by 
xmin, xmax, ymin, ymax, zmin, and zmax.
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 Cross[v1, v2] returns the cross product of v1 and v2. (This applies to three-dimensional vectors 
only.) The cross product symbol, ×, can be inserted into the calculation by typing (without spaces) 
the key sequence [ESC]c-r-o-s-s[ESC] .

 D[f[x], x] returns the derivative of f with respect to x. 
 D[f[x], {x, n}] returns the nth derivative of f with respect to x. 
 D[f, x]or ∂xf (on the Basic Math Input palette) returns ∂f/∂x, the partial derivative of f with 

respect to x. 
 D[f,{x, n}] or ì{x, n}f returns ∂nf/∂xn, the nth order partial derivative of f with respect to x. 
 D[f, x1, x2, ..., xk] or ∂∂x ,x ,...,x1 2 k

f  returns the “mixed” partial derivative ∂
∂ ∂ ∂

kf
x x ... x1 2 k

.

 D[f,{x1, n1}, {x2, n2},..., {xk, nk}] or ∂∂{x ,n },{x ,n },...,{x ,n }1 1 2 2 k k
f  returns the partial derivative 

∂
∂ ∂ ∂

n
1 2 k

x
n

x
n

x
n

f[x ,x ,...,x ]

...
1

1

2

2

k

k
 where n1 + n2 + ... + nk = n. 

 Decrement[x] or x –– decreases the value of x by 1 but returns the old value of x.
 Degree is equal to Pi/180 and is used to convert degrees to radians. 
 Delete[list, n] deletes the element in the nth position of list. 
 Delete[list, –n] deletes the element in the nth position from the end of list.
 Delete[list, {{p1},{p2},...}] deletes the elements in positions p1, p2, ... 
 Delete[list,{p, q}] deletes the element in position q of part p.
 Delete[list,{{p1, q1},{p2,q2}, . . .] deletes the elements in position q1 of part p1, 

position q2 of part p2, . . .
 Denominator[ fraction] returns the denominator of fraction. 
 DensityPlot[f[x, y], {x, xmin, xmax}, {y, ymin, ymax}] draws a density plot of 

f(x, y) in a rectangle determined by xmin, xmax, ymin, and ymax.
 Depth[list] returns one more than the number of levels in the list structure. Raw objects, i.e., 

objects that are not lists, have a depth of 1. 
 Derivative[n] is a functional operator that acts on a function to produce a new function, 

namely, its nth derivative. Derivative[n][f] gives the nth derivative of f as a pure function 
and Derivative[n][f][x]will compute the nth derivative of f at x. 

 Derivative[n1, n2 , ...,  nk][f] gives the partial derivative ∂
∂ ∂ ∂

n

x
n

x
n

x

n
f

1
1

2
2

k
k...

 where 

n1 + n2 + ... + nk = n. It returns a pure function that may then be evaluated at [x1, x2, ..., xk].
 Det[matrix] computes the determinant of matrix. 
 DiagonalMatrix[list] creates a diagonal matrix whose diagonal entries are the elements of list.
 DiracDelta[t] returns δ ( )t , the Dirac delta function that satisfies δ δ( ) , ( )t t t dt= ≠ =

−∞

∞

∫0 0 1if .
 Divide[a, b] computes the quotient of a and b. Only two arguments are permitted. Divide[a, b] 

is equivalent to a/b.
 DivideBy[x,y] or x /= y divides x by y and returns the new value of x.
 Do[expression,{k}] evaluates expression precisely k times.
 Do[expression,{i, imax}] evaluates expression imax times with the value of i changing from 
1 to imax in increments of 1.

 Do[expression,{i, imin, imax}] evaluates expression with the value of i changing from 
imin to imax in increments of 1.

 Do[expression,{i, imin, imax, increment}] evaluates expression with the value of i 
changing from imin to imax in increments of increment.

 Do[expression,{i, imin, imax}, {j, jmin, jmax}] evaluates expression with the value 
of i changing from imin to imax and j changing from jmin to jmax in increments of 1. The 
variable i changes by 1 for each cycle of j. This is known as a nested Do loop.

 Do[expression,{i, imin, imax, i_increment}, {j, jmin, jmax, j_increment}, ...,] 
forms a nested Do loop allowing for incrimination values other than 1.

 Drop[list, n] returns list with its first n objects deleted. 
 Drop[list, –n] returns list with its last n objects deleted. 
 Drop[list, {n}] returns list with its nth object deleted. 
 Drop[list, {–n}] returns list with the nth object from the end deleted. 
 Drop[list, {m, n}] returns list with objects m through n deleted. 
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 Drop[list, {m, n, k}] returns list with objects m through n in increments of k deleted. 
 DSolve[equation, y[x], x] gives the general solution, y[x], of the differential equation, equation, 

whose independent variable is x. 
 DSolve[equation, y, x] gives the general solution, y, of the differential equation expressed 

as a “pure” function within a list. ReplaceAll (/.) may then be used to evaluate the solution. 
Alternatively, one may use Part or [[ ]] to extract the solution from the list. 

 Dt[f[x, y]] returns the total differential of f[x, y]. 
 Dt[f[x, y], x] returns the total derivative of f[x, y] with respect to x. 
 E or  is the base of the natural logarithm.
 Eigensystem[matrix] returns a list of the form {eigenvalues, eigenvectors}.
 Eigenvalues[matrix] returns a list of the eigenvalues of matrix.
 Eigenvectors[matrix] returns a list of the eigenvectors of matrix.
 Eliminate[equations, variables] eliminates variables from a set of simultaneous equations.
 Equal[x, y] or x  y is True if and only if x and y have the same value.
 EulerGamma is Euler’s constant and is approximately 0.577216. It has applications in integration 

and asymptotic expansions. 
 Exp[x] is the natural exponential function. Other equivalent forms are E^x and Ex. Lowercase e 

cannot be used, but the special symbol  from the Basic Math Input palette may be used instead. 
Exponential functions to the base b are computed by b^x or bx.

 Expand[poly] expands products and powers, writing poly as a sum of individual terms. 
 ExpandAll[expression]expands both numerator and denominator of expression, writing the 

result as a sum of fractions with a common denominator. 
 ExpandDenominator[expression] expands the denominator of expression but leaves the 

numerator alone. 
 ExpandNumerator[expression] expands the numerator of expression but leaves the denominator 

alone. 
 ExpToTrig[expression] converts exponential functions to trigonometric and/or hyperbolic 

functions. 
 Factor[poly] attempts to factor poly over the integers. If factoring is unsuccessful, poly is 

unchanged. 
 Factorial[n] or n! gives the factorial of n if n is a positive integer and Γ(n + 1) if n has a non-

integer positive value.
 FactorInteger[n] gives the prime factors of n together with their respective exponents.
 FactorTerms[poly] factors out common constants that appear in the terms of poly. 
 FactorTerms[poly, var] factors out any common monomials containing variables other than var. 
 Fibonacci[n] returns the nth Fibonacci number.
 FindMaximum[f[x], {x, x0}] finds the relative maximum of f(x) near x0.
 FindMinimum[f[x], {x, x0}] finds the relative minimum of f(x) near x0. 
 FindRoot[lhs  rhs, {x, x0}] solves the equation lhs = rhs using Newton’s method with 

starting value x0. 
 FindRoot[lhs  rhs,{x, {x0, x1}] solves the equation lhs = rhs using (a variation of) 

the secant method with starting values x0 and x1. 
 FindRoot[lhs  rhs,{x, x0, xmin, xmax}] attempts to solve the equation, but stops if 

the iteration goes outside the interval [xmin, xmax]. 
 FindRoot[equations, {var1,a1},{var2,a2},...] attempts to solve equations 

using initial values a1, a2, . . . for var1, var2, . . . , respectively. The equations are enclosed in 
a list: {equation1,equation2,...}. Alternatively, the equations may be separated by && 
(logical and). 

 First[list] returns the element of list in the first position. 
 Flatten[list] converts a nested list to a simple list containing the innermost objects of list. 
 Flatten[list, n] flattens a nested list n times, each time removing the outermost level. The depth 

of each level is reduced by n or to a minimum level of 1. 
 FlattenAt[list, n] flattens the sublist that is at the nth position of the list by one level. If n is 

negative, Mathematica counts backward, starting at the end of the list. 



APPENDIX 343

 Floor[x] returns the greatest integer which does not exceed x. This is sometimes known as the 
“greatest integer function” and is represented in many textbooks by ⎣x⎦.

 For[initialization, test, increment, expression] executes initialization, then repeatedly evaluates 
expression, increment, and test until test becomes False.

 FractionalPart[x] gives the fractional portion of x (decimal point included).
 FullForm[expression] exhibits the internal form of expression.
 FullSimplify[expression] tries a wide range of transformations on expression involving 

elementary and special functions, and returns the simplest form it finds. 
 Function[x, body] is a pure function with a single parameter x.
 Function[{x1, x2,...}, body] is a pure function with a list of parameters x1, x2,... 
 GCD[m, n] returns the greatest common divisor of m and n. 
 GoldenRatio has the value ( ) /1 5 2+  and has a special significance with respect to Fibonacci 

series. It is used in Mathematica as the default width-to-height ratio of two-dimensional plots. 
 Graphics[primitives]creates a two-dimensional graphics object.
 Graphics3D[primitives] creates a three-dimensional graphics object.
 GraphicsArray[{g1, g2, ...}] plots a row of graphics objects.
 GraphicsArray[{g11, g12, ...},{g21, g22, ...}}] plots a two-dimensional array of 

graphics objects.
 Greater[x, y] or x > y is True if and only if x is numerically greater than y.
 GreaterEqual[x, y] or x >= y or x ≥ y is True if and only if x is numerically greater than y 

or equal to y.
 HankelMatrix[n, list] creates a Hankel matrix whose first row (and column) is list.
 HankelMatrix[n] creates a Hankel matrix whose first row (and column) is {1, 2, 3,..., n}.
 HeavisideTheta[x] returns a value of 0 if x < 0 and 1 if x > 0.
 HilbertMatrix[m, n] creates an m × n Hilbert matrix.
 HilbertMatrix[n] creates an n × n Hilbert matrix
 IdentityMatrix[n] creates an n × n identity matrix.
 IdentityMatrix[n] produces an n × n matrix with 1s on the main diagonal and 0s elsewhere.
 If[condition, true, false] evaluates condition and executes true if condition is True and executes 

false if condition is False.
 If[condition, true, false, neither] evaluates condition and executes true if condition is True, 

executes false if condition is False, and executes neither if condition is neither True nor False.
 If[condition, true] evaluates condition and executes true if condition is True. If condition is 
False no action is taken and Null is returned.

 If[condition,, false] evaluates condition and executes false if condition is False. If condition 
is True no action is taken and Null is returned. (Note the double comma.)

 Implies[p, q] or p ª q is False if p is True and q is False; True otherwise. 
 Increment[x] or x ++ increases the value of x by 1 but returns the old value of x.
 Infinity or Ç is a constant with special properties. For example, Ç + 1 = Ç.
 InputForm[expression] prints expression in a form suitable for input to Mathematica. 
 Insert[list, x, n] returns list with x inserted in position n. 
 Insert[list, x, –n] returns list with x inserted in the nth position from the end. 
 Insert[list, x,{m, n}] returns list with x inserted in the nth position of the mth entry in the 

outer level.
 IntegerPart[x] gives the integer portion of x (decimal point excluded).
 Integrate[f[x], x] computes the antiderivative (indefinite integral) f x dx( ) .∫
 Integrate[f[x], {x, a, b}] computes, whenever possible, the exact value of f x dx( ) .

a

b

∫
 The symbol ∫




   on the Basic Math Input palette may be used as well. 

 Integrate[f[x, y], {x, xmin, xmax}, {y, ymin, ymax}] evaluates the double integral 

f x,y dy dx
ymin

ymax

xmin

xmax
( )∫∫ .

 Integrate[f[x, y, z], {x, xmin, xmax}, {y, ymin, ymax}, {z, zmin, zmax}] eval-

uates the triple integral f x,y,z dz dy dx
zmin

zmax

ymin

ymax

xmin

xmax
( )∫∫∫∫ .
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 InterpolateRoot[lhs  rhs, {x, a, b}] solves the equation lhs = rhs using initial 
values a and b. 

 Intersection[list1, list2] returns a sorted list of elements common to list1 and list2. If list1 
and list2 are disjoint, i.e., they have no common elements, the command returns the empty list, {}. 
list1 ∩ list2 is equivalent to Intersection[list1, list2].

 Inverse[matrix] computes the inverse of matrix.
 InverseLaplaceTransform[F[var1], var1, var2] computes the inverse Laplace transform 

of the function F, with independent variable var1, and expresses it as a function of var2.
 Join[list1, list2] combines the two lists list1 and list2 into one list consisting of the elements from 

list1 and list2. 
 JordanDecomposition[matrix] computes the Jordan canonical form of matrix.
 KSubsets[list, k] returns a list containing all subsets of list of size k. 
 LaplaceTransform[f[var1], var1, var2] computes the Laplace transform of the function f, 

with independent variable var1, and expresses it as a function of var2.
 Last[list] returns the element of list in the last position. 
 LCM[m, n] returns the least common multiple of m and n.
 Length[list] returns the length of list, i.e., the number of elements in list. 
 Less[x, y] or x < y is True if and only if x is numerically less than y.
 LessEqual[x, y] or x <= y or x Ä y is True if and only if x is numerically less than or equal to y.
 Level[list, {levelspec}] returns a list consisting of those objects that are at level levelspec of list. 
 Level[list, levelspec] returns a list consisting of those objects that are at or below level levelspec 

of list. 
 Limit[f[x], x ã a] computes the value of lim ( )

x a
f x

→
. 

 LinearSolve[a, b] produces vectors x such that a.x = b.
 LinearSolve[a] produces a LinearSolveFunction that can be used to solve a.x = b for 

different vectors b. 
 List[elements] represents a list of objects. elements represents the members of the list separated 

by commas. List[elements] is equivalent to {elements}.
 ListContourPlot[array] generates a contour plot from a two-dimensional array of numbers. 
 ListContourPlot3D[array] draws a contour plot of the values in array, a three-dimensional 

array of numbers representing the values of a function.
 ListDensityPlot[array] generates a density plot from a two-dimensional array of numbers. 
 ListLinePlot[{y1, y2,...}] plots points whose y-coordinates are y1, y2, . . . and connects 

them with line segments. The x-coordinates are taken to be the positive integers.
 ListLinePlot[{{x1, y1}, {x2, y2},...,}] plots the points (x1, y1), (x2, y2), . . . and con-

nects them with lines.
 ListLinePlot[list1, list2, ...] plots multiple lines through points defined by list1, 

list2, . . .
 ListPlot[{y1, y2, ...}] plots points whose y-coordinates are y1, y2, . . . The x-coordinates 

are taken to be the positive integers, 1, 2, . . .
 ListPlot[{{x1, y1}, {x2, y2},..., }] plots the points (x1, y1), (x2, y2), . . . 
 ListPlot3D[{{z11, z12,...}, {z21, z22,...},...}] generates a three-dimensional sur-

face based upon a given array of heights. The x- and y-coordinate values for each data point are taken 
to be consecutive integers beginning with 1.

 ListPlot3D[{{x1, y1, z1}, {x2, y2, z2},...}] generates a three-dimensional surface 
based upon a given array of heights zj, which are the z-coordinates corresponding to the points 
{xi, yi}.

 ListPointPlot3D[list] plots the points in list in a three-dimensional box. list must be a list of 
sublists, each of which contains three numbers, representing the coordinates of points to be plotted.

 ListSurfacePlot3D[list] creates a three-dimensional polygonal mesh from the vertices 
specified in list, which should be of the form {{{x11, y11, z11}, {x12, y12, z12},...},
{{x21, y21, z21}, {x22, y22, z22},...},...}

 Log[x] represents the natural logarithm. If a base, b, other than e is required, the appropriate form 
is Log[b, x]. 
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 LogicalExpand[expression] applies the distributive laws for logical operations to expression 
and puts it into disjunctive normal form.

 LUBackSubstitution[data, b]uses the output of LUDecomposition [matrix] to solve 
the system matrix.x = b.

 LUDecomposition[matrix] finds the LU decomposition of matrix.
 Manipulate[expression, {k, m, n, i}]works very much the same way as Animate except 

it allows the user to control the parameterdirectly with a slider.
 Manipulate[expression, {k1, m1, n1, i1}, {k2, m2, n2, i2}, ... ] allows multiple 

parameters which can be independently controlled.
 MatrixForm[list] prints double nested lists as a rectangular array enclosed within parentheses. 

The innermost lists are printed as rows. Single nested lists are printed as columns enclosed within 
parentheses. 

 MatrixPower[matrix, n] computes the nth power of matrix.
 Max[list] returns the largest number in list.
 Min[list] returns the smallest number in list.
 Minors[matrix] produces a matrix whose (i, j)th entry is the determinant of the submatrix obtained 

from matrix by deleting row n – i  + 1 and column n – j  + 1.
 Minors[matrix, k] produces the matrix whose entries are the determinants of all possible k × k 

submatrices of matrix (matrix need not be square).
 Minus[a] produces the additive inverse (negative) of a. Minus[a] is equivalent to –a. 
 Mod[m, n] returns the remainder when m is divided by n.
 Module[{var1, var2, . . .}, body] defines a module with local variables var1, var2, . . .
 Module[{var1 = v1, var2 = v2, . . .},  body] defines a module with local variables var1, 

var2, . . . initialized to v1, v2, . . . , respectively.
 N[expression] gives the numerical approximation of expression to six significant digits (Mathematica’s 

default).
 N[expression, n] attempts to give an approximation accurate to n significant digits.
 NDSolve[equations, y, {x, xmin, xmax}] gives a numerical approximation to the solution, y, 

of the differential equation with initial conditions, equations, whose independent variable, x, satisfies 
xmin ≤ x ≤ xmax.

 Nest[f, expression, n] applies f to expression successively n times.
 NestList[f, expression, n] applies f to expression successively n times and returns a list of 

all the intermediate calculations from 0 to n.
 NIntegrate[f[x], {x, a, b}] computes an approximation to the value of f x dx( )

a

b

∫  using 
strictly numerical methods.

 NIntegrate[f[x, y], {x, xmin, xmax}, {y, ymin, ymax}] returns a numerical 

approximation of the value of the double integral f x,y dy dx
ymin

ymax

xmin

xmax
( )∫∫ .

 NIntegrate[f[x, y, z], {x, xmin, xmax}, {y, ymin, ymax}, {z, zmin, zmax}] 

returns a numerical approximation of the value of the triple integral f(x,y,z) dz dy dx
zmin

zmax

ymin

ymax

xmin

xmax

∫∫∫∫ .

 Norm[v] returns the Euclidean norm of v. || ||v =
=
∑ vi
i

n
2

1

.

 Normal[series] returns a polynomial representation of the SeriesData object series which can 
then be evaluated numerically. The O[x]n term is omitted. 

 Normalize[vector] converts vector into a unit vector.
 Normalize[vector, f] converts vector into a unit vector with respect to the norm function f.
 Not[p] or !p or ¬p is True if p is False and False if p is True.
 NProduct, returns numerical approximations to each of the products described in Product.
 NRoots[lhs  rhs, variable] produces numerical approximations of the solutions of a polynomial 

equation.
 NSolve[equations, variables] solves equations numerically for variables. 
 NSolve[equations, variables, n] solves equations numerically for variables to n digits of precision. 
 NSum, returns numerical approximations to each of the sums described in Sum.
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 NullSpace[a] returns the basis vectors of the null space of a.
 Numerator[fraction] returns the numerator of fraction. 
 Opacity[a]specifies the degree of transparency of a graphics object. The value of a must be 

between 0 and 1, with 0 representing perfect transparency and 1 representing complete 
opaqueness. 

 Or[p,q ] or p || q or p ∑ q is True if p or q (or both) are True; False otherwise.
 Orthogonalize[vectorlist] uses the Gram-Schmidt method to produce an orthonormal set of 

vectors whose span is vectorlist.
 Orthogonalize[vectorlist, f] produces an orthonormal set of vectors with respect to the inner 

product defined by f. 
 Outer[Times, v1, v2] computes the outer product of v1 and v2.
 PaddedForm[expression, {n, f}] prints the value of expression leaving space for a total of 
n digits, f of which are to the right of the decimal point. The fractional portion of the number is 
rounded if any digits are deleted. 

 PaddedForm[expression, n] prints the value of expression leaving space for a total of n digits. 
This form of the command can be used for integers or real number approximations. The decimal 
point is not counted as a position. 

 ParametricPlot[{x[t], y[t]}, {t, tmin, tmax}] plots the parametric equations x = x(t), 
y = y(t) over the interval tmin ≤ t ≤ tmax.

 ParametricPlot[{{x1[t], y1[t]}, {x2[t], y2[t]}, ...}, {t, tmin, tmax}] 
plots several sets of parametric equations over tmin ≤ t ≤ tmax.

 ParametricPlot3D[{x[t], y[t], z[t]}, {t, tmin, tmax}] plots a space curve in 
three dimensions for tmin ≤ t ≤ tmax.

 ParametricPlot3D[{x[s, t], y[s, t], z[s, t]}, {s, smin, smax}, {t, tmin, tmax}] 
plots a surface in three dimensions.

 Part[list, k] or list[[k]] returns the kth element of list.
 Part[list, –k] or list[[–k]] returns the kth element from the end of list. 
 Part[list, m, n] or list[[m, n]] returns the nth entry of the mth element of list, provided 
list has depth of at least 2.

 Partition[list, k] converts list into sublists of length k. If list contains k n + m ele-
ments, where m < k, Partition will create n sublists and the remaining m elements will be 
dropped.

 Partition[list, k, d] partitions list into sublists of length k offsetting each sublist from the 
previous sublist by d elements. In other words, each sublist (other than the first) begins with the 
d + 1st element of the previous sublist.

 Pi or p is the ratio of the circumference of a circle to its diameter.
 PieChart[datalist] draws a simple pie chart. datalist is a list of numbers enclosed within 

braces.
 PieChart[{datalist1, datalist2, ...}] draws a pie chart containing data from multiple data 

sets. Each data set is a list of numbers enclosed within braces.
 Plot[f[x], {x, xmin, xmax} plots a two-dimensional graph of the function f[x] on the interval 
xmin ≤ x ≤ xmax.

 Plot[{f[x], g[x]}, {x, xmin, xmax}] plots the graphs of f[x] and g[x] from xmin 
to xmax on the same set of axes. This command can be generalized in a natural way to plot three or 
more functions. 

 Plot3D[f[x, y], {x, xmin, xmax}, {y, ymin, ymax}] plots a three-dimensional graph 
of the function f[x,y] above the rectangle xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax. 

 Plot3D[{f1[x, y], f2[x, y], ...}, {x, xmin, xmax}, {y, ymin, ymax}] plots 
several three-dimensional surfaces on one set of axes.

 Plus[a, b,...] computes the sum of a, b, . . . Plus[a, b] is equivalent to a + b. 
 PolarPlot[f[p], {p, pmin, pmax}] generates a plot of the polar equation r f= ( )θ as θ varies 

from θmin to θmax. 
 PolarPlot[{f1[p], f2[p],...}, {p, pmin, pmax}] plots several polar graphs on one set of 

axes.
 PolynomialGCD[p1, p2,...] computes the greatest common divisor of the polynomials p1, 
p2, . . . 
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 PolynomialLCM[p1, p2,...] computes the least common multiple of the polynomials p1, 
p2, . . . 

 PolynomialQ[expression, variable] yields True if expression is a polynomial in variable, and 
False otherwise.

 PolynomialQuotient[p, s, x] gives the quotient upon division of p by s expressed as a 
function of x. Any remainder is ignored. 

 PolynomialRemainder[p, s, x] returns the remainder when p is divided by s. The degree 
of the remainder is less than the degree of s. 

 Power[a, b] computes ab, Power[a, b, c] produces ab
c
, etc.

 PowerExpand[expression] expands nested powers, powers of products and quotients, roots of 
products and quotients, and their logarithms. 

 PreDecrement[x] or –– x decreases the value of x by 1 and returns the new value of x.
 PreIncrement[x] or ++ x increases the value of x by 1 and returns the new value of x.
 Prepend[list, x] returns list with x inserted to the left of its first element. 
 Prime[n] returns the nth prime. 
 PrimeQ[expression] yields True if expression is a prime number, and yields False otherwise.
 Print[expression] prints expression, followed by a line feed.
 Print[expression1, expression2, . . .] prints expression1, expression2, . . .  followed by a single 

line feed.
 Product[a[i], {i, imax}] or a[i]

i=1

imax

∏  evaluates the product ai
i

i

=
∏

1

max

.

 Product[a[i], {i, imin, imax}] or a[i]
i=imin

imax

∏  evaluates the product ai
i imin

imax

=
∏ .

 Product[a[i], {i, imin, imax, increment}] evaluates the product ai
i imin

imax

=
∏  in steps of 

increment.
 Product[a[i, j], {i, imax}, {j, jmax}] or a[i, j]

j=1

jmax

i=1

imax

∏∏  evaluates the product ai j
j

jmax

i

imax

,
==

∏∏
11

.

 Product[a[i,j],{i,imin,imax},{j,jmin,jmax}] or a[i, j]
j=jmin

jmax

i=imin

imax

∏∏  evaluates 

the product ai j
j jmin

jmax

i imin

imax

,
==
∏∏ .

 Product[a[i,j],{i,imin,imax,i_increment},{j,jmin,jmax, j_increment}] 

evaluates the product ai j
j jmin

jmax

i imin

imax

,
==
∏∏  in steps of i_increment and j_increment. 

 Projection[vector1, vector2] returns the orthogonal projection of vector1 onto vector2.
 Projection[vector1, vector2, f ] returns the orthogonal projection of vector1 onto vector2 with 

respect to an inner product defined by f.
 Quotient[m, n] returns the quotient when m is divided by n.
 Random[ ] gives a uniformly distributed, real, pseudorandom number in the interval [0, 1]. 
 Random[type] returns a uniformly distributed pseudorandom number of type type, which is either 
Integer, Real, or Complex. Its values are between 0 and 1, in the case of Integer or Real, 
and contained within the square determined by 0 and 1 + ‰, if type is Complex. 

 Random[type, range] gives a uniformly distributed pseudorandom number in the interval or rectangle 
determined by range. range can be either a single number or a list of two numbers such as {a,b} 
or {a + b I, c + d I}. A single number m, is equivalent to {0,m}.

 Random[type, range, n] gives a uniformly distributed pseudorandom number to n significant 
digits in the interval or rectangle determined by range.

 RandomComplex[] returns a pseudorandom complex number lying within the rectangle whose 
opposite vertices are 0 and 1+I.

 RandomComplex[zmax] returns a pseudorandom complex number that lies in the rectangle 
whose opposite vertices are 0 and zmax.

 RandomComplex[{zmin, zmax}] returns a pseudorandom complex number that lies in the 
rectangle whose opposite vertices are zmin and zmax.

 RandomComplex[{zmin, zmax},n] returns a list of n pseudorandom complex numbers each 
of which lies in the rectangle whose opposite vertices are zmin and zmax.
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 RandomComplex[{zmin, zmax},{m, n}] returns an m × n list of pseudorandom complex 
numbers each of which lies in the rectangle whose opposite vertices are zmin and zmax.

 RandomInteger[ ] returns 0 or 1 with equal probability.
 RandomInteger[imax] returns a pseudorandom integer between 0 and imax.
 RandomInteger[{imin, imax}] returns a pseudorandom integer between imin and imax.
 RandomInteger[{imin, imax},n] returns a list of n pseudorandom integers between xmin 

and xmax. This extends in a natural way to lists of higher dimension.
 RandomInteger[{imin, imax},{m, n}] returns an m × n list of pseudorandom integers 

between xmin and xmax. This extends in a natural way to lists of higher dimension.
 RandomPrime[n] returns a pseudorandom prime number between 2 and n.
 RandomPrime[{m, n}] returns a pseudorandom prime number between m and n.
 RandomPrime[{m, n}, k] returns a list of k pseudorandom primes, each between m and n.
 RandomReal[ ] returns a pseudorandom real number between 0 and 1.
 RandomReal[xmax] returns a pseudorandom real number between 0 and xmax.
 RandomReal[{xmin, xmax}] returns a pseudorandom real number between xmin and 
xmax.

 RandomReal[{xmin, xmax},n] returns a list of n pseudorandom real numbers between xmin 
and xmax. 

 RandomReal[{xmin, xmax},{m, n}] returns an  m × n  list of pseudorandom real numbers 
between xmin and xmax. This extends in a natural way to lists of higher dimension. 

 RandomSample[{e1, e2, . . . , en}] gives a pseudorandom permutation of the list of ei.
 RandomSample[{e1, e2, . . . , en}, k] gives a pseudorandom sample of k of the ei. 
 Range[n] generates a list of the first n consecutive integers.
 Range[m, n] generates a list of numbers from m to n in unit increments.
 Range[m, n, d] generates a list of numbers from m through n in increments of d.
 Reduce[equations, variables] simplifies equations, attempting to solve for variables. If equations is an 

identity, Reduce returns the value True. If equations is a contradiction, the value False is returned.
 Remove[symbol] removes symbol completely. symbol will no longer be recognized unless it is 

redefined. 
 ReplacePart[list, x, n] replaces the object in the nth position of list by x. 
 ReplacePart[list, x, –n] replaces the object in the nth position from the end by x.
 ReplacePart[list, i ã new] replaces the ith part of list with new.
 ReplacePart[list, {i1 ã new1,i2 ã new2, ..., in  ã  newn}] replaces parts i1, 
i2,...,in with new1, new2, . . . , newn, respectively.

 ReplacePart[list,{{i1},{i2},...,{in}} ã new] replaces all elements in positions i1, 
i2,...,in with new.

 ReplacePart[list, {i, j} ã new] replaces the element in position j of the ith outer level entry 
with new.

 ReplacePart[list, {i1,j1} ã new1, {i2, j2} ã new2,...,{in, jn} ã newn] replaces 
the entries in positions jk of entry ik in the outer level with newk.

 ReplacePart[list, {{i1,j1}, {i2, j2}, ... , {in, jn}} ã new] replaces all entries in 
positions jk of entry ik in the outer level with new.

 Rest[list] returns list with its first element deleted. 
 Reverse[list] reverses the order of the elements of list. 
 RevolutionPlot3D[f[x], {x, xmin, xmax}] plots the surface generated by rotating the 

curve z = f(x) , xmin ≤ x ≤ xmax, completely around the z-axis. 
 RevolutionPlot3D[f[x], {x, xmin, xmax}, {p, pmin, pmax}] plots the surface gen-

erated by rotating the curve z = f(x) , xmin ≤ x ≤ xmax, around the z-axis for θmin ≤ θ ≤ θmax 
where θ is the angle measured counterclockwise from the positive x-axis.

 RevolutionPlot3D[{f[t],g[t]}, {t, tmin, tmax}] generates a plot of the surface 
generated by rotating the curve x = f(t), z = g(t), tmin ≤ t ≤ tmax, completely around the z-axis.

 RevolutionPlot3D[{f[t],g[t]}, {t, tmin, tmax},{p, pmin, pmax}] generates a 
plot of the surface generated by the curve x = f(t), z = g(t), tmin ≤ t ≤ tmax, around the z-axis for 
θmin ≤ θ ≤ θmax where θ is the angle measured counterclockwise from the positive x-axis.
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 RevolutionPlot3D[z[r, θ], {r, rmin, rmax}] generates a plot of the surface z = z(r, θ), 
rmin r rmax≤ ≤ , described in cylindrical coordinates. 

 RevolutionPlot3D [z[r, p], {r, rmin, rmax}, {p, pmin, pmax}] generates a plot 
of the surface z=z(r, ) rmin r rmaxθ , ,≤ ≤ θmin ≤ θ ≤ θmax.

 Roots[lhs  rhs, variable] produces the solutions of a polynomial equation. 
  RotateLeft[list] cycles each element of list one position to the left. The leftmost element is 

moved to the extreme right of the list. 
 RotateLeft[list, n] cycles the elements of list precisely n positions to the left. The leftmost n 

elements are moved to the extreme right of the list in their same relative positions. If n is negative, 
rotation occurs to the right.

 RotateRight[list] cycles each element of list one position to the right. The rightmost element is 
moved to the extreme left of the list.

 RotateRight[list, n] cycles the elements of list precisely n positions to the right. The rightmost 
n elements are moved to the extreme left of the list in their same relative positions. If n is negative, 
rotation occurs to the left. 

 RotateShape[object, e, p, x] rotates object using the Euler angles φ, θ, and ψ. 
 Round[x] returns the integer closest to x. If x lies exactly between two integers (e.g., 5.5), 
Round returns the nearest even integer.

 RowReduce[matrix] reduces matrix to reduced row echelon form.
 SeedRandom[n] initializes the random number generator using n as a seed. This guarantees that 

sequences of random numbers generated with the same seed will be identical.
 SeedRandom[ ] initializes the random number generator using the time of day and other attributes 

of the current Mathematica session. 
 Series[f[x], {x, a, n}] generates a SeriesData object representing the nth degree Taylor 

polynomial of f(x) about a. 
 SeriesCoefficient[series, n] returns the coefficient of the nth degree term of a SeriesData 

object.
 Show[g1, g2, . . .] plots several graphs on a common set of axes. 
 Sign[x] returns the values –1, 0, 1 depending upon whether x is negative, 0, or positive, respectively.
 Simplify[expression] performs a sequence of transformations on expression, and returns the 

simplest form it finds. 
 Sin, Cos, Tan, Sec, Csc, and Cot respectively represent the six basic trigonometric functions, 

sine, cosine, tangent, secant, cosecant and cotangent. 
 Sinh, Cosh, Tanh, Sech, Csch, and Coth represent the six hyperbolic functions.
 Solve[equations, variables] attempts to solve equations for variables. 
 Sort[list] sorts the list list in increasing order. Real numbers are ordered according to their numerical 

value. Letters are arranged lexicographically, with capital letters coming after lowercase. 
 SphericalPlot3D[ q, e, p] generates a complete plot of the surface whose spherical radius, r, 

is defined as a function of f and q.
 SphericalPlot3D[[ q, {e, e min, e  max}, {p, p min, p max}] generates a plot of the 

surface whose spherical radius, r, is defined as a function of f and q over the intervals f min ≤ f ≤ 
f max, q min ≤ q ≤ q max.

 Sqrt[x] or x  gives the non-negative square root of x. 
 StringDrop[string, n] returns string with its first n characters dropped.
 StringDrop[string, –n] returns string with its last n characters dropped.
 StringDrop[string, {n}] returns string with its nth character dropped.
 StringDrop[string, {–n}] returns string with the nth character from the end dropped.
 StringDrop[string, {m, n}] returns string with characters m through n dropped.
 StringInsert[string1, string2, n] yields a string with string2 inserted starting at position n 

in string1.
 StringInsert[string1, string2, –n] yields a string with string2 inserted starting at the nth 

position from the end of string1.
 StringInsert[string1, string2, {n1, n2,...}] inserts a copy of string2 at each of the positions 
n1, n2, ... of string1.
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 StringJoin[string1, string2, ...] or string1 <> string2 <> ... concatenates two or more 
strings to form a new string whose length is equal to the sum of the individual string lengths.

 StringLength[string] returns the number of characters in string.
 StringPosition[string, substring] returns a list of the start and end positions of all occurrances 

of substring within string.
 StringReplace[string, string1 ã newstring1] replaces string1 by newstring1 whenever it 

appears in string.
 StringReplace[string, {string1 ã newstring1, string2 ã newstring2, . . .}] replaces string1 

by newstring1, string2 by newstring2, . . . whenever they appear in string.
 StringReverse[string] reverses the characters in string. 
 StringTake[string, n] returns the first n characters of string.
 StringTake[string, –n] returns the last n characters of string. 
 StringTake[string, {n}] returns the nth character of string.
 StringTake[string, {–n}] returns the nth character from the end of string.
 StringTake[string, {m, n}] returns characters m through n of string.
 Subsets[list] returns a list containing all subsets of list, including the empty set, i.e., the power 

set of list. 
 Subtract[a, b] computes the difference of a and b. Only two arguments are permitted. 
Subtract[a, b] is equivalent to a – b.

 SubtractFrom[x, y] or x –= y subtracts y from x and returns the new value of x.

 Sum[a[i],{i, imax}] or a[i]
i=1

imax

∑  evaluates the sum ai
i

imax

=
∑

1

.

 Sum[a[i],{i, imin, imax}] or a[i]
i=imin

imax

∑  evaluates the sum ai
i imin

imax

=
∑ .

 Sum[a[i],{i, imin, imax, increment}] evaluates the sum ai
i imin

imax

=
∑  in steps of increment. 

Summation continues as long as i ≤ imax.

 Sum[a[i, j],{i, imax},{j,jmax}] or a[i, j]
j=1

jmax

i=1

imax

∑∑  evaluates the sum ai j
j

jmax

i

imax

,
==

∑∑
11

.

 Sum[a[i,j],{i,imin,imax},{j,jmin,jmax}] or a[i, j]
j=jmin

jmax

i=imin

imax

∑∑  evaluates the sum 

ai j
j jmin

jmax

i imin

imax

,
==
∑∑ .

 Sum[a[i, j],{i,imin,imax,i_increment},{j,jmin,jmax, j_increment}] 

evaluates the sum ai j
j jmin

jmax

i imin

imax

,
==
∑∑  in steps of i_increment and j_increment. 

 SurfaceOfRevolution[f[x], {x, xmin, xmax}] generates the surface of revolution 
obtained by rotating the curve z = f(x) about the z-axis.

 SurfaceOfRevolution[f[x], {x, xmin, xmax}, {θ, θmin, θmax}] generates the 
surface of revolution obtained by rotating the curve z = f(x) about the z-axis, for θmin ≤ θ ≤ θmax. 

 SurfaceOfRevolution[{x[t], z[t]}, {t, tmin, tmax}] generates the surface of 
revolution obtained by rotating the curve defined parametrically by x = x(t), z = z(t), about the 
z-axis.

 Table[expression, {n}] generates a list containing n copies of the object expression.
 Table[expression, {k, n}] generates a list of the values of expression as k varies from 1 to n.
 Table[expression, {k, m, n}] generates a list of the values of expression as k varies from m to n.
 Table[expression, {k, m, n, d}] generates a list of the values of expression as k varies from 
m to n in steps of d.

 Table[expression,{m},{n}] generates a two-dimensional list, each element of which is the 
object expression. 

 Table[expression,{i, mi, ni},{j, mj, nj}] generates a nested list whose values are expression, 
computed as j goes from mj to nj and as i goes from mi to ni. The index j varies most rapidly. 

 TableForm[list] prints list the same way as MatrixForm except the surrounding parentheses 
are omitted.
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 TableForm[list, options] allows the use of various formatting options in determining the appear-
ance of a table.

 Take[list, n] returns a list consisting of the first n elements of list. 
 Take[list, –n] returns a list consisting of the last n elements of list. 
 Take[list, {n}] returns a list consisting of the nth element of list.
 Take[list, {–n}] returns a list consisting of the nth element from the end of list. 
 Take[list, {m, n}] returns a list consisting of the elements of list in positions m through n 

inclusive. 
 Take[list, {m, n, k}] returns a list consisting of the elements of list in positions m through 
n in increments of k.

 Times[a, b,...] computes the product of a, b, . . . Times[a, b] is equivalent to a * b.
 TimesBy[x,y] or x *= y multiplies x by y and returns the new value of x.
 Timing[expression] evaluates expression, and returns a list of time used, in seconds, together with 

the result obtained. 
 Together[expression] combines the terms of expression using a common denominator. Any 

common factors in the numerator and denominator are cancelled. 
 Total[list] gives the sum of the elements of list.
 Tr[matrix] computes the trace of matrix.
 TraditionalForm[expression] prints expression in a traditional mathematical format.
 TranslateShape[object, {x, y, z}] translates object by the vector {x, y, z}]. 
 Transpose[matrix] computes the transpose of matrix.
 TrigExpand[expression] expands expression, splitting up sums and multiples that appear in 

arguments of trigonometric functions and expanding out products of trigonometric functions into 
sums and powers, taking advantage of trigonometric identities whenever possible. 

 TrigFactor[expression] converts expression into a factored expression of trigonometric functions 
of a single argument.

 TrigReduce[expression] rewrites products and powers of trig functions in expression as 
trigonometric expressions with combined arguments, reducing expression to a linear trig function 
(i.e., without powers or products). 

 TrigToExp[expression] converts trigonometric and hyperbolic functions to exponential form. 
 Unequal[x, y] or x!= y or x ñ y is True if and only if x and y have different values.
 Union[list1, list2] combines lists list1 and list2 into one sorted list, eliminating any duplicate 

elements. Although only two lists are presented in this description, any number of lists may be used. 
As a special case, Union[list] will eliminate duplicate elements in list. list1 ∪ list is equivalent to 
Union[list1, list2]. 

 UnitStep[x] returns a value of 0 if x < 0 and 1 if x ≥ 0. 
 Variables[polynomial] gives a list of all independent variables in polynomial.
 VectorPlot[{Fx, Fy}, {x, xmin, xmax}, {y, ymin, ymax}] produces a vector field 

plot of the two-dimensional vector function F, whose components are Fx and Fy.
 While[condition, expression] evaluates condition, then expression, repetitively, until condition 

is False.
 WireFrame[object] shows all polygons used in the construction of object as transparent. It may 

be used on any Graphics3D object that contains the primitives Polygon, Line, and Point. 
 Xor[p, q] is True if p or q (but not both) are True; False otherwise.
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!, 24
!=, 43
%, 9
&&, 43
Ç, 22
∂, 43
∑, 43
•, 77
§, 77
μ, 43
ã, 1
* =, 37
/., 41
/;, 40, 52, 53
/ =, 37
//, 9
, 40, 52
?, ??, 8
( ), 5
{ }, 5
[ ], 4
[[  ]], 66
^ (caret), 7
` (backquote character), 1
||, 43
+, -, *, /, 7
+ +, - -, 37
+ =, 37
<, >, 43
Ä, ê, 43
<=, >=, 43
=, 40
, 43
o, 22
ñ, 43
; , 3
, 5, 22
, 5

$Context, 335
$ContextPath, 336

Aborting a command, 3–4
Abs, 24
AbsoluteDashing, 99
AbsolutePointSize, 120
AbsoluteThickness, 99
AccountingForm, 34
Accumulate, 61
AccuracyGoal, 178, 214, 228, 281
AddTo, 37
AffineShape, 165
All, 296
And, 43
Animate, 129–130
Animation, 129–132
Antiderivatives, 226–228
Apart, 192
Append, 69
ArcCos, 29
ArcCosh, 29
ArcCot, 29
ArcCoth, 29
ArcCsc, 29
ArcCsch, 29
ArcSec, 29
ArcSech, 29
ArcSin, 29
ArcSinh, 29
ArcTan, 29
ArcTanh, 29
Arithmetic operations, 36–38

Array, 63, 293
ArrayFlatten, 307
AspectRatio, 95
Assignment, 40
Assumptions, 230
Axes, 104, 134, 269
AxesEdge, 135
AxesLabel, 102
AxesOrigin, 97

BarChart, 123
BarChart3D, 156
BarOrigin, 124, 156
BarSpacing, 123, 156
Bessel functions, 181, 268
BesselJ, 181, 268
BesselY, 268
Block diagonal matrix, 309
Boundary value problem, 271
Boxed, 134
BoxRatios, 134
BoxStyle, 135

Calculus
differential, 202–225
integral, 226–244
multivariate, 245–265

Calendar`, 19
Cancel, 192
Cardioid, 114, 120, 261
CartesianProduct, 77
Catalan, 22
Catenary, 278–279
Cauchy Principal Value, 230
Cayley–Hamilton theorem, 325
Ceiling, 26
Cell, 12
Center of mass, 259, 264–265
CharacteristicPolynomial, 323
CharacterRange, 64
Characters, 64
ChartLabels, 124, 156
ChartLayout, 123, 156
ChartStyle, 123, 125, 156 
ChebyshevT, 110
Chebyshev polynomials, 110
Circle, 111
Clear, 8
CMYKColor, 100
Coefficient, 186
CoefficientList, 186
Cofactor, 306
Collect, 188
ColorData, 102
Color Selector, 101
ColumnForm, 86
Combinatorica`, 19, 77, 79
Complement, 76
ComplexExpand, 172
Composition, 57
Compound Interest, 89–90
Conchoid of Nicomedes, 113
Cone, 163–164
Constants, 256
ConstantArray, 296
Context, 335
Contexts, 335–336
ContourLines, 148
ContourPlot, 148
ContourPlot3D, 150
Contours, 148, 150, 152
ContourShading, 148
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ContourStyle, 113–114
ControlType, 113
Cos, 28
Cosh, 29
Cot, 28
Coth, 29
Create Table/Matrix, 80, 294
Critical number, 212
Critical point, 249
Cross, 299
Cross product, 299
Csc, 28
Csch, 29
Cuboid, 162
Cycloid, 116
Cylinder, 163–164

D, 205, 245
DampingFactor, 180
Dashing, 98
DataRange, 149, 151–152
DayOfWeek, 19
DaysBetween, 19
De Morgan’s laws, 44
Decrement, 37
Degree, 22, 28
Delete, 68, 308
Denominator, 192
DensityPlot, 148
Depth, 71
Derivative, 206, 246
Derivatives

ordinary, 205–212
partial, 245–249

Det, 301
Diagonalization, 326
DiagonalMatrix, 80, 293
Differential equations

analytical solutions, 266–280
Laplace transforms, 284–292
numerical solutions, 280–283

DigitBlock, 34
DiracDelta, 287
Direction, 202
Disk, 111
Divide, 36
DivideBy, 37
Division Algorithm, 27
Do, 47
Documentation Center, 13
DoubleHelix, 163–164
Drop, 68, 308
DSolve, 266
Dt, 255

E, 5, 22
Eigensystem, 323
Eigenvalues and Eigenvectors, 322–326
Eigenvalues, 323
Eigenvectors, 323
Elementary row operations, 312
ElementData, 20
Eliminate, 172
Equal, 43
Equations

algebraic, 169–177
differential, 266–292
transcendental, 177–185

Escape velocity, 273
Euclidean 

inner product, 319–321
norm, 302, 320

Euler angles, 165
EulerGamma, 22
EvaluationMonitor, 179
Exp, 28
Expand, 41–42
ExpandAll, 193
ExpandDenominator, 193
ExpandNumerator, 193
ExpToTrig, 197
Extension, 188
Extraneous solution, 173
Extreme Value Theorem, 212

f'[x], 205
FaceGrids, 134–135
Factor, 42
Factorial, 24
FactorInteger, 27
FactorTerms, 188
Fibonacci, 26
Filling, 106, 120
FindMaximum, 214
FindMinumum, 214
FindRoot, 177, 180
First, 66
Flatten, 72
FlattenAt, 72
Floor, 26
Folium of Descartes, 113
For, 48
FractionalPart, 26
Frame, 104, 269
Framed, 57–58
FrameTicks, 105
Fresnel sine integral, 226
Front end, 2
FullForm, 37, 280
FullSimplify, 200
Function, 333
FunctionApproximations`, 181
Function Navigator, 13
Functions

built-in, 23–36
defined by integrals, 233–240
operations on, 56–59
polynomials, 186–192
rational, 192–195
trigonometric, 195–200
user-defined, 52–56

Fundamental Theorem of Arithmetic, 27
Fundamental Theorem of Calculus, 228–229, 

233–234

GaussianIntegers, 188
Gauss-Jordan method, 312
GCD, 27
GeneratedParameters, 267
GoldenRatio, 22, 95
Gradient, 251
Gram-Schmidt method, 320
Graphics, 111
Graphics

2-dimensional, 50–52, 91–132
3-dimensional, 133–168

Graphics3D, 162
GraphicsArray, 94
GrayLevel, 98
Greater, 43
GreaterEqual, 43
Greatest common divisor, 27, 189
Greatest integer function, 26
GridLines, 104
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HankelMatrix, 296
Heat equation, 247
HeavisideTheta, 285
Helix, 168
Helix, 163–164
Help, 13–18
Heron’s formula, 56
Hilbert matrix, 87, 296, 303–304, 325
HilbertMatrix, 296
Hooke’s law, 233
Hue, 99–100
Hyperbolic functions, 26–29
Hypocycloid, 116

I, 5
IdentityMatrix, 80, 293
If, 48
Implies, 43
Increment, 37
Infinity, 22
Inner Product, 319
InputForm, 219
Insert, 69
IntegerDigits, 73
IntegerPart, 26
Integrals

definite, 228–233
improper, 229–230
multiple, 257–265

Integrate, 226, 228, 257
InterpolateRoot, 181
InterpolatingFunction object, 280
Intersection, 76
Interval object, 203
Inverse, 301
Inverse functions, 108–109
InverseLaplaceTransform, 284
Invisible comma, 245

Join, 71, 307
Jordan canonical form, 326
JordanDecomposition, 328

Kernel, 2
KSubsets, 19, 77

Lagrange multipliers, 251–252, 
254–255

Laplace’s equation, 247
Laplace transforms, 284–292
LaplaceTransform, 284
Last, 66
LCM, 27
Least common multiple, 27, 189
LegendOrientation, 103
LegendPosition, 102
LegendShadow, 103
LegendSize, 102
Length, 66
Less, 43
LessEqual, 43
Level, 71
Level curves, 148
Limacon, 183–184
Limit, 202
Limits, 202–204
Line, 111, 162
Linear systems, 311–318
LinearSolve, 311
Lissajous curves, 144
List, 60
ListContourPlot, 149

ListContourPlot3D, 152
ListDensityPlot, 149
ListLinePlot, 122
ListPlot, 120
ListPlot3D, 151
ListPointPlot3D, 157
Lists, 60–90
ListSurfacePlot3D, 157
Log, 28
LogicalExpand, 43
Logistic equation, 279
Loops, 47–50
LUBackSubstitution, 313
LUDecomposition, 313

Maclaurin polynomial, 219, 221–223, 225 
Manipulate, 129–130
Matrices, 79–87, 293–310
MatrixForm, 79, 293
MatrixPower, 301
Max, 61
Maximum/minimum values, 212–218, 

249–255
MaxIterations, 178
MaxRecursion, 95
MaxSteps, 281
MaxStepSize, 281
Mean Value Theorem, 208
Mean Value Theorem for Integrals, 232
Mesh, 135, 149, 151
MeshShading, 151
Midpoint rule, 241
Min, 61
Minors, 301
Minus, 36
Mod, 27
Module, 336
Modules, 336–339
MoebiusStrip, 163–164
Moment of inertia, 265
Mortgage payments, 90

N, 9
Names, 18–19
NDSolve, 280
Needs, 18
Nest, 57
Nested Lists, 63, 66, 71–73, 79–83
NestList, 57
Newton’s law of cooling, 273
Newton’s method, 177–180
Nintegrate, 228, 258
Norm, 320
Normal, 220
Normal curve, 108
Normalize, 320
Not, 43
Notebook, 2
NProduct, 45
NRoots, 187
NSolve, 172
NSum, 44–45
Nullity of a matrix, 311
NullSpace, 311
Numerator, 192
Numerical approximation, 9

Opacity, 164
Options, 14
Or, 43
Orthogonal matrix, 330
Orthogonality, 319–322
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Orthogonalize, 320
Outer, 300
Outer product, 300

Packages, 18–19
PaddedForm, 84
ParametricPlot, 111–112
ParametricPlot3D, 138
Part, 66–67
Partition, 72
Pascal’s triangle, 160
Patterns, 334–335
Periodic extension, 55
Permutations, 25, 35
Pi, 22
Piecewise function, 40, 52
PieChart, 125
Plot, 50, 91
Plot3D, 133
PlotLabel, 102
PlotLegend, 102
PlotMarkers, 120
PlotPoints, 95, 133, 148, 150
PlotRange, 92
PlotStyle, 98, 120, 136
Plus, 36
Point, 111, 162
PointSize, 120
PolarPlot, 114
Polygon, 111, 162
PolynomialGCD, 189
PolynomialLCM, 189
PolynomialQ, 30, 186
PolynomialQuotient, 187
PolynomialRemainder, 187
Polynomials, 186–192
Power, 36
Power series, 218–225
PowerExpand, 189
PrecisionGoal, 178, 214, 228, 

281
PreDecrement, 37
PreIncrement, 37
Prepend, 69
Prime, 26
PrimeQ, 30
PrincipalValue, 230
Print, 29–30
Product, 45
Projection, 319
Pure functions, 332–333

Quotient, 27

RadioButton, 129–130, 188
Random, 24
RandomComplex, 25
RandomInteger, 25
RandomPrime, 26
RandomReal, 25
RandomSample, 25
Random numbers, 24–25
Range, 62
Rank of a matrix, 311
Rectangle, 111
Reduce, 169
Relatively Prime, 33
Remove, 8
ReplaceAll (/.), 41
Replacement, 40–43
ReplacePart, 69–70
Rest, 67

Reverse, 70
RevolutionAxis, 159
RevolutionPlot3D, 139
RGBColor, 100
Riemann sums, 240–244
Rolle’s Theorem, 207
Roots, 187
Rose, 115, 119
RotateLeft, 71
RotateRight, 71
RotateShape, 165
Round, 26
RowReduce, 312

Scalar triple product, 303
Sec, 28
Secant method, 177, 179
Sech, 29
Second partial derivatives test, 250
SectorSpacing, 125
SeedRandom, 25
Series, 219
SeriesCoefficient, 221
SeriesData object, 219
Set theory, 76–79
Show, 92
Sign, 24
Simplify, 17, 200
Sin, 28
Sinh, 29
Solve, 169
Sort, 70
Sphere, 163–164
SphericalPlot3D, 140
Spiral of Archimedes, 119, 131, 184, 

260
Sqrt, 23
StartingStepSize, 281
Stochastic matrix, 304
StringDrop, 38
StringInsert, 39
StringJoin, 38
StringLength, 38
StringPosition, 39
StringReplace, 39
StringReverse, 38
Strings, 38–40
StringTake, 38
Subsets, 77
Subtract, 36
SubtractFrom, 37
Sum, 44–45
SurfaceOfRevolution, 158

Table, 62–63, 293
TableAlignments, 82
TableDirections, 83
TableForm, 79, 82
TableHeadings, 82
Tables, 79–86
TableSpacing, 85
Take, 67, 308
Tan, 28
Tangent plane, 248–249
Tanh, 29
Taylor polynomial, 219, 222, 224–225
Taylor Series, 219
Text, 111, 115, 162
TextStyle, 111, 115
Thickness, 99
Ticks, 105, 134
Times, 36
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TimesBy, 37
Timing, 28
Together, 42, 192
Toolbar, 12
Toroidal spiral, 145–146
Torus, 144–146, 168
Torus, 163–164
Total, 61
Total differential, 255–257
Tr, 301
TraditionalForm, 5
TranslateShape, 165
Transpose, 301
Trapezoidal rule, 241–242
TrigExpand, 196
TrigFactor, 196
Trigonometry, 28–29, 195–201
TrigReduce, 196
TrigToExp, 197
Trochoid, 116
Tschirnhausen cubic, 118

Unequal, 43
Union, 76
Unit step function, 285
UnitStep, 285

Vandermonde determinant, 305
Variables, 186
Vector fields, 269
VectorPlot, 269
Vectors, 293–299
VectorScale, 269
VerifySolutions, 173
ViewPoint, 136

While, 48
Wildcard, 15
WireFrame, 164
WorkingPrecision, 178, 214, 228, 281
WorldPlot`, 18

Xor, 43
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