
Observing Loopingness
Étienne Payet !Ï

LIM - Université de la Réunion, France

Abstract
In this paper, we consider non-termination in logic programming and in term rewriting and we
recall some well-known results for observing it. Then, we instantiate these results to loopingness, a
simple form of non-termination. We provide a bunch of examples that seem to indicate that the
instantiations are correct as well as partial proofs.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming;
Theory of computation → Rewrite systems; Theory of computation → Program analysis

Keywords and phrases Logic Programming, Term Rewriting Systems, Non-Termination, Loop

1 Introduction

Proving non-termination is an important topic in logic programming and term rewriting. It
is also important to determine classes of non-termination and compare them, e.g., in terms
of complexity and decidability, for a better understanding of the underlying mechanisms.
Loopingness is the simplest form of non-termination and the vast majority of automated
techniques for proving non-termination are designed for finding loops. In [10], the more
general concept of inner-loopingness in term rewriting is introduced and proved undecidable.

Our aim in this paper is to contribute to the understanding of loopingness. We consider
some well-known results for observing non-termination in the unfoldings and the chains and
we instantiate them to loopingness. We provide several examples that seem to indicate that
the instantiations are correct as well as partial proofs. Observing loopingness (instead of just
non-termination) provides clarifications on the non-termination hardness of the program.
On the other hand, an observed non-looping non-termination cannot be detected by an
automated technique designed for finding loops, hence it is useless to run such a technique
for proving this non-termination.

2 Preliminaries

We assume the reader is familiar with the standard definitions of logic programming [1] and
term rewriting [3]. We let N denote the set of non-negative integers. For any set E, we let
℘(E) denote its power set. We let +→ (resp. ∗→) denote the transitive (resp. reflexive and
transitive) closure of a binary relation →. We fix a finite signature F (the function symbols)
together with an infinite countable set V of variables with F ∩ V = ∅. Constant symbols are
denoted by 0, 1, . . . , function symbols of positive arity by f, g, s, . . . , variables by x, y, z, . . .

and terms by l, r, s, t, . . . For any term t, we let Var(t) denote the set of variables occurring
in t and root(t) denote the root symbol of t. The set of positions of t is denoted by Pos(t).
For any p ∈ Pos(t), we write t|p to denote the subterm of t at position p and t[p← s] to
denote the term obtained from t by replacing t|p with a term s. A substitution is a finite
mapping from variables to terms written as {x1/t1, . . . , xn/tn}. A (variable) renaming is a
substitution that is a bijection on V . The application of a substitution θ to a syntactic object
o (i.e., a construct consisting of terms) is denoted by oθ, and oθ is called an instance of o.
When θ is a renaming, oθ is also called a variant of o. The substitution θ is a unifier of the
syntactic objects o and o′ if oθ = o′θ. We let mgu(o, o′) denote the (up to variable renaming)

mailto:etienne.payet@univ-reunion.fr
http://lim.univ-reunion.fr/staff/epayet/ 


most general unifier of o and o′. If O is a set of syntactic objects, we write o≪ O to denote
that o is a new occurrence of an element of O whose variables are new (not previously met).

2.1 Logic programming
We also fix a finite set of predicate symbols disjoint from F and V that is used for constructing
atoms. Predicate symbols are denoted by p, q, . . . , atoms by H, A, B, . . . and queries (i.e.,
sequences of atoms) by bold uppercase letters. Consider a non-empty query ⟨A, A⟩ and
a clause c. Let H ← B be a variant of c variable disjoint with ⟨A, A⟩ and assume that
θ = mgu(A, H). Then ⟨A, A⟩ θ⇒

c
⟨B, A⟩θ is a derivation step with H ← B as its input clause.

If the substitution θ or the clause c is irrelevant, we drop a reference to it. For any logic
program (LP) P and queries Q, Q′, we write Q⇒

P
Q′ if Q θ⇒

c
Q′ holds for some clause c ∈ P

and some substitution θ. A maximal sequence Q0⇒
P

Q1⇒
P
· · · of derivation steps is called a

derivation of P ∪ {Q0} if the standardization apart condition holds, i.e., each input clause
used is variable disjoint from the initial query Q0 and from the mgu’s and input clauses used
at earlier steps. We say that a query Q is non-terminating w.r.t. P if there exists an infinite
derivation of P ∪ {Q}. We say that P is non-terminating if there exists a query which is
non-terminating w.r.t. it.

2.2 Term rewriting
For any terms s and t and any rewrite rule R = l→ r, we write s⇒

R
t if there is a substitution

θ and a position p ∈ Pos(s) such that s|p = lθ and t = s[p← rθ]. Then s⇒
R

t is called a
rewrite step. For any term rewriting system (TRS) R, we write s⇒

R
t if s⇒

R
t holds for some

R ∈ R (then, we also call s⇒
R

t a rewrite step). A maximal sequence s0⇒
R

s1⇒
R
· · · of rewrite

steps is called a rewrite of R ∪ {s0}. We say that a term s is non-terminating w.r.t. R if
there exists an infinite rewrite of R ∪ {s} and we say that R is non-terminating if there
exists a term which is non-terminating w.r.t. it.

3 Observing non-termination in logic programming

The binary unfoldings [4, 5] transform a LP P into a possibly infinite set of binary clauses.
Intuitively, each generated binary clause H←B (where B is an atom or the empty query
true) specifies that, w.r.t. P , a call to H (or any of its instances) necessarily leads to a call
to B (or its corresponding instance). A generated clause of the form H← true indicates a
success pattern. In the definition below, ℑ denotes the domain of binary clauses (viewed
modulo renaming) and id denotes the set of all binary clauses of the form true← true or
p(x1, . . . , xn)← p(x1, . . . , xn), where p is a predicate symbol of arity n and x1, . . . , xn are
distinct variables. Given any set X of binary clauses, T β

P (X) is constructed by unfolding
prefixes of clause bodies of P , using elements of X ∪ id, to obtain new binary clauses.

▶ Definition 1 (Binary unfoldings).

T β
P : ℘(ℑ)→ ℘(ℑ)

X 7→

(H←B)θ

∣∣∣∣∣∣∣∣
c = H←B1, . . . , Bm ∈ P, i ∈ {1, . . . , m}
⟨Hj← true⟩i−1

j=1 ≪ X

Hi←B ≪ X ∪ id, i < m⇒ B ̸= true
θ = mgu(⟨B1, . . . , Bi⟩, ⟨H1, . . . , Hi⟩)





and unf (P ) =
⋃

n∈N(T β
P )n(∅), where (T β

P )0(∅) = ∅.

▶ Example 2. Consider the logic program P that consists of the clauses

c1 = p(x, y)← q(x), p(y, x) c2 = q(0)← true

Unfolding c2 using true← true ∈ id, one gets c′
2 = q(0)← true ∈ T β

P (∅). Then, unfolding
c1 using c′

2, p(x′, y′)← p(x′, y′) ∈ id and i = 2, one gets c3 = p(0, y)← p(y, 0) ∈ (T β
P )2(∅).

Finally, unfolding c1 using c′
2, c3 and i = 2, one gets c4 = p(0, 0)← p(0, 0) ∈ (T β

P )3(∅).

It is proved in [4] that the binary unfoldings of a LP exhibit its termination properties:

▶ Theorem 3 (Observing non-termination in the unfoldings). Let P be a LP and Q be a query.
Then, Q is non-terminating w.r.t. P iff Q is non-terminating w.r.t. unf (P ).

For instance, in Ex. 2, we have c4 = p(0, 0)← p(0, 0) ∈ unf (P ), so the query p(0, 0) is
non-terminating w.r.t. unf (P ). Hence, by Thm. 3, p(0, 0) is non-terminating w.r.t. P .

The proof of Thm. 3 relies on the following definition and theorem.

▶ Definition 4 (Calls-to relation ⇝). Let P be a LP. For any atoms A and B, we say that B

is a call in a derivation of P ∪ {A}, denoted A⇝
P

B, if A
+⇒
P
⟨B, . . . ⟩; we also write A⇝

L
B to

emphasize that L is the sequence of clauses of P used in a derivation from A to ⟨B, . . . ⟩. A
P -chain is a (possibly infinite) sequence of the form A0⇝

P
A1⇝

P
A2⇝

P
· · ·

▶ Theorem 5 (Observing non-termination in the chains). A LP P is non-terminating iff there
exists an infinite P -chain.

For instance, in Ex. 2, we have the infinite P -chain p(0, 0)⇝
P

p(0, 0)⇝
P
· · ·

4 Observing non-termination in term rewriting

We consider the unfolding technique used in [8]. It is defined as a function over the domain ℜ
of rewrite rules (viewed modulo renaming). It is based on forward and backward narrowing
and also performs unfolding on variable positions (contrary to what is usually done in the
literature). Note that in general, the unfoldings of a TRS are not finitely computable.

▶ Definition 6 (Unfoldings).

UR : ℘(ℜ)→ ℘(ℜ)

X 7→

(l→ r[p← r′])θ

∣∣∣∣∣∣∣∣
l→ r ∈ X

p ∈ Pos(r)
l′→ r′ ≪ R
θ = mgu(r|p, l′)

︸ ︷︷ ︸
forward unfoldings

∪

(l[p← l′]→ r)θ

∣∣∣∣∣∣∣∣
l→ r ∈ X

p ∈ Pos(l)
l′→ r′ ≪ R
θ = mgu(l|p, r′)

︸ ︷︷ ︸
backward unfoldings

and unf (R) =
⋃

n∈N(UR)n(R), where (UR)0(R) = R.

▶ Example 7. Consider the TRS R introduced by Toyama [9] that consists of the rules

R1 = f(0, 1, x)→ f(x, x, x) R2 = g(x, y)→x R3 = g(x, y)→ y

We have R1 ∈ (UR)0(R). Unfolding R1 backwards using R2 and p = 1, one gets R4 =
f(g(0, y′), 1, x)→ f(x, x, x) ∈ UR(R). Then, unfolding R4 backwards using R3 and p = 2, one
gets R5 = f(g(0, y′), g(x′′, 1), x)→ f(x, x, x) ∈ (UR)2(R).



By [6], for all s→ t ∈ unf (R) we have s
+⇒
R

t. So, as R ⊆ unf (R) also holds, the unfoldings
of a TRS exhibit its termination properties:

▶ Theorem 8 (Observing non-termination in the unfoldings). Let R be a TRS and s be a term.
Then, s is non-terminating w.r.t. R iff s is non-terminating w.r.t. unf (R).

In Ex. 7 above, we have R5 = f(g(0, y′), g(x′′, 1), x)→ f(x, x, x) ∈ unf (R), hence the term
s = f(g(0, 1), g(0, 1), g(0, 1)) is non-terminating w.r.t. unf (R) (we have s⇒

R5
s⇒

R5
· · · ). Con-

sequently, by Thm. 8, s is non-terminating w.r.t. R.
We refer to [2] for details on dependency pairs. The defined symbols of a TRS R are DR =

{root(l) | l→ r ∈ R}. For every f ∈ F we let f# be a fresh tuple symbol with the same arity
as f. If t = f(t1, . . . , tm) is a term, we let t# denote the construct f#(t1, . . . , tm). The set of
dependency pairs of R is DP(R) = {l#→ t# | l→ r ∈ R, t is a subterm of r, root(t) ∈ DR}
(viewed modulo renaming). A (possibly infinite) sequence C = ⟨s#

1 → t#
1 , s#

2 → t#
2 , . . . ⟩ of

dependency pairs of R is an R-chain if there exist substitutions σi such that t#
i σi

∗⇒
R

s#
i+1σi+1

holds for every two consecutive pairs s#
i → t#

i and s#
i+1→ t#

i+1 in the sequence. We may also
write C as ⟨(s#

1 → t#
1 , σ1), (s#

2 → t#
2 , σ2), . . . ⟩ to emphasize that σ1, σ2, . . . are substitutions

associated with every two consecutive pairs. It is proved in [2] that the presence of an infinite
R-chain is a sufficient and necessary criterion for non-termination:

▶ Theorem 9 (Observing non-termination in the chains). A TRS R is non-terminating iff
there exists an infinite R-chain.

For instance, in Ex. 7, ⟨f#(0, 1, x)→ f#(x, x, x), f#(0, 1, x)→ f#(x, x, x), . . . ⟩ is an infinite
R-chain because, for σ = {x/ g(0, 1)}, we have f#(x, x, x)σ ∗⇒

R
f#(0, 1, x)σ.

5 Observing loopingness

The definitions presented below hold both in logic programming and in term rewriting, so
we introduce a generic terminology. By a program (denoted by Π, Π′. . . ) we mean a LP or a
TRS, by a rule (denoted by π, π′. . . ) we mean a clause or a rewrite rule, by a goal (denoted
by α, α′. . . ) we mean a query or a term, by a computation we mean a derivation or a rewrite.

Let L = ⟨π1, . . . , πn⟩ be a finite non-empty sequence of rules. For any goals α, α′ we write
α ↪→

L
α′ when α⇒

π1
· · ·⇒

πn

α′.

▶ Definition 10 (Looping). Let Π be a program, L be a finite non-empty sequence of rules of
Π and α be a goal. We say that a computation of Π ∪ {α} is L-looping if it is infinite and
has the form α ↪→

L
α1 ↪→

L
α2 ↪→

L
· · · . We may drop the reference to L if it is not relevant, and

simply say that the computation is looping. We say that α is looping w.r.t. Π if there exists
a looping computation of Π ∪ {α}. We say that Π is looping if there exists a goal which is
looping w.r.t. it.

▶ Example 11. Consider the LP P which consists of the clauses c1 = p1← p2, c2 = p2← p3,
c3 = p3← p1 and c4 = p3← p4. Then, p1 is looping w.r.t. P as we have the infinite derivation
p1⇒

c1
p2⇒

c2
p3⇒

c3
p1⇒

c1
p2⇒

c2
p3⇒

c3
p1⇒

c1
· · · i.e., for L = ⟨c1, c2, c3⟩, p1 ↪→

L
p1 ↪→

L
p1 ↪→

L
· · ·

We extend the concept of loopingness to chains.

▶ Definition 12 (Looping chain). Let P be a LP and R be a TRS.



We say that a P -chain is looping if it is infinite and has the form A0⇝
L

A1⇝
L
· · · where

L is a finite, non-empty, sequence of clauses of P .
We say that an R-chain is looping if it is infinite and has the form ⟨L, L, . . . ⟩, where L

is a finite, non-empty, sequence of elements of DP(R)× Substitutions.

▶ Example 13 (Ex. 7 continued). Let p =
(

f#(0, 1, x)→ f#(x, x, x), {x/ g(0, 1)}
)
. Then,

⟨p, p, . . . ⟩ is a looping R-chain.

Note that there exist infinite computations which are not looping, i.e., do not correspond
to the infinite repetition of the same sequence of rules.

▶ Example 14. Let P be the LP which consists of the clauses c1 = p(0, y)← p(s(y), s(y))
and c2 = p(s(x), y)← p(x, y). We have the following infinite derivation of P ∪ {p(0, 0)}:

p(0, 0)⇒
c1

p(s(0), s(0))⇒
c2

p(0, s(0))⇒
c1

p(s2(0), s2(0)) 2⇒
c2

p(0, s2(0))⇒
c1
· · ·

It is not looping as it follows the path ⟨c1, c2, c1, c2, c2, c1, . . . ⟩. We also have the infinite,
non-looping, P -chain:

p(0, 0)⇝
c1

p(s(0), s(0))⇝
c2

p(0, s(0))⇝
c1

p(s2(0), s2(0)) ⇝
⟨c2,c2⟩

p(0, s2(0))⇝
c1
· · ·

▶ Example 15. Let R be the TRS which consists of the rules R1 = f(0, y)→ f(s(y), s(y))
and R2 = f(s(x), y)→ f(x, y). We have the following infinite rewrite of R∪ {f(0, 0)}:

f(0, 0)⇒
R1

f(s(0), s(0))⇒
R2

f(0, s(0))⇒
R1

f(s2(0), s2(0)) 2⇒
R2

f(0, s2(0))⇒
R1
· · ·

It is not looping as it follows the path ⟨R1, R2, R1, R2, R2, R1, . . . ⟩. We also have the infinite,
non-looping, R-chain ⟨(R#

1 , σ1), (R#
2 , θ1), (R#

1 , σ2), (R#
2 , θ2), . . . ⟩ where R#

1 = s#
1 → t#

1 =
f#(0, y)→ f#(s(y), s(y)), R#

2 = s#
2 → t#

2 = f#(s(x), y)→ f#(x, y) and, for all i > 0, σi =
{y/ si−1(0)} and θi = {x/0, y/ si(0)}. Indeed, we have t#

1 σ1
∗⇒
R

s#
2 θ1, t#

2 θ1
∗⇒
R

s#
1 σ2, . . .

All the examples given above seem to indicate that the Observing non-termination results
of Sect. 3 and Sect. 4 can be instantiated to loopingness.

▶ Lemma 16 (Observing loopingness in the chains). If, for a program Π, there exists a looping
Π-chain then Π is looping.

Proof. For LPs, the result immediately follows from Def. 4 and Def. 12. For TRSs, it is
proved in [2] that any infinite Π-chain C = ⟨(s#

1 → t#
1 , σ1), (s#

2 → t#
2 , σ2), . . . ⟩ corresponds

to an infinite rewrite C′ = (s1σ1⇒
R1

C1[t1]σ1
∗⇒
Π

C1[s2]σ2⇒
R2

C1[C2[t2]]σ2
∗⇒
Π
· · · ) where R1 =

s1→C1[t1], R2 = s2→C2[t2], . . . are rewrite rules of Π and the rewrites in ∗⇒
Π

do not occur

in the Ci’s (i.e., they are those of t#
i σi

∗⇒
Π

s#
i+1σi+1). Hence, if C is looping, so is C′. ◀

▶ Conjecture 17 (Observing loopingness in the chains). If a program Π is looping then there
exists a looping Π-chain.

Proof sketch for a LP P . Let Q0 ↪→
L

Q1 ↪→
L
· · · be a looping derivation of P ∪ {Q0}. Then,

in each step Qi ↪→
L

Qi+1 there is a query ⟨A, . . . ⟩ that has an infinite derivation. For all
i ∈ N, let ⟨Ai, . . . ⟩ be the leftmost such query in Qi ↪→

L
Qi+1. Then, for all i ∈ N we have

Ai⇝
P

Ai+1. Let L′ be the sequence of clauses used in A0
+⇒
P
⟨A1, . . . ⟩. We prove by induction

on i that, for all i ∈ N, L′ is used in Ai
+⇒
P
⟨Ai+1, . . . ⟩ and hence that Ai⇝

L′
Ai+1. ◀



▶ Lemma 18 (Observing loopingness in the unfoldings). A term is looping w.r.t. a TRS R iff
it is looping w.r.t. unf (R).

Proof. (⇒) As R ⊆ unf (R), any rewrite with R is also a rewrite with unf (R). (⇐) For all
s→ t ∈ unf (R) we have s

+⇒
R

t [6], so replacing, in a looping rewrite with unf (R), each step
by the corresponding finite sequence of steps in R, one gets a looping rewrite with R. ◀

▶ Conjecture 19 (Observing loopingness in the binary unfoldings). A query is looping w.r.t. a
LP P iff it is looping w.r.t. unf (P ).

Proof sketch. Use Lem. 16 + Conj. 17 and the fact that ⇝
P

= ⇝
unf (P )

[4]. ◀

▶ Example 20. In Ex. 2, we have the ⟨c4⟩-looping derivation p(0, 0)⇒
c4

p(0, 0)⇒
c4
· · · of

unf (P ) ∪ {p(0, 0)} and the ⟨c1, c2⟩-looping derivation p(0, 0)⇒
c1
⟨q(0), p(0, 0)⟩⇒

c2
p(0, 0)⇒

c1
· · ·

of P ∪{p(0, 0)}. Note that c1 ̸∈ unf (P ) (c1 is not binary) hence this derivation of P ∪{p(0, 0)}
is not a derivation of unf (P ) ∪ {p(0, 0)}. In Ex. 7, for s = f(g(0, 1), g(0, 1), g(0, 1)), we have
the ⟨R5⟩-looping rewrite s⇒

R5
s⇒

R5
· · · of unf (R) ∪ {s} and the ⟨R2, R3, R1⟩-looping rewrite

s⇒
R2

f(0, g(0, 1), g(0, 1))⇒
R3

f(0, 1, g(0, 1))⇒
R1

s⇒
R2
· · · of R∪ {s}. As R ⊆ unf (R), this rewrite

of R∪ {s} is also a rewrite of unf (R) ∪ {s}.

6 Acknowledgement and future work

We thank the anonymous referees for their valuable comments and constructive criticisms.
Besides finishing the proofs (Conj. 19 and Conj. 17), we plan to extend the results to

dependency pairs in logic programming [7] and to inner-loopingness [10]. We also plan to
unify more concepts from termination analysis of LPs and TRSs.

References
1 K. R. Apt. From logic programming to Prolog. Prentice Hall International series in computer

science. Prentice Hall, 1997.
2 T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical

Computer Science, 236:133–178, 2000. doi:10.1016/S0304-3975(99)00207-8.
3 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
4 M. Codish and C. Taboch. A semantic basis for the termination analysis of logic programs.

Journal of Logic Programming, 41(1):103–123, 1999. doi:10.1016/S0743-1066(99)00006-0.
5 M. Gabbrielli and R. Giacobazzi. Goal independency and call patterns in the analysis of logic

programs. In H. Berghel, T. Hlengl, and J. E. Urban, editors, Proc. of SAC’94, pages 394–399.
ACM Press, 1994. doi:10.1145/326619.326789.

6 J. V. Guttag, D. Kapur, and D. R. Musser. On proving uniform termination and restricted
termination of rewriting systems. SIAM Journal of Computing, 12(1):189–214, 1983. doi:
10.1137/0212012.

7 M. T. Nguyen, J. Giesl, P. Schneider-Kamp, and D. De Schreye. Termination analysis of logic
programs based on dependency graphs. In A. King, editor, Proc. of LOPSTR’07, volume 4915
of LNCS, pages 8–22. Springer, 2007. doi:10.1007/978-3-540-78769-3_2.

8 É. Payet. Loop detection in term rewriting using the eliminating unfoldings. Theoretical
Computer Science, 403(2-3):307–327, 2008. doi:10.1016/j.tcs.2008.05.013.

9 Y. Toyama. Counterexamples to the termination for the direct sum of term rewriting systems.
Information Processing Letters, 25(3):141–143, 1987. doi:10.1016/0020-0190(87)90122-0.

10 Y. Wang and M. Sakai. On non-looping term rewriting. In A. Geser and H. Søndergaard,
editors, Proc. of WST’06, pages 17–21, 2006.

https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1016/S0743-1066(99)00006-0
https://doi.org/10.1145/326619.326789
https://doi.org/10.1137/0212012
https://doi.org/10.1137/0212012
https://doi.org/10.1007/978-3-540-78769-3_2
https://doi.org/10.1016/j.tcs.2008.05.013
https://doi.org/10.1016/0020-0190(87)90122-0

	1 Introduction
	2 Preliminaries
	2.1 Logic programming
	2.2 Term rewriting

	3 Observing non-termination in logic programming
	4 Observing non-termination in term rewriting
	5 Observing loopingness
	6 Acknowledgement and future work

