
Non-Termination Inference of Logic Programs

ETIENNE PAYET and FRED MESNARD

IREMIA, Université de La Réunion

We present a static analysis technique for non-termination inference of logic programs. Our

framework relies on an extension of the subsumption test, where some specific argument positions

can be instantiated while others are generalized. We give syntactic criteria to statically identify
such argument positions from the text of a program. Atomic left looping queries are generated

bottom-up from selected subsets of the binary unfoldings of the program of interest. We propose

a set of correct algorithms for automating the approach. Then, non-termination inference is
tailored to attempt proofs of optimality of left termination conditions computed by a termination

inference tool. An experimental evaluation is reported and the analysers can be tried online

at http://www.univ-reunion.fr/~gcc. When termination and non-termination analysis produce
complementary results for a logic procedure, then with respect to the leftmost selection rule and

the language used to describe sets of atomic queries, each analysis is optimal and together, they
induce a characterization of the operational behavior of the logic procedure.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Program Validation

General Terms: Languages, Verification

Additional Key Words and Phrases: Logic programming, static analysis, non-termination analysis,
optimal termination condition

1. INTRODUCTION

Since the work of N. Lindenstrauss on TermiLog [Lindenstrauss 1997; Dershowitz
et al. 2001], several automatic tools for termination checking (e.g. TALP [Arts and
Zantema 1996]) or termination inference (e.g. cTI [Mesnard and Neumerkel 2000;
2001] or TerminWeb [Genaim and Codish 2001]) are now available to the logic pro-
grammer. As the halting problem is undecidable for logic programs, such analyzers
compute sufficient termination conditions implying left termination. In most works,
only universal left termination is considered and termination conditions rely on a
language for describing classes of atomic queries. The search tree associated to
any (concrete) query satisfying a termination condition is guaranteed to be finite.
When terms are abstracted using the term-size norm, the termination conditions
are (disjunctions of) conjunctions of conditions of the form “the i-th argument is
ground”. Let us call this language Lterm.

In this report, we present the first approach to non-termination inference tailored
to attempt proofs of optimality of termination conditions at verification time for
pure logic programs. The aim is to ensure the existence, for each class of atomic

Author’s address: Etienne Payet, IREMIA, Université de La Réunion, 15 avenue René Cassin,

BP7151, 97715 Saint Denis messageries CEDEX 9, France; email: epayet@univ-reunion.fr.
This article is based on an earlier conference paper [Mesnard et al. 2002].
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year, Pages 1–??.

2 · E. Payet and F. Mesnard

queries not covered by a termination condition, of one query from this class which
leads to an infinite search tree when such a query is proved using any standard
Prolog engine. We shall first present an analysis which computes classes of left
looping queries, where any atomic query from such a class is guaranteed to lead to at
least one infinite derivation under the usual left-to-right selection rule. Intuitively,
we begin by computing looping queries from recursive binary clauses of the form
p(. . .) ← p(. . .). Then we try to add binary clauses of the form q(. . .) ← p(. . .)
to increase the set of looping queries. Finally by combining the result of non-
termination inference with termination inference, for each predicate, we compute
the set of modes for which the overall verification system has no information.

The main contributions of this work are:

—A new application of binary unfoldings to left loop inference. [Gabbrielli and
Giacobazzi 1994] introduced the binary unfoldings of a logic program P as a
goal independent technique to transform P into a possibly infinite set of binary
clauses, which preserves the termination property [Codish and Taboch 1999] while
abstracting the standard operational semantics. We present a correct algorithm
to construct left looping classes of atomic goals, where such classes are com-
puted bottom-up from selected subsets of the binary unfoldings of the analyzed
program.

—A correct algorithm which, when combined with termination inference [Mesnard
1996], may detect optimal left termination conditions expressed in Lterm for logic
programs. When termination and non-termination analysis produce complemen-
tary results for a logic procedure, then with respect to the leftmost selection rule
and the language used to describe sets of atomic queries, each analysis is optimal
and together, they induce a characterization of the operational behavior of the
logic procedure.

—A report on the experimental evaluation we conduct. We have fully implemented
termination and non-termination inference for logic programs, which can be tried
online at http://www.univ-reunion.fr/~gcc. We have run the couple of ana-
lyzers on a set of classical logic programs, the sizes of which range from 2 to 177
clauses. The results of this experiment should help the reader to appreciate the
value of the approach.

We organize the paper as follows: Section 2 presents the notations. In Section 3
we study loop inference for binary programs. We offer a full set of correct algorithms
for non-termination inference in Section 4 and optimality proofs of termination
conditions in Section 5. Finally, in Section 6, we discuss related works. The detailed
proofs of the results we present here can be found in the long version of this paper
which is available as a CoRR1 archive.

2. PRELIMINARIES

2.1 Functions

Let E and F be two sets. Then, f : E → F denotes that f is a partial function
from E to F and f : E � F denotes that f is a function from E to F . The

1http://arxiv.org/archive/cs/intro.html – Paper ID is cs.PL/0406041 (submitted to CoRR on 22
June 2004.)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Non-Termination Inference of Logic Programs · 3

domain of a partial function f from E to F is denoted by Dom(f) and is defined
as: Dom(f) = {e | e ∈ E, f(e) exists}. Thus, if f is a function from E to F , then
Dom(f) = E. Finally, if f : E → F is a partial function and E′ is a set, then f |E′

is the function from Dom(f) ∩ E′ to F such that for each e ∈ Dom(f) ∩ E′, f |E′

maps e to f(e).

2.2 Logic Programming

We strictly adhere to the notations, definitions, and results presented in [Apt 1997].
N denotes the set of non-negative integers and for any n ∈ N , [1, n] denotes the

set {1, . . . , n}. If n = 0 then [1, n] = ∅.
From now on, we fix a language L of programs. We assume that L contains an

infinite number of constant symbols. TUL denotes the set of all (ground and non
ground) terms of L. The set of relation symbols of L is Π and we assume that each
relation symbol p has a unique arity, denoted arity(p). An atom is a construct of
the form p(t1, . . . , tn) where p is an n-ary relation symbol and t1, . . . , tn are terms.
TBL denotes the set of all (ground and non ground) atoms of L. A query is a
finite sequence of atoms A1, . . . , An (where n ≥ 0). When n = 1, we say that the
query is atomic. A clause is a construct a the form H ← B where H is an atom
and B is a query; H is called its head and B its body. Throughout this article,
the variables of L are denoted by X, Y, Z, . . . , the constant symbols by a, b, . . . , the
function symbols by f, g, h, . . . , the relation symbols by p, q, r, . . . , the atoms by
A,B, . . . , the queries by Q, Q′, . . . or by A, B, . . . and the clauses by c, c′, . . .

Let t be a term. Then V ar(t) denotes the set of variables occurring in t. This
notation is extended to atoms, queries and clauses. Let θ := {X1/t1, . . . , Xn/tn}
be a substitution. We denote by Dom(θ) the set of variables {X1, . . . , Xn} and by
Ran(θ) the set of variables appearing in t1, . . . , tn. We define V ar(θ) = Dom(θ) ∪
Ran(θ). Given a set of variables V , θ|V denotes the substitution obtained from θ
by restricting its domain to V .

Let t be a term and θ be a substitution. Then, the term tθ is called an instance
of t. If θ is a renaming (i.e. a substitution that is a 1-1 and onto mapping from its
domain to itself), then tθ is called a variant of t. Finally, t is called more general
than t′ if t′ is an instance of t.

A logic program is a finite set of clauses. In program examples, we use the ISO-
Prolog syntax. Let P be a logic program. Then ΠP denotes the set of relation
symbols appearing in P . In this paper, we only focus on left derivations i.e. we
only consider the leftmost selection rule. Consider a non-empty query B,C and
a clause c. Let H ← B be a variant of c variable disjoint with B,C and assume
that B and H unify. Let θ be an mgu of B and H. Then B,C θ=⇒

c
(B,C)θ is a left

derivation step with H ← B as its input clause. If the substitution θ or the clause
c is irrelevant, we drop a reference to it.

Let Q0 be a query. A maximal sequence Q0
θ1=⇒
c1

Q1
θ2=⇒
c2
· · · of left derivation

steps is called a left derivation of P ∪ {Q0} if c1, c2, . . . are clauses of P and if
the standardization apart condition holds, i.e. each input clause used is variable
disjoint from the initial query Q0 and from the mgu’s and input clauses used at
earlier steps. A finite left derivation may end up either with the empty query (then
it is a successful left derivation) or with a non-empty query (then it is a failed left

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

4 · E. Payet and F. Mesnard

derivation). We say Q0 left loops with respect to (w.r.t.) P if there exists an infinite
left derivation of P ∪ {Q0}. We write Q

+=⇒
P

Q′ if there exists a finite non-empty

prefix ending at Q′ of a left derivation of P ∪ {Q}.

2.3 The Binary Unfoldings of a Logic Program

Let us present the main ideas about the binary unfoldings [Gabbrielli and Gia-
cobazzi 1994] of a logic program, borrowed from [Codish and Taboch 1999]. This
technique transforms a logic program P into a possibly infinite set of binary clauses.
Intuitively, each generated binary clause H ← B (where B is either an atom or the
atom true which denotes the empty query) specifies that, with respect to the orig-
inal program P , a call to H (or any of its instances) necessarily leads to a call to
B (or its corresponding instance).

More precisely, let Q be an atomic query. Then A is a call in a left derivation of
P ∪ {Q} if Q

+=⇒
P

A,B. We denote by callsP (Q) the set of calls which occur in the

left derivations of P ∪ {Q}. The specialization of the goal independent semantics
for call patterns for the left-to-right selection rule is given as the fixpoint of an
operator T β

P over the domain of binary clauses, viewed modulo renaming. In the
definition below, id denotes the set of all binary clauses of the form true ← true or
p(X1, . . . , Xn)← p(X1, . . . , Xn) for any p ∈ ΠP , where arity(p) = n.

T β
P (X) =

(H ← B)θ

c := H ← B1, . . . , Bm ∈ P, i ∈ [1,m],
〈Hj ← true〉i−1

j=1 ∈ X renamed with fresh variables,
Hi ← B ∈ X ∪ id renamed with fresh variables,
i < m⇒ B 6= true
θ = mgu(〈B1, . . . , Bi〉, 〈H1, . . . ,Hi〉)

We define its powers as usual. It can be shown that the least fixpoint of this
monotonic operator always exists and we set bin unf (P) := lfp(T β

P). Then the
calls that occur in the left derivations of P ∪ {Q} can be characterized as follows:
callsP (Q) = {Bθ|H ← B ∈ bin unf (P), θ = mgu(Q,H)}. This last property was
one of the main initial motivations of the proposed abstract semantics, enabling
logic programs optimizations. Similarly, bin unf (P) gives a goal independent rep-
resentation of the success patterns of P .

But we can extract more information from the binary unfoldings of a program
P : universal left termination of an atomic query Q with respect to P is identical to
universal termination of Q with respect to bin unf (P). Note that the selection rule
is irrelevant for a binary program and an atomic query, as each subsequent query
has at most one atom. The following result lies at the heart of Codish’s approach
to termination:

Theorem 2.1. [Codish and Taboch 1999] Let P be a program and Q an atomic
query. Then Q left loops with respect to P iff Q loops with respect to bin unf (P).

Notice that bin unf (P) is a possibly infinite set of binary clauses. For this reason,
in the algorithms of Section 4, we compute only the first max iterations of T β

P where
max is a parameter of the analysis. As an immediate consequence of Theorem 2.1,
assume that we detect that Q loops with respect to a subset of the binary clauses
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Non-Termination Inference of Logic Programs · 5

of T β
P ↑ i, with i ∈ N . Then Q loops with respect to bin unf (P) hence Q left loops

with respect to P .

Example 2.2. Consider the following program P (see [Lloyd 1987], p. 56–58):

p(X,Z) :- p(Y,Z),q(X,Y). p(X,X). q(a,b).

The binary unfoldings of P are:

T β
P ↑ 0 = ∅

T β
P ↑ 1 = {p(X, Z)← p(Y, Z), p(X, X)← true, q(a, b)← true} ∪ T β

P ↑ 0
T β

P ↑ 2 = {p(a, b)← true, p(X, Y)← q(X, Y)} ∪ T β
P ↑ 1

T β
P ↑ 3 = {p(X, b)← q(X, a), p(X, Z)← q(Y, Z)} ∪ T β

P ↑ 2
T β

P ↑ 4 = {p(X, b)← q(Y, a)} ∪ T β
P ↑ 3

T β
P ↑ 5 = T β

P ↑ 4 = bin unf (P)

Let Q := p(X, b). Note that Q loops w.r.t. T β
P ↑ 1, hence it loops w.r.t. bin unf (P).

So Q left loops w.r.t. P .

3. LOOP INFERENCE USING FILTERS

In this paper, we propose a mechanism that, given a logic program P , generates
at verification time classes of atomic queries that left loop w.r.t. P . Our approach
is completely based on the binary unfoldings of P and relies on Theorem 2.1. It
consists in computing a finite subset BinProg of bin unf (P) and then in inferring
a set of atomic queries that loop w.r.t. BinProg . By Theorem 2.1, these queries
left loop w.r.t. P .

Hence, we reduce the problem of inferring looping atomic queries w.r.t. a logic
program to that of inferring looping atomic queries w.r.t. a binary program. This
is why in the sequel, our definitions, results and discussions mainly concentrate on
binary programs only.

The central point of our method is the subsumption test, as the following lifting
lemma, specialized for the leftmost selection rule, holds:

Lemma 3.1. (One Step Lifting, [Apt 1997]) Let Q=⇒
c

Q1 be a left derivation

step, Q′ be a query that is more general than Q and c′ be a variant of c variable
disjoint with Q′. Then, there exists a query Q′

1 that is more general than Q1 and
such that Q′ =⇒

c
Q′

1 with input clause c′.

From this result, we derive:

Corollary 3.2. Let c := H ← B be a binary clause. If B is more general than
H then H loops w.r.t. {c}.

Corollary 3.3. Let c := H ← B be a clause from a binary program BinProg.
If B loops w.r.t. BinProg then H loops w.r.t. BinProg.

These corollaries provide two sufficient conditions that can be used to design
an incremental bottom-up mechanism that infers looping atomic queries. Given a
binary program BinProg , it suffices to build the setQ of atomic queries consisting of
the heads of the clauses whose body is more general than the head. By Corollary 3.2,
the elements of Q loop w.r.t. BinProg . Then, by Corollary 3.3, the head of the

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

6 · E. Payet and F. Mesnard

clauses whose body is more general than an element of Q can safely been added to
Q while retaining the property that every query in Q loops w.r.t. BinProg .

Notice that using this technique, we may not detect some looping queries. In
[Devienne et al. 1993], the authors show that there is no algorithm that, when
given a right-linear binary recursive clause (i.e. a binary clause p(· · ·) ← p(· · ·)
such that all variables occur at most once in the body) and given an atomic query,
always decides in a finite number of steps whether or not the resolution stops. In
the case of a linear atomic query (i.e. an atomic query such that all variables occur
at most once) however, the halting problem of derivations w.r.t. one binary clause
is decidable [Schmidt-Schauss 1988; Devienne 1988; 1990].

It can be argued that the condition provided by Corollary 3.2 is rather weak
because it fails at inferring looping queries in some simple cases. This is illustrated
by the following example.

Example 3.4. Let c be the clause p(X)← p(f(X)). We have the infinite deriva-
tion: p(X)=⇒

c
p(f(X))=⇒

c
p(f(f(X)))=⇒

c
p(f(f(f(X)))) · · · But, since the body

of c is not more general than its head, Corollary 3.2 does not allow to infer that
p(X) loops w.r.t. {c}.

In this section, we distinguish a special kind of argument positions that are
“neutral” for derivation. Our goal is to extend the relation “is more general than”
by, roughly, disregarding the predicate arguments whose position has been identified
as neutral. Doing so, we aim at inferring more looping queries.

Intuitively, a set of predicate argument positions ∆ is “Derivation Neutral” (DN
for short) for a binary clause c when the following holds. Let Q be an atomic query
and Q′ be a query obtained by replacing by any terms the predicate arguments in
Q whose position is in ∆. If Q=⇒

c
Q1 then Q′ =⇒

c
Q′

1 where Q′
1 is more general

than Q1 up to the arguments whose position is in ∆.

Example 3.5. (Example 3.4 continued) The predicate p has only one argument
position, so let us consider ∆ := 〈p 7→ {1}〉 which distinguishes position 1 for
predicate p. For any derivation step p(s) =⇒

c
p(s1) if we replace s by any term t

then there exists a derivation step p(t)=⇒
c

p(t1). Notice that p(t1) is more general

than p(s1) up to the argument of p. So, by the intuition described above, ∆ is DN
for c. Consequently, as in c the body p(f(X)) is more general than the head p(X)
up to the argument of p which is neutral, by an extended version of Corollary 3.2
there exists an infinite derivation of {c} ∪ {p(X)}.

Let us give some more concrete examples of DN positions.

Example 3.6. The second argument position of the relation symbol append in
the program APPEND:

append([],Ys,Ys). % C1
append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs). % C2

is DN for C2. Notice that a very common programming technique called accumu-
lator passing (see for instance e.g. [O’Keefe 1990], p. 21–25) always produces DN
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Non-Termination Inference of Logic Programs · 7

positions. A classical example of the accumulator passing technique is the following
program REVERSE.

reverse(L,R) :- rev(L,[],R). % C1
rev([],R,R). % C2
rev([X|Xs],R0,R) :- rev(Xs,[X|R0],R). % C3

Concerning termination, we may ignore the second and the third argument of rev
in the recursive clause C3 while unfolding a query with this clause. Only the first
argument can stop the unfolding.

But we can be even more precise. Instead of only identifying positions that can
be totaly disregarded as in the above examples, we can try to identify positions
where we can place any terms for which a given condition holds.

Example 3.7. Consider the clause c := p(f(X))← p(f(f(X))). If we mean by a
DN position a position where we can place any terms, then the argument position
of p is not DN for c. This is because, for example, we have the derivation step
p(X) =⇒

c
p(f(f(X1))) but if we replace X by g(X) then there is no derivation step

of {c}∪{p(g(X))}. However, if we mean by a DN position a position where we can
place any instances of f(X), then the argument position of p is DN for c.

In the sequel of the section, we define more precisely DN positions as positions
where we can place any terms satisfying certain conditions identified by “filters”.
We use filters to present an extension of the relation “is more general than” and
we propose an extended version of Corollary 3.2. We offer two syntactic conditions
of increasing power for easily identifying DN positions from mere inspection of the
text of a logic program. The practical impact of such filters will be tackled in
Section 5.

3.1 Filters

Let us first introduce the notion of a filter. We use filters in order to distinguish
atoms, some arguments of which satisfy a given condition. A condition upon atom
arguments, i.e. terms, can be defined as a function in the following way.

Definition 3.8. (Term-condition) A term-condition is a function from the set of
terms TUL to {true, false}.

Example 3.9. The following functions are term-conditions.

ftrue : TUL � {true, false}
t 7→ true

f1 : TUL � {true, false}
t 7→ true iff t is an instance of [X|Y]

f2 : TUL � {true, false}
t 7→ true iff t unifies with h(a,X)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

8 · E. Payet and F. Mesnard

Notice that a term-condition might give distinct results for two terms which are
equal modulo renaming. For instance f2(X) = false and f2(Y) = true. However,
in Definition 3.12 below, we will only consider variant independent term-conditions.

Definition 3.10. (Variant Independent Term-Condition) A term-condition f is
variant independent if, for every term t, f(t) = true implies that f(t′) = true for
every variant t′ of t.

Example 3.11. (Example 3.9 continued) ftrue and f1 are variant independent
while f2 is not.

We restrict the class of term-conditions to that of variant independent ones because
we want to extend the relation “is more general than” so that if an atom A is linked
to an atom B by the extended relation, then every variant of A is also linked to
B (see Proposition 3.16 below). This will be essential to establish the forthcoming
main Proposition 3.19 which is an extension of Corollary 3.2. Now we can define
what we exactly mean by a filter.

Definition 3.12. (Filter) A filter, denoted by ∆, is a function from Π such that:
for each p ∈ Π, ∆(p) is a partial function from [1, arity(p)] to the set of variant
independent term-conditions.

Example 3.13. (Example 3.9 continued) Let p be a relation symbol whose arity
equals 3. The filter ∆ which maps p to the function 〈1 7→ ftrue , 2 7→ f1〉 and any
q ∈ Π \ {p} to 〈〉 is noted ∆ := 〈 p 7→ 〈1 7→ ftrue , 2 7→ f1〉 〉.

3.2 Extension of the Relation “Is More General Than”

Given a filter ∆, the relation “is more general than” can be extended in the following
way: an atom A := p(· · ·) is ∆-more general than B := p(· · ·) if the “is more general
than” requirement holds for those arguments of A whose position is not in the
domain of ∆(p) while the other arguments satisfy their associated term-condition.

Definition 3.14. (∆-more general) Let ∆ be a filter and A and B be two atoms.

—Let η be a substitution. Then A is ∆-more general than B for η if:
A = p(s1, . . . , sn)
B = p(t1, . . . , tn)
∀i ∈ [1, n] \Dom(∆(p)), ti = siη
∀i ∈ Dom(∆(p)), ∆(p)(i)(si) = true .

—A is ∆-more general than B if there exists a substitution η s.t. A is ∆-more
general than B for η.

An atomic query Q is ∆-more general than an atomic query Q′ if either Q and
Q′ are both empty or Q contains the atom A, Q′ contains the atom B and A is
∆-more general than B.

Example 3.15. (Example 3.13 continued) Let

A := p(b , X , h(a,X))
B := p(a , [a|b] , X)
C := p(a , [a|b] , h(Y, b)) .

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Non-Termination Inference of Logic Programs · 9

Then, A is not ∆-more general than B and C because, for instance, its second
argument X is not an instance of [X|Y] as required by f1. On the other hand, B is
∆-more general than A for the substitution {X/h(a,X)} and B is ∆-more general
than C for the substitution {X/h(Y, b)}. Finally, C is not ∆-more general than A
because h(Y, b) is not more general than h(a,X) and C is not ∆-more general than
B because h(Y, b) is not more general than X.

As in a filter the term-conditions are variant independent, we get the following
proposition.

Proposition 3.16. Let ∆ be a filter and A and B be two atoms. If A is ∆-more
general than B then every variant of A is ∆-more general than B.

3.3 Derivation Neutral Filters: Operational Definition

In the sequel of this paper, we focus on “derivation neutral” filters. The name
“derivation neutral” stems from the fact that in any derivation of an atomic query
Q, the arguments of Q whose position is distinguished by such a filter can be safely
replaced by any terms satisfying the associated term-condition. Such a replacement
does not modify the derivation process.

Definition 3.17. (Derivation Neutral) Let ∆ be a filter and c be a binary clause.
We say that ∆ is DN for c if for each derivation step Q=⇒

c
Q1 where Q is an

atomic query, for each Q′ that is ∆-more general than Q and for each variant c′ of
c variable disjoint with Q′, there exists a query Q′

1 that is ∆-more general than Q1

and such that Q′ =⇒
c

Q′
1 with input clause c′. This definition is extended to binary

programs: ∆ is DN for P if it is DN for each clause of P .

Example 3.18. The following examples illustrate the previous definition.

—Let us reconsider the program APPEND from Example 3.6 with the term-condition
ftrue defined in Example 3.9 and the filter ∆ := 〈append 7→ 〈2 7→ ftrue〉〉. ∆ is
DN for C2. However, ∆ is not DN for APPEND because it is not DN for C1.

—Consider the following clause:

merge([X|Xs],[Y|Ys],[X|Zs]) :- merge(Xs,[Y|Ys],Zs).

The filter 〈merge 7→ 〈2 7→ f1〉〉, where the term-condition f1 is defined in Exam-
ple 3.9, is DN for this clause.

In the next subsection, we present some syntactic criteria for identifying correct
DN filters. For proving that the above filters are indeed DN, we will just check that
they actually fulfill these syntactic criteria that are sufficient conditions.

Derivation neutral filters lead to the following extended version of Corollary 3.2
(take ∆ such that for any p, ∆(p) is a function whose domain is empty):

Proposition 3.19. Let c := H ← B be a binary clause and ∆ be a filter that is
DN for c. If B is ∆-more general than H then H loops w.r.t. {c}.

We point out that our non-termination inference technique remains valid when
the program under consideration is restricted to its set of clauses used in the deriva-
tion steps. For instance, although the filter ∆ of Example 3.18 is not DN for APPEND,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

10 · E. Payet and F. Mesnard

it will help us to construct queries which loop w.r.t. C2. Such queries also loop
w.r.t. APPEND.

Finally, notice that lifting lemmas are used in the literature to prove completeness
of SLD-resolution. As Definition 3.17 corresponds to an extended version of the
One Step Lifting Lemma 3.1, it may be worth to investigate its consequences from
the model theoretic point of view.

First of all, a filter may be used to “expand” atoms by replacing every argument
whose position is distinguished by any term that satisfies the associated term-
condition.

Definition 3.20. Let ∆ be a filter and A be an atom. The expansion of A w.r.t.
∆, denoted A↑∆, is the set defined as

A↑∆
def
= {A} ∪ {B ∈ TBL | B is ∆-more general than A for ε}

where ε denotes the empty substitution.

Notice that in this definition, we do not necessary have the inclusion

{A} ⊆ {B ∈ TBL | B is ∆-more general than A for ε} .

For instance, suppose that A := p(f(X)) and that ∆ maps p to the function 〈1 7→ f〉
where f is the term-condition mapping any term t to true iff t is an instance of
g(X). Then

{B ∈ TBL | B is ∆-more general than A} = {p(t) | t is an instance of g(X)}

with A 6∈ {p(t) | t is an instance of g(X)}.
Term interpretations in the context of logic programming were first introduced

in [Clark 1979] and further investigated in [Deransart and Ferrand 1987] and then
in [M. Falaschi and Palamidessi 1993]. A term interpretation for L is identified
with a (possibly empty) subset of the term base TBL. So, as for atoms, a term
interpretation can be expanded by a filter.

Definition 3.21. Let ∆ be a filter and I be a term interpretation for L. Then
I↑∆ is the term interpretation for L defined as:

I↑∆
def
=

⋃
A∈I

A↑∆ .

For any logic program P , we denote by C(P) its least term model.

Theorem 3.22. Let P be a binary program and ∆ be a DN filter for P . Then
C(P)↑∆ = C(P).

Proof. The inclusion C(P) ⊆ C(P)↑∆ is straightforward so let us concentrate on
the other one i.e. C(P)↑∆ ⊆ C(P). Let A′ ∈ C(P)↑∆. Then there exists A ∈ C(P)
such that A′ ∈ A↑∆. A well known result states:

C(P) = {B ∈ TBL | there exists a successful derivation of P ∪ {B}} (1)

Consequently, there exists a successful derivation ξ of P ∪ {A}. Therefore, by
successively applying Definition 3.17 to each step of ξ, one constructs a successful
derivation of A′. So by (1) A′ ∈ C(P).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Non-Termination Inference of Logic Programs · 11

3.4 Some Particular DN Filters

In this section, we provide two sufficient syntactic conditions for identifying DN
filters.

3.4.1 DN Sets of Positions. The first instance we consider corresponds to filters,
the associated term-conditions of which are all equal to ftrue (see Example 3.9).
Within such a context, as the term-conditions are fixed, each filter ∆ is uniquely
determined by the domains of the partial functions ∆(p) for p ∈ Π. Hence the
following definition.

Definition 3.23. (Set of Positions) A set of positions, denoted by τ , is a function
from Π to 2N such that: for each p ∈ Π, τ(p) is a subset of [1, arity(p)].

Example 3.24. Let append and append3 be two relation symbols. Let us assume
that arity(append) = 3 and arity(append3) = 4. Then

τ := 〈 append 7→ {2}, append3 7→ {2, 3, 4} 〉

is a set of positions.

Not surprisingly, the filter that is generated by a set of positions is defined as
follows.

Definition 3.25. (Associated Filter) Let τ be a set of positions and ftrue be the
term-condition defined in Example 3.9. The filter ∆[τ] defined as:

for each p ∈ Π, ∆[τ](p) is the function from τ(p) to {ftrue}

is called the filter associated to τ .

Example 3.26. (Example 3.24 continued) The filter associated to τ is

∆[τ] := 〈append 7→ 〈2 7→ ftrue〉, append3 7→ 〈2 7→ ftrue , 3 7→ ftrue , 4 7→ ftrue〉〉.

Now we define a particular kind of sets of positions. These are named after “DN”
because, as stated by Theorem 3.29 below, they generate DN filters.

Definition 3.27. (DN Set of Positions) Let τ be a set of positions. We say that
τ is DN for a binary clause p(s1, . . . , sn) ← q(t1, . . . , tm) if:

∀i ∈ τ(p),

 si is a variable
si occurs only once in p(s1, . . . , sn)
∀j ∈ [1,m], si ∈ V ar(tj)⇒ j ∈ τ(q) .

A set of positions is DN for a binary program P if it is DN for each clause of P .

The intuition of Definition 3.27 is the following. If for instance we have a clause
c := p(X, Y, f(Z))← p(g(Y, Z), X, Z) then in the first two positions of p we can put
any terms and get a derivation step w.r.t. c because the first two arguments of the
head of c are variables that appear exactly once in the head. Moreover, X and Y
of the head reappear in the body but again only in the first two positions of p. So,
if we have a derivation step p(s1, s2, s3) =⇒

c
p(t1, t2, t3), we can replace s1 and s2

by any terms s′1 and s′2 and get another derivation step p(s′1, s
′
2, s3) =⇒

c
p(t′1, t

′
2, t

′
3)

where t′3 is the same as t3 up to variable names.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

12 · E. Payet and F. Mesnard

Example 3.28. (Example 3.24 continued) τ is DN for the program:

append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).
append3(Xs,Ys,Zs,Ts) :- append(Xs,Ys,Us).

which is a subset of the binary unfoldings of the program APPEND3:

append([],Ys,Ys).
append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).
append3(Xs,Ys,Zs,Ts) :- append(Xs,Ys,Us), append(Us,Zs,Ts).

DN sets of positions generate DN filters.

Theorem 3.29. Let τ be a DN set of positions for a binary program P . Then
∆[τ] is DN for P .

Proof. As we will see in Section 3.4.2, this theorem is a particular case of
Theorem 3.38.

Notice that the set of DN sets of positions of any binary program P is not empty
because, by Definition 3.27, τ0 := 〈p 7→ ∅ | p ∈ Π〉 is DN for P . Moreover, an atom
A is ∆[τ0]-more general than an atom B iff A is more general than B.

3.4.2 DN Sets of Positions with Associated Terms. Now we consider another
instance of Definition 3.17. As we will see, it is more general than the previous one.
It corresponds to filters whose associated term-conditions have all the form “is an
instance of t” where t is a term that uniquely determines the term-condition. Notice
that such term-conditions are variant independent, so it makes sense to consider
such filters. Hence the following definition.

Definition 3.30. (Sets of Positions with Associated Terms) A set of positions
with associated terms, denoted by τ+, is a function from Π such that: for each
p ∈ Π, τ+(p) is a partial function from [1, arity(p)] to TUL.

Example 3.31. Let p and q be two relation symbols whose arity is 2. Then

τ+ := 〈 p 7→ 〈2 7→ X〉, q 7→ 〈2 7→ g(X)〉 〉

is a set of positions with associated terms.

The filter that is generated by a set of positions with associated terms is defined
as follows.

Definition 3.32. (Associated Filter) Let τ+ be a set of positions with associated
terms. The filter associated to τ+, denoted by ∆[τ+], is defined as: for each p ∈ Π,
∆[τ+](p) is the function

Dom(τ+(p)) � The set of term-conditions

i 7→

{
TUL � {true, false}

t 7→ true iff t is an instance of τ+(p)(i)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Non-Termination Inference of Logic Programs · 13

Example 3.33. (Example 3.31 continued) The filter associated to τ+ is

∆[τ+] := 〈 p 7→ 〈2 7→ f1〉, q 7→ 〈2 7→ f2〉 〉

where
f1 : TUL � {true, false}

t 7→ true iff t is an instance of X

f2 : TUL � {true, false}
t 7→ true iff t is an instance of g(X)

As for sets of positions, we define a special kind of sets of positions with associated
terms.

Definition 3.34. (DN Sets of Positions with Associated Terms) Let τ+ be a set
of positions with associated terms. We say that τ+ is DN for a binary clause
p(s1, . . . , sn)← q(t1, . . . , tm) if these conditions hold:

—(DN1) ∀i ∈ Dom(τ+(p)), ∀j ∈ [1, n] \ {i}: V ar(si) ∩ V ar(sj) = ∅,
—(DN2) ∀〈i 7→ ui〉 ∈ τ+(p): si is more general than ui,
—(DN3) ∀〈j 7→ uj〉 ∈ τ+(q): tj is an instance of uj ,
—(DN4) ∀i ∈ Dom(τ+(p)), ∀j 6∈ Dom(τ+(q)): V ar(si) ∩ V ar(tj) = ∅.

A set of positions with associated terms is DN for a binary program P if it is DN
for each clause of P .

This definition says that any si where i is in the domain of τ+(p) (i.e. position i is
distinguished by τ+): (DN1) does not share its variables with the other arguments
of the head, (DN2) is more general than the term ui that i is mapped to by τ+(p),
(DN4) distributes its variables to some tj such that j is in the domain of τ+(q)
(i.e. position j is distinguished by τ+). Moreover, (DN3) says that any tj , where
j is distinguished by τ+, is such that tj is an instance of the term uj that j is
mapped to by τ+(q).

Example 3.35. (Example 3.31 continued) τ+ is DN for the following program:

p(f(X),Y) :- q(X,g(X)).
q(a,g(X)) :- q(a,g(b)).

The preceding notion is closed under renaming:

Proposition 3.36. Let c be a binary clause and τ+ be a set of positions with
associated terms that is DN for c. Then τ+ is DN for every variant of c.

Notice that a set of positions is a particular set of positions with associated terms
in the following sense.

Proposition 3.37. Let τ be a set of positions and X be a variable. Let τ+ be
the set of positions with associated terms defined as: for each p ∈ Π, τ+(p) :=
(τ(p) � {X}). Then, the following holds.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

14 · E. Payet and F. Mesnard

(1) An atom A is ∆[τ]-more general than an atom B iff A is ∆[τ+]-more general
than B.

(2) For any binary clause c, τ is DN for c iff τ+ is DN for c.

Proof. A proof follows from these remarks.

—Item 1 is a direct consequence of the definition of “∆-more general” (see Defini-
tion 3.14) and the definition of the filter associated to a set of positions (see Def-
inition 3.25) and to a set of positions with associated terms (see Definition 3.32).

—Item 2 is a direct consequence of the definition of DN sets of positions (see Defi-
nition 3.27) and DN sets of positions with associated terms (see Definition 3.34).

The sets of positions with associated terms of Definition 3.34 were named after
“DN” because of the following result.

Theorem 3.38. Let P be a binary program and τ+ be a set of positions with
associated terms that is DN for P . Then ∆[τ+] is DN for P .

Proof. A proof of this result can be found in the long version of the pa-
per (CoRR archive at http://arxiv.org/archive/cs/intro.html – Paper ID
is cs.PL/0406041).

As in the case of sets of positions, the set of DN sets of positions with associated
terms of any binary program P is not empty because, by Definition 3.34, τ+

0 :=
〈p 7→ 〈〉 | p ∈ Π〉 is DN for P . Moreover, an atom A is ∆[τ+

0]-more general than
an atom B iff A is more general than B. Finally, in Appendix A, we give an
incremental algorithm (see Section 4.2) that computes a DN set of positions with
associated terms. Its correctness proof can be found in the long version of this
paper.

3.5 Examples

This section presents some examples where we use filters obtained from DN sets of
positions and DN sets of positions with associated terms to infer looping queries.
As the filters we use in each case are not “empty” (i.e. are not obtained from
τ0 or τ+

0), we are able to compute more looping queries than using the classical
subsumption test.

Example 3.39. Consider the program APPEND that we introduced in Example 3.6.
Every infinite derivation w.r.t. APPEND starting from an atomic query only uses the
non-unit clause C2. Therefore, as we aim at inferring looping atomic queries w.r.t.
APPEND, we only focus on C2 in the sequel of this example.

As in C2 the body, which is append(Xs,Ys,Zs), is more general than the head,
which is append([X |Xs],Ys, [X |Zs]), by Corollary 3.2 we conclude that the query
append([X |Xs],Ys, [X |Zs]) loops w.r.t. {C2}. Consequently, by the One Step Lift-
ing Lemma 3.1, each query that is more general than append([X |Xs],Ys, [X |Zs])
also loops w.r.t. {C2}.

But we can be more precise than that. According to Definition 3.27, τ :=
〈 append 7→ {2} 〉 is a DN set of positions for {C2}. The filter associated to τ

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Non-Termination Inference of Logic Programs · 15

(see Definition 3.25) is ∆[τ] := 〈 append 7→ 〈2 7→ ftrue〉 〉. By Theorem 3.29, ∆[τ] is
a DN filter for {C2}. Consequently, by Definition 3.17, each query that is ∆[τ]-more
general than append([X |Xs],Ys, [X |Zs]) loops w.r.t. {C2}. This means that{

append(t1, t2, t3) ∈ TBL
t2 is any term and
t1, t3 is more general than [X |Xs], [X |Zs]

}
is a set of atomic queries that loop w.r.t. {C2}, hence w.r.t. APPEND. This set
includes the query append(As, [],Bs).

Example 3.40. Consider the program REVERSE that was introduced in Exam-
ple 3.6. As in the example above, in order to infer looping atomic queries w.r.t.
REVERSE, we only focus on the non-unit clauses C1 and C3 in the sequel of this exam-
ple. More precisely, we process the relation symbols of the program in a bottom-up
way, so we start the study with clause C3 and end it with clause C1.

According to Definition 3.27, τ := 〈 rev 7→ {2, 3} 〉 is a DN set of positions for
{C3}. The filter associated to τ (see Definition 3.25) is ∆[τ] := 〈 rev 7→ 〈2 7→
ftrue , 3 7→ ftrue〉 〉. By Theorem 3.29, ∆[τ] is DN for {C3}. As rev(Xs, [X |R0],R)
(the body of C3) is ∆[τ]-more general than rev([X |Xs],R0 ,R) (the head of C3),
by Proposition 3.19 we get that rev([X |Xs],R0 ,R) loops w.r.t. {C3}. Notice that,
unlike the example above, here we do not get this result from Corollary 3.2 as
rev(Xs, [X |R0],R) is not more general than rev([X |Xs],R0 ,R). Finally, as ∆[τ] is
DN for {C3}, by Definition 3.17 we get that each query that is ∆[τ]-more general
than rev([X |Xs],R0 ,R) loops w.r.t. {C3}, hence w.r.t. REVERSE. This means that

Q :=
{

rev(t1, t2, t3) ∈ TBL
t2 and t3 are any terms and
t1 is more general than [X |Xs]

}
is a set of atomic queries that loop w.r.t. REVERSE. This set includes the query
rev(As, [], []).

Now, consider clause C1. As rev(L, [], R) (its body) is an element of Q, then
rev(L, [], R) loops w.r.t. {C3}, hence w.r.t. {C1, C3}. Consequently, by Corol-
lary 3.3, reverse(L, R) (the head of C1) loops w.r.t. {C1, C3}. Let τ ′ := 〈 rev 7→
{2, 3}, reverse 7→ {2} 〉. By Definition 3.27, τ ′ is DN for {C1, C3}, so ∆[τ ′] is DN for
{C1, C3}. Consequently, each query that is ∆[τ ′]-more general than reverse(L,R)
also loops w.r.t. {C1, C3} hence w.r.t. REVERSE. This means that{

reverse(X, t) ∈ TBL | X is a variable and t is any term
}

is a set of atomic queries that loop w.r.t. REVERSE. This set includes the query
reverse(As, []).

Example 3.41. Consider the recursive clauses of the following program M:

m([],Xs,Xs).
m(Xs,[],Xs).
m([X|Xs],[Y|Ys],[X|Zs]) :- m(Xs,[Y|Ys],Zs). % C3
m([X|Xs],[Y|Ys],[Y|Zs]) :- m([X|Xs],Ys,Zs). % C4

Every set of positions τ that is DN for {C3} is such that τ(m) = ∅ because
each argument of the head of C3 is not a variable (see Definition 3.27). Hence,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

16 · E. Payet and F. Mesnard

using Proposition 3.19 with a filter obtained from a DN set of positions leads
to the same results as using Corollary 3.2: as m(Xs, [Y |Ys],Zs) is more general
than m([X |Xs], [Y |Ys], [X |Zs]), then m([X |Xs], [Y |Ys], [X |Zs]) loops w.r.t. {C3}.
So, by the One Step Lifting Lemma 3.1, each query that is more general than
m([X |Xs], [Y |Ys], [X |Zs]) also loops w.r.t. {C3}, hence w.r.t. M.

But we can be more precise than that. According to Definition 3.34, τ+ :=
〈m 7→ 〈2 7→ [Y |Ys]〉 〉 is a set of positions with associated terms that is DN for
{C3}. Hence, by Theorem 3.38, the associated filter ∆[τ+] (see Definition 3.32) is
DN for {C3}. So, by Definition 3.17, each query that is ∆[τ+]-more general than
m([X |Xs], [Y |Ys], [X |Zs]) loops w.r.t. {C3}. This means that{

m(t1, t2, t3) ∈ TBL
t2 is any instance of [Y |Ys] and
t1, t3 is more general than [X |Xs], [X |Zs]

}
is a set of atomic queries that loop w.r.t. M, which includes the query m(As, [0],Bs).
Finally, let us turn to clause C4. Reasoning exactly as above with the set of positions
with associated terms 〈m 7→ 〈1 7→ [X |Xs]〉 〉 which is DN for {C4}, we conclude
that: {

m(t1, t2, t3) ∈ TBL
t1 is any instance of [X |Xs] and
t2, t3 is more general than [Y |Ys], [Y |Zs]

}
is a set of atomic queries that loop w.r.t. M. For instance, m([0],As,Bs) is a query
that belongs to this set.

4. ALGORITHMS

We have designed a set of correct algorithms for full automation of non-termination
analysis of logic programs. These algorithms are given in Appendix B and their
correctness proofs can be found in the long version of the paper. In this section,
we present the intuitions and conceptual definitions underlying our approach.

4.1 Loop Dictionaries

Our technique is based on a data structure called dictionary which is a set of pairs
(BinSeq , τ+) where BinSeq is a finite ordered sequence of binary clauses and τ+ is
a set of positions with associated terms. In the sequel, we use the list notation of
Prolog and a special kind of dictionaries that we define as follows.

Definition 4.1. (Looping Pair, Loop Dictionary) A pair (BinSeq , τ+), where the
list BinSeq is a finite ordered sequence of binary clauses and τ+ is a set of positions
with associated terms, is a looping pair if τ+ is DN for BinSeq and:

—either BinSeq = [H ← B] and B is ∆[τ+]-more general than H,

—or BinSeq = [H ← B,H1 ← B1 | BinSeq1] and there exists a set of positions
with associated terms τ+

1 such that ([H1 ← B1 | BinSeq1], τ
+
1) is a looping pair

and B is ∆[τ+
1]-more general than H1.

A loop dictionary is a finite set of looping pairs.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Non-Termination Inference of Logic Programs · 17

Example 4.2. The pair (BinSeq := [H1 ← B1,H2 ← B2,H3 ← B3], τ+
1) where

H1 ← B1 := r(X)← q(X, f(f(X)))

H2 ← B2 := q(X, f(Y))← p(f(X), a)

H3 ← B3 := p(f(g(X)), a)← p(X, a)

and τ+
1 := 〈p 7→ 〈2 7→ a〉, q 7→ 〈2 7→ f(X)〉〉 is a looping pair:

—Let τ+
3 := 〈p 7→ 〈2 7→ a〉〉. Then τ+

3 is a DN set of positions with associated terms
for [H3 ← B3]. Moreover, B3 is ∆(τ+

3)-more general than H3. Consequently,
([H3 ← B3], τ+

3) is a looping pair.
—Notice that B2 is ∆(τ+

3)-more general than H3. Now, let τ+
2 := τ+

1 . Then τ+
2 is

DN for [H2 ← B2,H3 ← B3]. So, ([H2 ← B2,H3 ← B3], τ+
2) is a looping pair.

—Finally, notice that B1 is ∆(τ+
2)-more general than H2. As τ+

1 is DN for BinSeq ,
we conclude that (BinSeq , τ+

1) is a looping pair.

A looping pair immediately provides an atomic looping query. It suffices to take
the head of the first clause of the binary program of the pair:

Proposition 4.3. Let ([H ← B|BinSeq], τ+) be a looping pair. Then H loops
w.r.t. [H ← B|BinSeq].

Proof. By induction on the length of BinSeq using Proposition 3.19, Corol-
lary 3.3 and Theorem 3.38.

So, a looping pair denotes a proof outline for establishing that H left loops. More-
over, looping pairs can be built incrementally in a simple way as described below.

4.2 Computing a Loop Dictionary

Given a logic program P and a positive integer max , the function infer loop dict
from Appendix B first computes T β

P ↑ max (the first max iterations of the operator
T β

P), which is a finite subset of bin unf (P). Then, using the clauses of T β
P ↑ max ,

it incrementally builds a loop dictionary Dict as follows.
At start, Dict is set to ∅. Then, for each clause H ← B in T β

P ↑ max , the
following actions are performed.

—infer loop dict tries to extract from H ← B the most simple form of a looping
pair: it computes a set of positions with associated terms τ+ that is DN for
H ← B, then it tests if B is ∆[τ+]-more general than H. If so, the looping pair
([H ← B], τ+) is added to Dict .

—infer loop dict tries to combine H ← B to some looping pairs that have
already been added to Dict in order to build other looping pairs. For each
([H1 ← B1|BinSeq1], τ

+
1) in Dict , if B is ∆[τ+

1]-more general than H1, then a set
of positions with associated terms τ+ that is DN for [H ← B,H1 ← B1|BinSeq1]
is computed and the looping pair ([H ← B,H1 ← B1|BinSeq1], τ+) is added to
Dict .

Notice that in the second step above, we compute τ+ that is DN for [H ← B,H1 ←
B1|BinSeq1]. As we already hold τ+

1 that is DN for [H1 ← B1|BinSeq1], it is
more interesting, for efficiency reasons, to compute τ+ from τ+

1 instead of starting
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

18 · E. Payet and F. Mesnard

from the ground. Indeed, starting from τ+
1 , one uses the information stored in

τ+
1 about the program [H1 ← B1|BinSeq1], which may speed up the computation

substantially. This is why we have designed a function dna that takes two arguments
as input, a binary program BinProg and a set of positions with associated terms
τ+. It computes a set of positions with associated terms that is DN for BinProg
and that refines τ+. On the other hand, the function unit loop calls dna with
τ+
max which is the initial set of positions with associated terms defined as follows:

Dom(τ+
max (p)) = [1, arity(p)] for each p ∈ Π and τ+

max (p)(i) is a variable for each
i ∈ [1, arity(p)].

Example 4.4. Consider the program APPEND3

append3(Xs,Ys,Zs,Us) :- append(Xs,Ys,Vs), append(Vs,Zs,Us).

augmented with the APPEND program. The set T β
APPEND3 ↑ 2 includes:

append([A|B],C,[A|D]) :- append(B,C,D). % BC1
append3(A,B,C,D) :- append(A,B,E). % BC2
append3([],A,B,C) :- append(A,B,C). % BC3

From clause BC1 we get the looping pair (BinSeq1, τ
+
1) where

BinSeq1 =
[
append([X1|X2], X3, [X1|X4])← append(X2, X3, X4)

]
and τ+

1 (append) = 〈2 7→ X3〉. From this pair and the clause BC2, we get the looping
pair (BinSeq2, τ

+
2) where:

BinSeq2 =
[

append3 (X1, X2, X3, X4)← append(X1, X2, X5),
append([X1|X2], X3, [X1|X4])← append(X2, X3, X4)

]
and τ+

2 (append) = 〈2 7→ X3〉 and τ+
2 (append3) = 〈2 7→ X2, 3 7→ X3, 4 7→ X4〉.

Finally, from (BinSeq1, τ
+
1) and BC3, we get the looping pair (BinSeq3, τ

+
3) where:

BinSeq3 =
[

append3 ([], X1, X2, X3)← append(X1, X2, X3),
append([X1|X2], X3, [X1|X4])← append(X2, X3, X4)

]
and τ+

3 (append) = 〈2 7→ X3〉 and τ+
3 (append3) = 〈3 7→ X2〉.

Example 4.5. Consider the program PERMUTE:

delete(X,[X|Xs],Xs).
delete(Y,[X|Xs],[X|Ys]) :- delete(Y,Xs,Ys).

permute([],[]).
permute([X|Xs],[Y|Ys]) :- delete(Y,[X|Xs],Zs), permute(Zs,Ys).

The set T β
PERMUTE ↑ 1 includes:

delete(B,[C|D],[C|E]) :- delete(B,D,E). % BC1
permute([B|C],[D|E]) :- delete(D,[B|C],F). % BC2

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Non-Termination Inference of Logic Programs · 19

From clause BC1 we get the looping pair (BinSeq1, τ
+
1) where

BinSeq1 =
[
delete(X1, [X2|X3], [X2|X4])← delete(X1, X3, X4)

]
and τ+

1 (delete) = 〈1 7→ X1〉. From this pair and the clause BC2, we get the looping
pair (BinSeq2, τ

+
2) where:

BinSeq2 =
[

permute([X1|X2], [X3|X4])← delete(X3, [X1|X2], X5),
delete(X1, [X2|X3], [X2|X4])← delete(X1, X3, X4)

]
and τ+

2 (delete) = 〈1 7→ X1〉 and τ+
2 (permute) = 〈2 7→ [X3|X4]〉.

4.3 Looping Conditions

One of the main purposes of this article is the inference of classes of atomic queries
that left loop w.r.t. a given logic program. Classes of atomic queries we consider
are defined by pairs (A, τ+) where A is an atom and τ+ is a set of positions with
associated terms. Such a pair denotes the set of queries A↑τ+ , the definition of
which is similar to that of the expansion of an atom, see Definition 3.20.

Definition 4.6. Let A be an atom and τ+ be a set of positions with associated
terms. Then A↑τ+ denotes the class of atomic queries defined as:

A↑τ+
def
= {A} ∪ {B ∈ TBL | B is ∆[τ+]-more general than A} .

Once each element of A↑τ+ left loops w.r.t. a logic program, we get what we call
a looping condition for that program:

Definition 4.7. (Looping Condition) Let P be a logic program. A looping con-
dition for P is a pair (A, τ+) such that each element of A↑τ+ left loops w.r.t. P .

The function infer loop cond takes as arguments a logic program P and a non-
negative integer max . Calling infer loop dict(P,max), it first computes a loop
dictionary Dict . Then, it computes from Dict looping conditions for P as follows.
The function extracts the pair (H, τ+) from each element ([H ← B|BinSeq], τ+) of
Dict . By Proposition 4.3, H loops w.r.t. [H ← B|BinSeq]. As τ+, hence ∆[τ+],
is DN for [H ← B|BinSeq], by Definition 3.17 each element of H↑τ+ loops w.r.t.
[H ← B|BinSeq]. Finally, as [H ← B|BinSeq] ⊆ T β

P ↑ max ⊆ bin unf (P), by
Theorem 2.1, each element of H↑τ+ left loops w.r.t. P .

Example 4.8. (Example 4.4 continued) From each looping pair we have infered,
we get the following information.

—(append([X1|X2], X3, [X1|X4]), τ+
1) is a looping condition. Therefore, each query

append(t1, t2, t3), where [X1|X2] = t1η and [X1|X4] = t3η for a substitution
η and t2 is an instance of X3 (because τ+

1 (append)(2) = X3), left loops w.r.t.
APPEND3. In other words, each query append(t1, t2, t3), where [X1|X2] = t1η and
[X1|X4] = t3η for a substitution η and t2 is any term, left loops w.r.t. APPEND3.

—(append3 (X1, X2, X3, X4), τ+
2) is a looping condition. As τ+

2 (append3)(2) = X2,
τ+
2 (append3)(3) = X3 and τ+

2 (append3)(4) = X4, this means that each query of
form append3 (X1, t2, t3, t4), where t2, t3 and t4 are any terms, left loops w.r.t.
APPEND3.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

20 · E. Payet and F. Mesnard

—(append3 ([], X1, X2, X3), τ+
3) is a looping condition. So, as τ+

3 (append3)(3) =
X2, this means that each query of form append3 ([], X1, t, X3), where t is any
term, left loops w.r.t. APPEND3.

Example 4.9. (Example 4.5 continued) From each looping pair we have infered,
we get the following information.

—(delete(X1, [X2|X3], [X2|X4]), τ+
1) is a looping condition. As τ+

1 (delete)(1) = X1,
this means that each query of form delete(t1, t2, t3), where t1 is any term and
[X2|X3] = t2η and [X2|X4] = t3η for a substitution η, left loops w.r.t. PERMUTE.

—(permute([X1|X2], [X3|X4]), τ+
2) is a looping condition. As τ+

2 (permute)(2) =
[X3|X4], this means that each query of form permute(t1, t2), where t1 is more gen-
eral than [X1|X2] and t2 is any instance of [X3|X4], left loops w.r.t. PERMUTE.

5. AN APPLICATION: PROVING OPTIMALITY OF TERMINATION CONDITIONS

[Mesnard and Neumerkel 2001] presents a tool for inferring termination conditions
that are expressed as multi-modes, i.e. as disjunctions of conjunctions of proposi-
tions of form “the i-th argument is ground”. In this section, we describe an algo-
rithm that attempts proofs of optimality of such conditions using the algorithms
for non-termination inference of the previous section.

5.1 Optimal Terminating Multi-modes

Let P be a logic program and p ∈ ΠP be a relation symbol, with arity(p) = n.
First, we describe the language we use for abstracting sets of atomic queries:

Definition 5.1. (Mode) A mode mp for p is a subset of [1, n], and denotes the
following set of atomic goals: [mp] = {p(t1, . . . , tn) ∈ TBL | ∀i ∈ mp Var(ti) = ∅}.
The set of all modes for p, i.e. 2[1,n], is denoted modes(p).

Note that if mp = ∅ then [mp] = {p(t1, . . . , tn) ∈ TBL}. Since a logic procedure
may have multiple uses, we generalize:

Definition 5.2. (Multi-mode) A multi-mode Mp for p is a finite set of modes for
p and denotes the following set of atomic queries: [Mp] = ∪m∈Mp [m].

Note that if Mp = ∅, then [Mp] = ∅. Now we can define what we mean by
terminating and looping multi-modes:

Definition 5.3. (Terminating mode, terminating multi-mode) A terminating mo-
de mp for p is a mode for p such that any query in [mp] left terminates w.r.t. P .
A terminating multi-mode TM p for p is a finite set of terminating modes for p.

Definition 5.4. (Looping mode, looping multi-mode) A looping mode mp for p
is a mode for p such that there exists a query in [mp] which left loops w.r.t. P . A
looping multi-mode LM p for p is a finite set of looping modes for p.

As left termination is instantiation-closed, any mode that is “below” (less general
than) a terminating mode is also a terminating mode. Similarly, as left looping is
generalization-closed, any mode that is “above” (more general than) a looping mode
is also a looping mode. Let us be more precise:
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Non-Termination Inference of Logic Programs · 21

Definition 5.5. (Less general, more general) Let Mp be a multi-mode for the
relation symbol p. We set:

less general(Mp) = {m ∈ modes(p) | ∃m′ ∈Mp [m] ⊆ [m′]}
more general(Mp) = {m ∈ modes(p) | ∃m′ ∈Mp [m′] ⊆ [m]}

We are now equipped to present a definition of optimality for terminating multi-
modes:

Definition 5.6. (Optimal terminating multi-mode) A terminating multi-mode
TM p for p is optimal if there exists a looping multi-mode LM p verifying:

modes(p) = less general(TM p) ∪more general(LM p)

Otherwise stated, given a terminating multi-mode TM p, if each mode which is not
less general than a mode of TM p is a looping mode, then TM p characterizes the
operational behavior of p w.r.t. left termination and our language for defining sets
of queries.

Example 5.7. Consider the program APPEND. A well-known terminating multi-
mode is TM append = {{1}, {3}}. Indeed, any query of the form append(t,Ys,Zs)
or append(Xs,Ys,t), where t is a ground term (i.e. such that Var(t) = ∅), left
terminates. We have:

less general(TM append) = {{1}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

On the other hand, append(Xs,[],Zs) left loops. Hence LM append = {{2}} is a
looping condition and more general(LM append) = {∅, {2}}.

Since modes(append) = less general(TM append) ∪ more general(LM append), we
conclude that the terminating multi-mode TM append is optimal.

5.2 Algorithms

Suppose we hold a finite set L of looping conditions for P . Then, each element
(p(t1, . . . , tn), τ+) of L provides an obvious looping mode for p: it suffices to take
{i ∈ [1, n] | Var(ti) = ∅}. But actually, we can extract more information from L.
Let p(t′1, . . . , t

′
n) be an atom such that:

—for each 〈i 7→ ui〉 ∈ τ+(p), t′i is a ground instance of ui,

—for each i in [1, n] \Dom(τ+(p)), t′i = ti.

Then, p(t′1, . . . , t
′
n) belongs to p(t1, . . . , tn)↑τ+ , hence it left loops w.r.t. P . Conse-

quently, Dom(τ+(p)) ∪ {i ∈ [1, n] | Var(ti) = ∅} is a looping mode for p. The
function looping modes of Fig. 1 is an application of these remarks.

Now we have the essential material for the design of a tool that attempts proofs
of optimality of left terminating multi-modes computed by a termination inference
tool as e.g. cTI [Mesnard and Neumerkel 2001] or TerminWeb [Genaim and Codish
2001]. For each pair (p, ∅) in the set the function optimal tc of Fig. 2 returns, we
can conclude that the corresponding TM p is the optimal terminating multi-mode
which characterizes the operational behavior of p with respect to Lterm .

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

22 · E. Payet and F. Mesnard

looping modes(L, p):

in: L: a finite set of looping conditions

p: a predicate symbol
out: a looping multi-mode for p

1: LM p := ∅
2: for each (p(t1, . . . , tn), τ+) ∈ L do

3: mp := Dom(τ+(p)) ∪ {i ∈ [1, n] | Var(ti) = ∅}
4: LM p := LM p ∪ {mp}
5: return LM p

Fig. 1.

optimal tc(P , max , {TM p}p∈ΠP
):

in: P : a logic program

max : a non-negative integer
{TM p}p∈ΠP

: a finite set of terminating multi-modes
out: a finite set of pairs (p, Mp) such that p ∈ ΠP and

Mp is a multi-mode for p with no information w.r.t. its left behaviour
note: if for each p ∈ Πp, Mp = ∅, then {TM p}p∈ΠP

is optimal

1: Res := ∅
2: L := infer loop cond(P,max)

3: for each p ∈ ΠP do

4: LM p := looping modes(L, p)

5: Mp := modes(p) \ (less general(TM p) ∪ more general(LM p))

6: Res := Res ∪ {(p, Mp)}
7: return Res

Fig. 2.

Example 5.8. (Example 4.8 continued) We apply our algorithm to the program
APPEND3 of Example 4.4. We get that

L := { (append([X1|X2], X3, [X1|X4]), τ+
1),

(append3 (X1, X2, X3, X4), τ+
2),

(append3 ([], X1, X2, X3), τ+
3) }

is a finite set of looping conditions for APPEND3 (see Example 4.8) with

Dom(τ+
1 (append)) = {2}

Dom(τ+
2 (append3)) = {2, 3, 4}

Dom(τ+
3 (append3)) = {3}

So, for append we have:

LM append := looping modes(L, append) = {{2}}
more general(LM append) = {∅, {2}}

TM append = {{1}, {3}}
less general(TM append) = {{1}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

Mappend = {}
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Non-Termination Inference of Logic Programs · 23

For append3 , we get:

—the looping mode {2, 3, 4} from (append3 (X1, X2, X3, X4), τ+
2) and

—the looping mode mp := {1, 3} from (append3 ([], X1, X2, X3), τ+
3) (3 ∈ mp be-

cause Dom(τ+
3 (append3)) = {3} and 1 ∈ mp because of constant [] which is the

first argument of append3 ([], X1, X2, X3).)

So, we have:

LM append3 := looping modes(L, append3) = {{2, 3, 4}, {1, 3}}
more general(LM append3) = {∅, {1}, {2}, {3}, {4}, {1, 3}, {2, 3}, {2, 4},

{3, 4}, {2, 3, 4}}
TM append3 = {{1, 2}, {1, 4}}

less general(TM append3) = {{1, 2}, {1, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4},
{1, 2, 3, 4}}

Mappend3 = {}

Hence in both cases, we have characterized the left behaviour of the predicates by
using two complementary tools.

5.3 An Experimental Evaluation

We have implemented2 the algorithms presented in Sections 4 and 5.2. The binary
unfoldings algorithm is derived from the one described in [Codish and Taboch 1999],
where we added time stamps to precisely control what is computed at each iteration.
Looping modes are computed starting from the leaves of the call graph then moving
up to its roots. The cTI termination inference tool is detailed in [Mesnard and
Neumerkel 2001; Mesnard and Bagnara 2004]. Here is the configuration we used
for this experiment: Intel 686, 2.4GHz, 512Mb, Linux 2.4, SICStus Prolog 3.10.1,
24.8 MLips. Timings in seconds are average over 10 runs.

First we have applied them on some small programs from standard benchmarks of
the termination analysis literature [Plümer 1990; Apt and Pedreschi 1994; De Schr-
eye and Decorte 1994] (predefined predicates were erased). The column opt? of
Table I indicates whether the result of cTI (see [Mesnard and Neumerkel 2001]) is
proved optimal (X) or not (?). The column max gives the least non-negative integer
implying optimality or the least non-negative integer n where it seems we get the
most precise information from non-termination inference (i.e. for n and n + 1, the
analyser delivers the same results). Then timings in seconds (t[s]) appear, followed
by a pointer to a comment to the notes below.
Notes:

(1) The predicate fold/3 is defined by:

fold(X,[],X).
fold(X,[Y|Ys],Z) :- op2(X,Y,V), fold(V,Ys,Z).

When the predicate op2/3 is defined by the fact op2(A,B,C), the result of cTI
is optimal. When the predicate op2/3 is defined by the fact op2(a,b,c), no

2Available from http://www.univ-reunion.fr/~gcc

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

24 · E. Payet and F. Mesnard

Table I. Some De Schreye’s, Apt’s, and Plümer’s programs.

cTI Optimal
program top-level predicate term-cond t[s] opt? max t[s] cf.

permute permute(X,Y) X 0.01 X 1 0.01

duplicate duplicate(X,Y) X ∨ Y 0.01 X 1 0.01

sum sum(X,Y,Z) X ∨ Y ∨ Z 0.01 X 1 0.01
merge merge(X,Y,Z) (X ∧ Y) ∨ Z 0.02 X 1 0.01

dis-con dis(X) X 0.02 X 2 0.01

reverse reverse(X,Y,Z) X 0.02 X 1 0.01

append append(X,Y,Z) X ∨ Z 0.01 X 1 0.01
list list(X) X 0.01 X 1 0.01

fold fold(X,Y,Z) Y 0.01 ? 2 0.01 note 1

lte goal 1 0.01 X 1 0.01
map map(X,Y) X ∨ Y 0.01 X 2 0.01

member member(X,Y) Y 0.01 X 1 0.01

mergesort mergesort(X,Y) 0 0.04 ? 2 0.01 note 2
mergesort ap mergesort ap(X,Y,Z) Z 0.08 ? 2 0.02

naive rev naive rev(X,Y) X 0.02 X 1 0.01

ordered ordered(X) X 0.01 X 1 0.01
overlap overlap(X,Y) X ∧ Y 0.01 X 2 0.01

permutation permutation(X,Y) X 0.03 X 1 0.01

quicksort quicksort(X,Y) X 0.05 X 1 0.01
select select(X,Y,Z) Y ∨ Z 0.01 X 1 0.01

subset subset(X,Y) X ∧ Y 0.01 X 2 0.01

sum peano sum(X,Y,Z) Y ∨ Z 0.01 X 1 0.01

pl2.3.1 p(X,Y) 0 0.01 ? 1 0.01 note 3
pl3.5.6 p(X) X 0.01 X 2 0.01

pl4.4.6a perm(X,Y) X 0.02 X 1 0.01

pl4.5.2 s(X,Y) 0 0.03 X 1 0.01
pl4.5.3a p(X) 0 0.01 X 1 0.01

pl5.2.2 turing(X,Y,Z,T) 0 0.08 ? 2 0.03 note 4

pl7.2.9 mult(X,Y,Z) X ∧ Y 0.02 X 4 0.03 note 5
pl7.6.2a reach(X,Y,Z) 0 0.02 ? 1 0.01 note 6

pl7.6.2b reach(X,Y,Z,T) 0 0.02 ? 1 0.01

pl7.6.2c reach(X,Y,Z,T) Z ∧ T 0.02 ? 2 0.02
pl8.3.1a minsort(X,Y) X 0.03 X 2 0.02

pl8.4.1 even(X) X 0.02 X 2 0.01

pl8.4.2 e(X,Y) X 0.05 X 3 0.04

looping mode is found and the result of cTI is indeed sub-optimal as the query
fold(X,Y,Z) terminates.

(2) Termination proofs for mergesort require the list-size norm, while cTI applies
the term-size norm.

(3) The result of cTI is not optimal. The analyzed program:

p(A,B) :- q(A,C),p(C,B).
p(A,A).
q(a,b).

has finite binary unfoldings because there is no function symbol. Hence its
termination is decidable (see [Codish and Taboch 1999]). This could be easily

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Non-Termination Inference of Logic Programs · 25

detected at analyze time. We notice that no looping mode is found. But as any
constant is mapped to 0 by the term-size norm, the modes modes(p) remain
undecided for cTI while they all terminate.

(4) The analyzed program (from [Plümer 1990], p. 64) simulates a Turing machine.
The result of cTI is optimal.

(5) With respect to the program:

mult(s(A),B,C) :- mult(A,B,D),add(D,B,C).
mult(0,A,0).

add(s(A),B,s(C)) :- add(A,B,C).
add(0,A,A).

the query mult(s(s(0)),A,B) is automatically detected as looping, although
mult(0,A,B) and mult(s(0),A,B) do terminate.

(6) These three programs propose various definitions of the reachability relation
between two nodes in a list of edges. For the first and the third definition, cTI
is indeed optimal. For the second one, cTI is not optimal.

Next, we have applied the couple of analyzers to some middle-sized Prolog pro-
grams, see Table II. Again, predefined predicates were all erased, while they are
usually taken into account for cTI which of course improves the analysis. In other
words, we only consider the logic programming skeleton of each program. The first
two columns give the name of the program and its size (number of clauses). The
fourth column indicates the running time (in seconds) of the termination analysis.
Assuming that in well-written programs each predicate has at least one terminating
mode, the third column is the ratio of predicates for which a non-false termination
condition is computed over the total number of predicates defined in the program.
For instance, cTI is able to show that there is at least one terminating mode for
48% of the predicates defined in the logic programming skeleton of the program
ann. We ran the non-termination analyzer with 1 ≤ max ≤ 3 iterations. For each
value of max, we give the running time (in seconds) and the ratio of predicates for
which looping modes complement terminating modes. For example, with respect to
the program ann, for max = 3 we get the full complete mode termination behavior
of 74% of all the defined predicates of the logic programming skeleton of the pro-
gram. Consider now the second row of Table II, which describes the result of the
combined analysis for the logic programming skeleton of the program bid. Here,
cTI is able to find at least one non-false termination condition for each predicate.
For max = 3, the non-termination analysis shows that 95% of the termination
condition inferred by cTI are optimal. The remaining 5% indicates weakness of at
least one analyzer. For instance, cTI does not generate termination proofs based
on lexicographic ordering and some basic loop patterns are not caught by the non-
termination component, see example 6.2. Finally, consider the result given for the
logic programming skeleton of program boyer: cTI is able to find a non-false termi-
nation condition for 84% of the predicates. Then for max = 3 our non-termination
analysis shows that each termination condition is optimal, so 16% of the predicates
have no terminating mode.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

26 · E. Payet and F. Mesnard

Table II. Some middle-sized programs.
program cTI Optimal

max=1 max=2 max=3
name clauses Q% t[s] Opt% t[s] Opt% t[s] Opt% t[s]

ann 177 48 1.00 46 0.14 68 1.34 74 32.4

bid 50 100 0.14 55 0.02 90 0.08 95 0.50

boyer 136 84 0.30 80 0.03 96 0.22 100 3.66
browse 30 53 0.26 46 0.03 80 0.18 100 6.05

credit 57 100 0.11 91 0.02 95 0.11 100 4.46

peephole 134 88 1.08 23 0.06 70 3.62 70 406
plan 29 100 0.11 68 0.02 81 0.09 81 0.37

qplan 148 61 1.13 50 0.11 79 1.60 81 1911

rdtok 55 44 0.65 44 0.11 88 40.2 ? > 3600
read 88 52 1.72 39 0.04 47 0.80 47 10.9

warplan 101 32 0.49 37 0.07 83 0.99 91 21.5

We note that when we increase max, we obtain better results but the running
times also increase, which is fairly obvious. For max = 3, we get good to optimal
results but the binary unfoldings approach reveals its potentially explosive nature:
we aborted the analysis of rdtok after one hour of computation.

In conclusion, from such a naive implementation, we were rather surprised by
the quality of the combined analysis. Adopting some more clever implementation
schemes, for instance computing the binary unfoldings in a demand driven fashion,
could be investigated to improve the running times.

6. RELATED WORKS

Some extensions of the Lifting Theorem with respect to infinite derivations are
presented in [Gori and Levi 1997], where the authors study numerous properties
of finite failure. The non-ground finite failure set of a logic program is defined as
the set of possibly non-ground atoms which admit a fair finitely failed SLD-tree
w.r.t. the program. This denotation is shown correct in the following sense. If
two programs have the same non-ground finite failure set, then any ground or non-
ground goal which finitely fails w.r.t. one program also finitely fails w.r.t. the
other. Such a property is false when we consider the standard ground finite failure
set. The proof of correctness of the non-ground finite failure semantics relies on
the following result. First, a derivation is called non-perpetual if it is a fair infinite
derivation and there exists a finite depth from which unfolding does not instantiate
the original goal any more. Then the authors define the definite answer goal of
a non-perpetual derivation as the maximal instantiation of the original goal. A
crucial lemma states that any instance of the definite answer goal admits a similar
non-perpetual derivation. Compared to our work, note that we do not need fairness
as an hypothesis for our results. On the other hand, investigating the relationships
between non-ground arguments of the definite answer and neutral arguments is an
interesting problem.

In [Shen et al. 2003], the authors present a dynamic approach to characterize
(in the form of a necessary and sufficient condition) termination of general logic
programs. Their technique employs some key dynamic features of an infinite gen-
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Non-Termination Inference of Logic Programs · 27

eralized SLDNF-derivation, such as repetition of selected subgoals and recursive
increase in term size.

Loop checking in logic programming is also a subject related to our work. In
this area, [Bol et al. 1991] sets up some solid foundations. A loop check is a
device to prune derivations when it seems appropriate. A loop checker is defined as
sound if no solution is lost. It is complete if all infinite derivations are pruned. A
complete loop check may also prune finite derivations. The authors show that even
for function-free programs (also known as Datalog programs), sound and complete
loop checks are out of reach. Completeness is shown only for some restricted classes
of function-free programs.

We now review loop checking in more details. To our best knowledge, among all
existing loop checking mechanisms only OS-check [Sahlin 1993], EVA-check [Shen
1997] and VAF-check [Shen et al. 2001] are suitable for logic programs with func-
tion symbols. They rely on a structural characteristic of infinite SLD-derivations,
namely, the growth of the size of some generated subgoals. This is what the follow-
ing theorem states.

Theorem 6.1. Consider an infinite SLD-derivation ξ where the leftmost selec-
tion rule is used. Then there are infinitely many queries Qi1 , Qi2 , . . . (with
i1 < i2 < . . .) in ξ such that for any j ≥ 1, the selected atom Aij

of Qij
is an

ancestor of the selected atom Aij+1 of Qij+1 and size(Aij+1) ≥ size(Aij
).

Here, size is a given function that maps an atom to its size which is defined in terms
of the number of symbols appearing in the atom. As this theorem does not provide
any sufficient condition to detect infinite SLD-derivations, the three loop checking
mechanisms mentioned above may detect finite derivations as infinite. However,
these mechanisms are complete w.r.t. the leftmost selection rule i.e. they detect all
infinite loops when the leftmost selection rule is used.

OS-check (for OverSize loop check) was first introduced by Shalin [Sahlin 1990;
1993] and was then formalized by Bol [Bol 1993]. It is based on a function size
that can have one of the three following definitions: for any atoms A and B, either
size(A) = size(B) or size(A) (resp. size(B)) is the count of symbols appearing in
A (resp. B) or size(A) ≤ size(B) if for each i, the count of symbols of the i-th
argument of A is smaller than or equal to that of the i-th argument of B. OS-check
says that an SLD-derivation may be infinite if it generates an atomic subgoal A
that is oversized, i.e. that has ancestor subgoals which have the same predicate
symbol as A and whose size is smaller than or equal to that of A.

EVA-check (for Extented Variant Atoms loop check) was introduced by Shen
[Shen 1997]. It is based on the notion of generalized variants (if Gi and Gj (i < j)
are two goals in an SLD-derivation, an atom A in Gj is a generalized variant of an
atom A′ in Gi if A is a variant of A′ except for some arguments whose size increases
from A′ to A via a set of recursive clauses.) EVA-check says that an SLD-derivation
may be infinite if it generates an atomic subgoal A that is a generalized variant
of some of its ancestor A′. Here the size function that is used applies to predicate
arguments, i.e. to terms, and it is fixed: it is defined as the the count of symbols
that appear in the terms. EVA-check is more reliable than OS-check because it
is less likely to mis-identify infinite loops [Shen 1997]. This is mainly due to the

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

28 · E. Payet and F. Mesnard

fact that, unlike OS-check, EVA-check refers to the informative internal structure
of subgoals.

VAF-check (for Variant Atoms loop check for logic programs with Functions)
was proposed by Shen et al. [Shen et al. 2001]. It is based on the notion of
expanded variants. An atom A is an expanded variant of an atom A′ if, after
variable renaming, A becomes B that is the same as A′ except that there may
be some terms at certain positions in A′, each A′[i] . . . [k] of which grows in B
into a function B[i] . . . [k] = f(. . . , A′[i] . . . [k], . . .) (here, we use A′[i] . . . [k] (resp.
B[i] . . . [k]) to refer to the k-th argument of . . . of the i-th argument of A′ (resp. B)).
VAF-check says that an SLD-derivation may be infinite if it generates an atomic
subgoal A that is an expanded variant of some of its ancestor A′. VAF-check is as
reliable as and more efficient than EVA-check [Shen et al. 2001].

Note that the loop checking mechanisms described above are “top-down” whereas
our approach is “bottom-up”. Another difference with our work is that we want to
infer atomic queries which are guaranteed to be left looping. Hence, we consider
sufficient conditions for looping, in contrast to the above mentioned methods which
consider necessary conditions. Our technique returns a set of queries for which it
has pinpointed one infinite derivation. Hence, we are not interested in soundness
as we do not care for finite derivations, nor in completeness, as the existence of just
one infinite derivation suffices. Of course, using the ∆-subsumption test as a loop
checker leads to a device that is neither sound (since ∆-subsumption is a partic-
ular case of subsumption) nor complete (since the ∆-subsumption test provides a
sufficient but not necessary condition). This is illustrated by the following example.

Example 6.2. Let c := p(X, X)← p(f(X), f(X)). As the arguments of the head
of c have one common variable X, every set of positions with associated terms
τ+ that is DN for {c} is such that the domain of τ+(p) is empty (see (DN1) in
Definition 3.34). Notice that from the head p(X, X) of c we get

p(X, X) =⇒
c

p(f(X), f(X))=⇒
c
· · ·=⇒

c
p(fn(X), fn(X))=⇒

c
· · ·

As the arguments of p grow from step to step, there cannot be any query in the
derivation that is ∆[τ+]-more general than one of its ancestors. Consequently, we
cannot conclude that p(X, X) left loops w.r.t {c}.

On the other hand, using loop checking approaches to infer classes of atomic left
looping queries is not satisfactory because, as we said above, non-looping queries
may be mis-identified as looping.

Example 6.3. We cannot replace, in Corollary 3.2, the subsumption test by the
expanded variant test used in VAF-check because, for instance, in the clause c :=
p(a)← p(f(a)), we have: p(f(a)) is an expanded variant of p(a), but p(a) does not
loop w.r.t. c.

Finally, [De Schreye et al. 1990] is also related to our study. In this paper, the
authors describe an algorithm for detecting non-terminating queries to clauses of the
type p(· · ·)← p(· · ·). The algorithm is able to check if such a given clause has no
non-terminating queries or has a query which either loops or fails due to occur check.
Moreover, given a linear atomic goal (i.e. a goal where all variable occurs at most
once), the algorithm is able to check if the goal loops or not w.r.t. the clause. The
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Non-Termination Inference of Logic Programs · 29

technique of the algorithm is based on directed weighted graphs [Devienne 1990] and
on a necessary and sufficient condition for the existence of non-terminating queries
to clauses of the type p(· · ·) ← p(· · ·). This condition is proved in [De Schreye
et al. 1989] and is expressed in terms of rational trees.

7. CONCLUSION

We have presented an extension of the relation “is more general than” which allows
to disregard some arguments, termed neutral arguments, while checking for sub-
sumption. We have proposed two syntactic criteria for statically identifying neutral
arguments. From these results, in the second part of this report we have described
algorithms for automating non-termination analysis of logic programs. Finally, we
have applied these techniques to check the optimality of termination conditions for
logic programs.

This paper leaves numerous questions open. For instance, it might be interesting
to try to generalize this approach to constraint logic programming [Jaffar and Lassez
1987]. Can we obtain higher level proofs compared to those we give? Can we
propose more abstract criteria for identifying neutral arguments? A first step in
this direction is presented in [Payet and Mesnard 2004] where completeness of a
weaker DN concept is studied. Also, our work aims at inferring classes of atomic
left looping queries, using a bottom-up point of view. Experimental data show
that it may sometimes lead to prohibitive time/space costs. How can we generate
only the useful binary clauses without fully computing the iterations of this TP -
like operator? Or can we adapt our algorithms towards a more efficient correct
top-down approach for checking non-termination?

ACKNOWLEDGMENTS

We thank Ulrich Neumerkel for numerous discussions on this topic, Roberto Bag-
nara and anonymous referees for interesting suggestions.

REFERENCES

Apt, K. R. 1997. From Logic Programming to Prolog. Prentice Hall.

Apt, K. R. and Pedreschi, D. 1994. Modular termination proofs for logic and pure Prolog

programs. In Advances in Logic Programming Theory, G. Levi, Ed. Oxford University Press,
183–229.

Arts, T. and Zantema, H. 1996. Termination of logic programs using semantic unification. In

Logic Program Synthesis and Transformation. Lecture Notes in Computer Science, vol. 1048.
Springer-Verlag, Berlin. TALP can be used online at http://bibiserv.techfak.uni.biekefeld

.de/talp/.

Bol, R. N. 1993. Loop checking in partial deduction. Journal of Logic Programming 16, 25–46.

Bol, R. N., Apt, K. R., and Klop, J. W. 1991. An analysis of loop checking mechanisms for
logic programs. Theoretical Computer Science 86, 35–79.

Clark, K. L. 1979. Predicate logic as a computational formalism. Tech. Rep. Doc 79/59, Logic
Programming Group, Imperial College, London.

Codish, M. and Taboch, C. 1999. A semantic basis for the termination analysis of logic programs.
Journal of Logic Programming 41, 1, 103–123.

De Schreye, D., Bruynooghe, M., and Verschaetse, K. 1989. On the existence of nontermi-
nating queries for a restricted class of Prolog-clauses. Artificial Intelligence 41, 237–248.

De Schreye, D. and Decorte, S. 1994. Termination of logic programs : the never-ending story.

Journal of Logic Programming 19-20, 199–260.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

30 · E. Payet and F. Mesnard

De Schreye, D., Verschaetse, K., and Bruynooghe, M. 1990. A practical technique for

detecting non-terminating queries for a restricted class of Horn clauses, using directed, weighted
graphs. In Proc. of ICLP’90. The MIT Press, 649–663.

Deransart, P. and Ferrand, G. 1987. Programmation en logique avec négation: présentation
formelle. Tech. Rep. 87/3, Laboratoire d’Informatique, Département de Mathématiques et
d’Informatique, Université d’Orleans.

Dershowitz, N., Lindenstrauss, N., Sagiv, Y., and Serebrenik, A. 2001. A general frame-

work for automatic termination analysis of logic programs. Applicable Algebra in Engineer-
ing,Communication and Computing 12, 1/2, 117–156.

Devienne, P. 1988. Weighted graphs, a tool for expressing the behavious of recursive rules in

logic programming. I. for New Generation Computer Technology (ICOT), Ed. OHMSHA Ltd.
Tokyo and Springer-Verlag, 397–404. Proc. of the Inter. Conf. on Fifth Generation Computer
Systems 88, Tokyo, Japan.

Devienne, P. 1990. Weighted graphs: A tool for studying the halting problem and time complexity
in term rewriting systems and logic programming. Theoretical Computer Science 75, 2, 157–

215.

Devienne, P., P.Lebègue, and Routier, J.-C. 1993. Halting problem of one binary Horn clause

is undecidable. In LNCS. Vol. 665. Springer-Verlag, 48–57. Proc. of STACS’93.

Gabbrielli, M. and Giacobazzi, R. 1994. Goal independency and call patterns in the analysis
of logic programs. In Proceedings of the ACM Symposium on applied computing. ACM Press,
394–399.

Genaim, S. and Codish, M. 2001. Inferring termination condition for logic programs using back-

wards analysis. In Proceedings of Logic for Programming, Artificial intelligence and Reasoning.

Lecture Notes in Computer Science. Springer-Verlag, Berlin. TerminWeb can be used online
from http://www.cs.bgu.ac.il/~codish.

Gori, R. and Levi, G. 1997. Finite failure is and-compositional. Journal of Logic and Compu-

tation 7, 6, 753–776.

Jaffar, J. and Lassez, J. L. 1987. Constraint logic programming. In Proc. of the ACM Sympo-

sium on Principles of Programming Languages. ACM Press, 111–119.

Lindenstrauss, N. 1997. TermiLog: a system for checking termination of queries to logic pro-

grams. http://www.cs.huji.ac.il/~naomil.

Lloyd, J. W. 1987. Foundations of Logic Programming. Springer-Verlag.

M. Falaschi, G. Levi, M. M. and Palamidessi, C. 1993. A model-theoretic reconstruction of

the operational semantics of logic programs. Information and Computation 102, 1, 86–113.

Mesnard, F. 1996. Inferring left-terminating classes of queries for constraint logic programs
by means of approximations. In Proc. of the 1996 Joint Intl. Conf. and Symp. on Logic

Programming, M. J. Maher, Ed. MIT Press, 7–21.

Mesnard, F. and Bagnara, R. 2004. cTI: a constraint-based termination inference tool for

ISO-Prolog. Theory and Practice of Logic Programming. To appear.

Mesnard, F. and Neumerkel, U. 2000. cTI: a tool for inferring termination conditions of ISO-

Prolog. http://www.univ-reunion.fr/~gcc.

Mesnard, F. and Neumerkel, U. 2001. Applying static analysis techniques for inferring ter-
mination conditions of logic programs. In Static Analysis Symposium, P. Cousot, Ed. Lecture

Notes in Computer Science, vol. 2126. Springer-Verlag, Berlin, 93–110.

Mesnard, F., Payet, E., and Neumerkel, U. 2002. Detecting optimal termination condi-

tions of logic programs. In Proc. of the 9th International Symposium on Static Analysis,

M. Hermenegildo and G. Puebla, Eds. Lecture Notes in Computer Science, vol. 2477. Springer-
Verlag, Berlin, 509–525.

O’Keefe, R. 1990. The Craft of Prolog. MIT Press.

Payet, E. and Mesnard, F. 2004. Non-termination inference of logic programs. In Proc. of

the 11th International Symposium on Static Analysis, R. Giacobazzi, Ed. Lecture Notes in

Computer Science, vol. 3148. Springer-Verlag, Berlin.

Plümer, L. 1990. Terminations proofs for logic programs. Number 446 in LNAI. Springer-Verlag,

Berlin.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Non-Termination Inference of Logic Programs · 31

Sahlin, D. 1990. The mixtus approach to automatic partial evaluation of full Prolog. In Proc. of

the 1990 North American Conference on Logic Programming, S. Debray and M. Hermenegildo,
Eds. MIT Press, Cambridge, MA, 377–398.

Sahlin, D. 1993. Mixtus: an automatic partial evaluator for full Prolog. New Generation Com-

puting 12, 1, 7–51.

Schmidt-Schauss, M. 1988. Implication of clauses is undecidable. Theoretical Computer Sci-

ence 59, 287–296.

Shen, Y.-D. 1997. An extended variant of atoms loop check for positive logic programs. New

Generation Computing 15, 2, 187–204.

Shen, Y.-D., You, J.-H., Yuan, L.-Y., Shen, S., and Yang, Q. 2003. A dynamic approach to

characterizing termination of general logic programs. ACM Transactions on Computational
Logic 4, 4, 417–434.

Shen, Y.-D., Yuan, L.-Y., and You, J.-H. 2001. Loops checks for logic programs with functions.

Theoretical Computer Science 266, 1-2, 441–461.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

32 · E. Payet and F. Mesnard

A. AN ALGORITHM TO COMPUTE DN FILTERS

dna
(
BinProg , τ+

1

)
:

in: BinProg : a finite set of binary clauses
τ+
1 : a set of positions with associated terms

1: τ+
2 := τ+

1

2: τ+
2 := satisfy DN123(BinProg , τ+

2)
3: while satisfy DN4(BinProg , τ+

2) 6= τ+
2 do

4: τ+
2 := satisfy DN4(BinProg , τ+

2)
5: return τ+

2

satisfy DN123
(
BinProg , τ+

1

)
:

1: τ+
2 := τ+

1

2: for each p(s1, . . . , sn)← B ∈ BinProg do
3: E := {i ∈ [1, n] | Var(si) ∩Var({sj | j 6= i}) = ∅}
4: τ+

2 (p) := τ+
2 (p)|(Dom(τ+

2 (p)) ∩ E)
5: for each p(s1, . . . , sn)← B ∈ BinProg do
6: F := ∅
7: for each i ∈ Dom(τ+

2 (p)) do
8: ui := less general(si, τ

+
2 (p)(i))

9: if ui = undefined then F := F ∪ {i}
10: else τ+

2 (p)(i) := ui

11: τ+
2 (p) := τ+

2 (p)|(Dom(τ+
2 (p)) \ F)

12: for each H ← q(t1, . . . , tm) ∈ BinProg do
13: F := ∅
14: for each i ∈ Dom(τ+

2 (q)) do
15: if τ+

2 (q)(i) is not more general than ti then F := F ∪ {i}
16: τ+

2 (q) := τ+
2 (q)|(Dom(τ+

2 (q)) \ F)
17: return τ+

2

satisfy DN4
(
BinProg , τ+

1

)
:

1: τ+
2 := τ+

1

2: for each p(s1, . . . , sn)← q(t1, . . . , tm) ∈ BinProg do
3: F := ∅
4: for each i ∈ Dom(τ+

2 (p)) do
5: for each j ∈ [1,m] \Dom(τ+

2 (q)) do
6: if Var(si) ∩Var(tj) 6= ∅ then F := F ∪ {i}
7: τ+

2 (p) := τ+
2 (p)|(Dom(τ+

2 (p)) \ F)
8: return τ+

2

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Non-Termination Inference of Logic Programs · 33

B. AN ALGORITHM TO COMPUTE LOOPING CONDITIONS

unit loop(H ← B, Dict):

in: H ← B: a binary clause
Dict: a loop dictionary

1: Dict′ := Dict

2: τ+ := dna([H ← B], τ+
max)

3: if B is ∆[τ+]-more general than H then
4: Dict ′ := Dict ′ ∪ {([H ← B], τ+)}
5: return Dict ′

loops from dict(H ← B, Dict):

in: H ← B: a binary clause
Dict : a loop dictionary

1: Dict ′ := Dict
2: for each

(
[H1 ← B1|BinSeq1], τ

+
1

)
∈ Dict do

3: if B is ∆[τ+
1]-more general than H1 then

4: τ+ := dna([H ← B,H1 ← B1|BinSeq1], τ
+
1)

5: Dict ′ := Dict ′ ∪ {([H ← B,H1 ← B1|BinSeq1], τ+)}
6: return Dict ′

infer loop dict(P , max):

in: P : a logic program
max : a non-negative integer

1: Dict := ∅
2: for each H ← B ∈ T β

P ↑ max do
3: Dict := unit loop(H ← B,Dict)
4: Dict := loops from dict(H ← B,Dict)
5: return Dict

infer loop cond(P , max):

in: P : a logic program
max : a non-negative integer

1: L := ∅
2: Dict := infer loop dict(P,max)
3: for each ([H ← B|BinSeq], τ+) ∈ Dict do
4: L := L ∪ {(H, τ+)}
5: return L

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

