
Non-Termination Inference for Constraint Logic
Programs

Etienne Payet and Fred Mesnard

IREMIA - Université de La Réunion, France
{epayet,fred}@univ-reunion.fr

Abstract. Termination has been a subject of intensive research in the
logic programming community for the last two decades. Most works deal
with proving universal left termination of a given class of queries, i.e.
finiteness of all the possible derivations produced by a Prolog engine from
any query in that class. In contrast, the study of the dual problem: non-
termination w.r.t. the left selection rule i.e the existence of one query in
a given class of queries which admits an infinite left derivation, has given
rise to only a few papers. In this article, we study non-termination in the
more general constraint logic programming framework. We rephrase our
previous logic programming approach into this more abstract setting,
which leads to a criterion expressed in a logical way and simpler proofs,
as expected. Also, by reconsidering our previous work, we now prove
that in some sense, we already had the best syntactic criterion for logic
programming. Last but not least, we offer a set of correct algorithms for
inferring non-termination for CLP.

1 Introduction

Termination has been a subject of intensive research in the logic programming
community for the last two decades, see the survey [4]. A more recent look on
the topic, and its extension to the constraint logic programming paradigm [8,
9] is given in [14]. Most works deal with proving universal left termination of a
given class of queries, i.e. finiteness of all the possible derivations produced by a
Prolog engine from any query in that class. Some of these works, e.g. [11, 7, 12]
consider the reverse problem of inferring classes of queries for which universal
left termination is ensured.

In contrast, the study of the dual problem: non-termination w.r.t. the left
selection rule i.e the existence of one query in a given class of queries which
admits an infinite left derivation, has given rise to only a few papers, e.g. [3,
5]. Recently we have also investigated this problem in the logic programming
setting [13], where we proposed an analysis to infer non-termination.

In this paper, we study non-termination in the more general constraint logic
programming framework. We rephrase our approach into this more abstract
setting, which leads to a necessary and sufficient criterion expressed in a logical
way and simpler proofs, as expected. Also, by reconsidering our previous work,
we now prove that in some sense, we already had the best syntactic criterion for

logic programming. Last but not least, we offer a set of correct algorithms for
inferring non-termination for CLP. The analysis is fully implemented1.

We organize the paper as follows. After the preliminaries presented in Section
2, some basic properties related to non-termination for CLP is given in Section
3. The technical machinery behind our approach is described in Section 4 and
Section 5. Section 6 concludes.

2 Preliminaries

We recall some basic definitions on CLP, see [9] for more details.

2.1 Constraint Domains

In this paper, we consider a constraint logic programming language CLP(C)
based on the constraint domain C := 〈ΣC ,LC ,DC , TC , solvC〉.

ΣC is the constraint domain signature, which is a pair 〈FC ,ΠC〉 where FC
is a set of function symbols and ΠC is a set of predicate symbols. The class of
constraints LC is a set of first-order ΣC-formulas. The domain of computation
DC is a ΣC-structure that is the intented interpretation of the constraints and
DC is the domain of DC . The constraint theory TC is a ΣC-theory describing the
logical semantics of the constraints. We suppose that C is ideal i.e. the constraint
solver, solvC , is a computable function which maps each formula in LC to one of
true or false indicating whether the formula is satisfiable or unsatisfiable.

We assume that the predicate symbol = is in ΣC and that it is interpreted as
identity in DC . A primitive constraint is either the always satisfiable constraint
true or the unsatisfiable constraint false or has the form p(t̃) where p ∈ ΠC
and t̃ is a finite sequence of terms in ΣC . We suppose that LC contains all the
primitive constraints and that it is closed under variable renaming, existential
quantification and conjunction.

We suppose that DC and TC correspond on LC i.e.

– DC is a model of TC and
– for every constraint c ∈ LC , DC |= ∃c if and only if TC |= ∃c.

Moreover, we suppose that TC is satisfaction complete w.r.t. LC i.e. for every
constraint c ∈ LC , either TC |= ∃c or TC |= ¬∃c. We also assume that the theory
and the solver agree in the sense that for every c ∈ LC , solvC(c) = true if and
only if TC |= ∃c. Consequently, as DC and TC correspond on LC , we have, for
every c ∈ LC , solvC(c) = true if and only if DC |= ∃c.

A valuation is a function that maps all variables into DC . We write Oσ
(instead of σ(O)) to denote the result of applying a valuation σ to an object O.
If c is a constraint, we write DC |= c if for every valuation σ, cσ is true in DC
i.e. DC |=σ c. Hence, DC |= c is the same as DC |= ∀c. Valuations are denoted by
σ, η, θ, . . . in the sequel of this paper.
1 http://www.univ-reunion.fr/~gcc/

Example 1 (Rlin). The constraint domain Rlin has <, ≤, =, ≥ and > as pred-
icate symbols, +, −, ∗, / as function symbols and sequences of digits (possibly
with a decimal point) as constant symbols. Only linear constraints are admitted.
The domain of computation is the structure with reals as domain and where the
predicate symbols and the function symbols are interpreted as the usual relations
and functions over reals. The theory TRlin

is the theory of real closed fields [16].
A constraint solver for Rlin always returning either true or false is described
in [15]. ut

Example 2 (Logic Programming). The constraint domain Term has = as pred-
icate symbol and strings of alphanumeric characters as function symbols. The
domain of computation of Term is the set of finite trees (or, equivalently, of finite
terms), Tree, while the theory TTerm is Clark’s equality theory [1]. The interpre-
tation of a constant is a tree with a single node labeled with the constant. The
interpretation of an n-ary function symbol f is the function fTree : Treen → Tree
mapping the trees T1, . . . , Tn to a new tree with root labeled with f and with
T1, . . . , Tn as child nodes. A constraint solver always returning either true or
false is provided by the unification algorithm. CLP(Term) coincides then with
logic programming. ut

2.2 Operational Semantics

The signature in which all programs and queries under consideration are in-
cluded is ΣL := 〈FL,ΠL〉 with FL := FC and ΠL := ΠC ∪ Π ′

L where Π ′
L, the

set of predicate symbols that can be defined in programs, is disjoint from ΠC .
We assume that each predicate symbol p in ΠL has a unique arity denoted by
arity(p).

An atom has the form p(t̃) where p ∈ Π ′
L, arity(p) = n and t̃ is a sequence

of n terms in ΣL. A CLP(C) program is a finite set of rules. A rule has the form
p(x̃) ← c � q1(ỹ1), . . . , qn(ỹn) where p, q1, . . . , qn are predicate symbols in Π ′

L,
c is a finite conjunction of primitive constraints and x̃, ỹ1, . . . , ỹn are disjoint
sequences of distinct variables. Hence, c is the conjunction of all constraints,
including unifications. A query has the form 〈Q | d〉 where Q is a finite sequence
of atoms and d is a finite conjunction of primitive constraints. When Q contains
exactly one atom, the query is said to be atomic. The empty sequence of atoms
is denoted by �. The set of variables occurring in a syntactic object O is denoted
Var(O).

The examples of this paper make use of the language CLP(Rlin) and the
language CLP(Term). Program and query examples are presented in teletype
font. Program and query variables begin with an upper-case letter, [Head |Tail]
denotes a list with head Head and tail Tail , and [] denotes an empty list.

We consider the following operational semantics given in terms of left deriva-
tions from queries to queries. Let 〈p(t̃), Q | d〉 be a query and r be a rule.
Let r′ := p(x̃) ← c � B be a variant of r variable disjoint with 〈p(t̃), Q | d〉
such that solvC(x̃ = t̃ ∧ c ∧ d) = true (where x̃ = t̃ denotes the constraint
x1 = t1 ∧ · · · ∧ xn = tn with x̃ := x1, . . . , xn and t̃ := t1, . . . , tn). Then,

〈p(t̃), Q | d〉=⇒
r
〈B, Q | x̃ = t̃ ∧ c ∧ d〉 is a left derivation step with r′ as its in-

put rule. We write S
+=⇒
P

S′ to summarize a finite number (> 0) of left derivation

steps from S to S′ where each input rule is a variant of a rule of P . Let S0 be
a query. A maximal sequence S0 =⇒

r1
S1 =⇒

r2
· · · of left derivation steps is called

a left derivation of P ∪ {S0} if r1, r2, . . . are rules from P and if the standard-
ization apart condition holds, i.e. each input rule used is variable disjoint from
the initial query S0 and from the input rules used at earlier steps. A finite left
derivation ends up either with a query of the form 〈� | d〉 with TC |= ∃d (then it
is a successful left derivation) or with a query of the form 〈Q | d〉 with Q 6= � or
TC |= ¬∃d (then it is a failed left derivation). We say S0 left loops with respect
to P if there exists an infinite left derivation of P ∪ {S0}.

2.3 The Binary Unfoldings of a CLP(C) Program

We say that H ← c�B is a binary rule if B contains at most one atom. A binary
program is a finite set of binary rules.

Now we present the main ideas about the binary unfoldings [6] of a program,
borrowed from [2]. This technique transforms a program P into a possibly infinite
set of binary rules. Intuitively, each generated binary rule H ← c � B specifies
that, with respect to the original program P , a call to 〈H | d〉 (or any of its
instances) necessarily leads to a call to 〈B | c ∧ d〉 (or its corresponding instance)
if c ∧ d is satisfiable.

More precisely, let S be an atomic query. Then, the atomic query 〈A | d〉 is a
call in a left derivation of P ∪{S} if S

+=⇒
P
〈A,Q | d〉. We denote by callsP (S) the

set of calls which occur in the left derivations of P∪{S}. The specialization of the
goal independent semantics for call patterns for the left-to-right selection rule is
given as the fixpoint of an operator T β

P over the domain of binary rules, viewed
modulo renaming. In the definition below, id denotes the set of all binary rules
of the form p(x̃)← x̃ = ỹ � p(ỹ) for any p ∈ Π ′

L and ∃V c denotes the projection
of a constraint c onto the set of variables V . Moreover, for atoms A := p(t̃) and
A′ := p(t̃′) we write A = A′ as an abbreviation for the constraint t̃ = t̃′.

T β
P (X) =

{
H ← c �B |H ← c �B ∈ P, DC |= ∃c, B = �

} ⋃
H ← c �B

r := H ← c0 �B1, . . . , Bm ∈ P, i ∈ [1,m]
〈Hj ← cj ��〉i−1

j=1 ∈ X renamed apart from r

Hi ← ci �B ∈ X ∪ id renamed apart from r
i < m⇒ B 6= �

c = ∃Var(H,B)

[
c0 ∧

i
∧

j=1
(cj ∧ {Bj = Hj})

]
DC |= ∃c


We define its powers as usual. It can be shown that the least fixpoint of this
monotonic operator always exists and we set

bin unf (P) := lfp(T β
P).

Then, the calls that occur in the left derivations of P ∪{S}, with S := 〈p(t̃) | d〉,
can be characterized as follows:

callsP (S) =
{
〈B | t̃ = t̃′ ∧ c ∧ d〉 p(t̃′)← c �B ∈ bin unf (P)

DC |= ∃(t̃ = t̃′ ∧ c ∧ d)

}
Similarly, bin unf (P) gives a goal independent representation of the success
patterns of P . But we can extract more information from the binary unfoldings
of a program P : universal left termination of an atomic query S with respect
to P is identical to universal termination of S with respect to bin unf (P). Note
that the selection rule is irrelevant for a binary program and an atomic query,
as each subsequent query has at most one atom. The following result lies at the
heart of Codish’s approach to termination [2]:

Theorem 1 (Observing Termination). Let P be a CLP(C) program and S
be an atomic query. Then, S left loops w.r.t. P if and only if S loops w.r.t.
bin unf (P).

Notice that bin unf(P) is a possibly infinite set of binary rules. For this reason,
in the algorithms of Section 5, we compute only the first max iterations of T β

P

where max is a parameter of the analysis. As an immediate consequence of
Theorem 1 frequently used in our proofs, assume that we detect that S loops
with respect to a subset of the binary rules of T β

P ↑ i, with i ∈ N . Then S loops
with respect to bin unf(P) hence S left loops with respect to P .

Example 3. Consider the CLP(Term) program P (see [10], p. 56–58):

r1 := q(X1, X2)← X1 = a ∧ X2 = b ��
r2 := p(X1, X2)← X1 = X2 ��
r3 := p(X1, X2)← Y1 = Z2 ∧ Y2 = X2 ∧ Z1 = X1 � p(Y1, Y2), q(Z1, Z2)

Let c1, c2 and c3 be the constraints in r1, r2 and r3, respectively. The binary
unfoldings of P are:

T β
P ↑ 0 = ∅

T β
P ↑ 1 = {r1, r2, p(x1, x2)← c3 � p(y1, y2)} ∪ T β

P ↑ 0
T β

P ↑ 2 = {p(x1, x2)← x1 = a ∧ x2 = b ��,

p(x1, x2)← x1 = z1 ∧ x2 = z2 � q(z1, z2)} ∪ T β
P ↑ 1

T β
P ↑ 3 = {p(x1, x2)← x1 = z1 ∧ x2 = b ∧ z2 = a � q(z1, z2),

p(x1, x2)← x2 = z2 � q(z1, z2)} ∪ T β
P ↑ 2

T β
P ↑ 4 = {p(x1, x2)← x2 = b ∧ z2 = a � q(z1, z2)} ∪ T β

P ↑ 3
T β

P ↑ 5 = T β
P ↑ 4 = bin unf (P)

2.4 Terminology

In this paper, we design an algorithm that infers a finite set of left looping atomic
queries from the text of any CLP(C) program P . First, the algorithm computes

a finite subset of bin unf(P) and then it proceeds with this subset only. For
this reason, and to simplify the exposition, the theoretical results we describe
below only deal with atomic queries and binary rules but can be easily extended
to any form of queries or rules. Consequently, in the sequel of this paper up to
Section 5, by a query we mean an atomic query, by a rule, we mean a binary rule
and by a program we mean a binary program. Moreover, as mentioned above,
the selection rule is irrelevant for a binary program and an atomic query, so we
merely speak of derivation step, of derivation and of loops.

3 Loop Inference with Constraints

In the logic programming framework, the subsumption test provides a simple
way to infer looping queries: if, in a logic program P , there is a rule p(t̃)← p(t̃′)
such that p(t̃′) is more general than p(t̃), then the query p(t̃) loops with respect
to P . In this section, we extend this result to the constraint logic programming
framework. First, we generalize the relation “is more general than”:

Definition 1 (More General Than). Let S := 〈p(t̃) | d〉 and S′ := 〈p(t̃′) | d′〉
be two queries. We say that S′ is more general than S if {p(t̃)η | DC |=η d} ⊆
{p(t̃′)η | DC |=η d′}.

Example 4. Suppose that C = Term. Let S := 〈p(X) | X = f(f(Y))〉 and S′ :=
〈p(X) | X = f(Y)〉. Then, as {p(X)η | DC |=η (X = f(f(Y)))} ⊆ {p(X)η | DC |=η

(X = f(Y))}, S′ is more general than S. ut

This definition allows us to state a lifting result:

Theorem 2 (Lifting). Consider a derivation step S =⇒
r

S1, a query S′ that is

more general than S and a variant r′ of r variable disjoint with S′. Then, there
exists a query S′1 that is both more general than S1 and such that S′ =⇒

r
S′1 with

input rule r′.

From this theorem, we derive two corollaries that can be used to infer looping
queries just from the text of a CLP(C) program:

Corollary 1. Let r := p(x̃)← c � p(ỹ) be a rule such that DC |= ∃c. If 〈p(ỹ) | c〉
is more general than 〈p(x̃) | c〉 then 〈p(x̃) | c〉 loops w.r.t. {r}.

Corollary 2. Let r := p(x̃)← c � q(ỹ) be a rule from a program P . If 〈q(ỹ) | c〉
loops w.r.t. P then 〈p(x̃) | c〉 loops w.r.t. P .

Example 5. Consider the CLP(Term) program APPEND:

r1 := append(X1, X2, X3)← X1 = [] ∧ X2 = X3 ��
r2 := append(X1, X2, X3)← X1 = [A|Y1] ∧ X2 = Y2 ∧ X3 = [A|Y3]�

append(Y1, Y2, Y3)

Let c2 be the constraint in the rule r2. Then, DTerm |= ∃c2. Moreover, we
note that 〈append(Y1, Y2, Y3) | c2〉 is more general than 〈append(X1, X2, X3) | c2〉.

So, by Corollary 1, 〈append(X1, X2, X3) | c2〉 loops w.r.t. {r2}, hence w.r.t. APPEND.
Hence, there exists an infinite derivation ξ of APPEND∪{〈append(X1, X2, X3) | c2〉}.
Then, if S is a query that is more general than 〈append(X1, X2, X3) | c2〉, by suc-
cessively applying the Lifting Theorem 2 to each step of ξ, one can construct an
infinite derivation of APPEND ∪ {S}. So, S also loops w.r.t. APPEND. ut

An extended version of Corollary 1, presented in the next section, together with
the above Corollary 2 will be used to design the algorithms of Section 5 which
infer classes of looping queries from the text of a program.

4 Loop Inference Using Sets of Positions

A basic idea in our work lies in identifying arguments in rules which can be
disregarded when unfolding a query. Such arguments are said to be neutral. The
point is that in many cases, considering this kind of arguments allows to infer
more looping queries.

Example 6 (Example 5 continued). The second argument of the predicate symbol
append is neutral for derivation with the rule r2: if we hold a derivation ξ of
a query 〈append(t1, t2, t3) | c〉 w.r.t. {r2}, then for any term t there exists a
derivation of {r2} ∪ {〈append(t1, t, t3) | c〉} whose length is the same as that of
ξ. This means that we still get a looping query if we replace, in every looping
query inferred in Example 5, the second argument of append by any term. ut

In this section, we present a framework to describe specific arguments inside a
program. Using this framework, we then give an operational definition of neutral
arguments leading to a result extending Corollary 1 above. Finally, we relate the
operational definition to an equivalent logical characterization and to a non-
equivalent syntactic criterion. Hence, the results of this section extend those we
presented in [13] where we defined, in the scope of logic programming, neutral
arguments in a very syntactical way.

4.1 Sets of Positions

Definition 2 (Set of Positions). A set of positions, denoted by τ , is a function
that maps each predicate symbol p ∈ Π ′

L to a subset of [1, arity(p)].

Example 7. If we want to disregard the second argument of the predicate symbol
append defined in Example 5, we set τ := 〈append 7→ {2}〉. ut

Using a set of positions τ , one can restrict any atom by “erasing” the argu-
ments whose position is distinguished by τ :

Definition 3 (Restriction). Let τ be a set of positions.

– Let p ∈ Π ′
L be a predicate symbol of arity n. The restriction of p w.r.t. τ is the

predicate symbol pτ . Its arity equals the number of elements of [1, n] \ τ(p).

– Let A := p(t1, . . . , tn) be an atom. The restriction of A w.r.t. τ , denoted
by Aτ , is the atom pτ (ti1 , . . . , tim) where {i1, . . . , im} = [1, n] \ τ(p) and
i1 ≤ · · · ≤ im.

– Let S := 〈A | d〉 be a query. The restriction of S w.r.t. τ , denoted by Sτ , is
the query 〈Aτ | d〉.

Example 8 (Example 7 continued). The restriction of the query

〈append(X, Y, Z) | X = [A|B] ∧ Y = a ∧ Z = [A|C]〉

w.r.t. τ is the query 〈appendτ (X, Z) | X = [A|B] ∧ Y = a ∧ Z = [A|C]〉. ut

Sets of positions, together with the restriction they induce, lead to a gener-
alization of the relation “is more general than”:

Definition 4 (τ-More General). Let τ be a set of positions and S and S′ be
two queries. Then, S′ is τ -more general than S if S′τ is more general than Sτ .

Example 9 (Example 7 continued). Since τ = 〈append 7→ {2}〉, we do not care
what happens to the second argument of append . So 〈append(X, a, Z) | true〉 is
τ -more general than 〈append(X, Y, Z) | true〉 because {appendτ (X, Z)η | DC |=η

true} ⊆ {appendτ (X, Z)η | DC |=η true}. ut

4.2 Derivation Neutral Sets of Positions

Now we give a precise operational definition of the kind of arguments we are in-
terested in. The name “derivation neutral” stems from the fact that τ -arguments
do not play any rôle in the derivation process.

Definition 5 (Derivation Neutral). Let r be a rule and τ be a set of positions.
We say that τ is DN for r if for each derivation step S =⇒

r
S1, for each query

S′ that is τ -more general than S and for each variant r′ of r variable disjoint
with S′, there exists a query S′1 that is τ -more general than S1 and such that
S′ =⇒

r
S′1 with input rule r′. This definition is extended to programs: τ is DN

for P if it is DN for each rule of P .

Therefore, while lifting a derivation, we can safely ignore derivation neutral
arguments which can be instantiated to any term. As a consequence, we get the
following extended version of Corollary 1:

Proposition 1. Let r := p(x̃)← c � p(ỹ) be a rule such that DC |= ∃c. Let τ be
a set of positions that is DN for r. If 〈p(ỹ) | c〉 is τ -more general than 〈p(x̃) | c〉
then 〈p(x̃) | c〉 loops w.r.t. {r}.

Finding out neutral arguments from the text of a program is not an easy
task if we use the definition above. The next subsections present a logical and a
syntactic characterization that can be used (see Section 5.2) to compute neutral
arguments that appear inside a given program.

4.3 A Logical Characterization

We distinguish the following sets of variables that appear within a rule:

Definition 6. Let r := p(x̃)← c � q(ỹ) be a rule and τ be a set of positions.

1. Let x̃ := x1, . . . , xh. The set of variables of the head of r that are distinguished
by τ is vars head(r, τ) := {xi ∈ x̃ | i ∈ τ(p)}.

2. The set of local variables of r is denoted by local vars(r) and defined as:
local vars(r) := Var(c) \ (x̃ ∪ ỹ).

3. Let ỹ := y1, . . . , yb. The set of variables of the body of r that are distinguished
by τ is vars body(r, τ) := {yi ∈ ỹ | i ∈ τ(q)}.

Example 10 (Example 7 continued). Consider the rule

r := append(X1, X2, X3)← X1 = [A|Y1] ∧ X2 = B ∧ B = Y2 ∧ X3 = [A|Y3] �
append(Y1, Y2, Y3).

We have: vars head(r, τ) = {X2}, local vars(r) = {A,B} and vars body(r, τ) =
{Y2}. ut

Now we give a logical definition of derivation neutrality. As we will see below,
this definition is equivalent to the operational one we stated above.

Definition 7 (Logical Derivation Neutral). Let r := p(x̃) ← c � q(ỹ) be a
rule and τ be a set of positions. We say that τ is DNlog for r if DC |= (c →
∀X∃Yc) where X = vars head(r, τ) and Y = local vars(r) ∪ vars body(r, τ).

So, τ is DNlog for r if for any valuation σ such that DC |=σ c, if one changes
the value of xσ where x ∈ vars head(r, τ) into any value, then there exists a
corresponding value for each yσ, where y is in local vars(r) or in vars body(r, τ),
such that c still holds.

Example 11 (Example 10 continued). The set of positions τ is DNlog for the rule
r because X = {X2}, Y = {A,B, Y2}, c is the constraint

(X1 = [A|Y1]) ∧ (X2 = B) ∧ (B = Y2) ∧ (X3 = [A|Y3])

and for every valuation σ, if DC |=σ c then DC |=σ ∀X2 ∃B ∃Y2 c hence DC |=σ

∀X∃Yc. ut

Theorem 3. Let r be a rule and τ be a set of positions. Then, τ is DNlog for r
if and only if τ is DN for r.

Example 12. Consider the rule r := p(X) ← Y = f(X) � p(Y). Let τ := 〈p 7→
{1}〉. We have X = {X} and Y = {Y }. As the formula ∀X ∃Y Y = f(X) is
true in Term, so is ∀X, Y [Y = f(X) → ∀X ∃Y Y = f(X)]. Hence τ is DN for
the rule r. ut

4.4 A Syntactic Characterization

In [13], we gave, in the scope of logic programming, a syntactic definition of
neutral arguments. Now we extend this syntactic criterion to the more general
framework of constraint logic programming. First, we need rules in flat form:

Definition 8 (Flat Rule). A rule r := p(x̃) ← c � q(ỹ) is said to be flat if
c has the form (x̃ = s̃ ∧ ỹ = t̃) for some sequences of terms s̃ and t̃ such that
Var(s̃, t̃) ⊆ local vars(r).

Notice that there are some rules r := p(x̃) ← c � q(ỹ) for which there exists no
“equivalent” rule in flat form. More precisely, there exists no rule r′ := p(x̃) ←
c′ � q(ỹ) verifying DC |=

[
(∃local vars(r)c) ↔ (∃local vars(r′)c

′)
]

(take for instance
r := p(X)← X > 0 � p(Y) in Rlin .)

Next, we consider universal terms:

Definition 9 (Universal Term). A term t in ΣC is said to be universal if for
a variable x not occurring in t we have: DC |= ∀x∃Var(t)(x = t).

Hence, a term t is universal if it can take any value in DC i.e. if for any value a
in DC , there exists a valuation σ such that DC |= (a = tσ).

Example 13. A term t in ΣTerm is universal if and only if t is a variable. If x is
a variable, then x, x + 0, x + 1 + (−1), . . . and x + 1 or 2 ∗x are universal terms
in ΣRlin

. ut

Now, we can define syntactic derivaration neutrality:

Definition 10 (Syntactic Derivation Neutral). Consider a flat rule r :=
p(x̃) ← (x̃ = s̃ ∧ ỹ = t̃) � q(ỹ) with s̃ := s1, . . . , sh and t̃ := t1, . . . , tb (h and b
are the arity of p and q respectively). Let τ be a set of positions. We say that τ
is DNsyn for r if:

∀i ∈ τ(p),

 (C1) si is a universal term and
(C2) ∀j ∈ [1, h] \ {i},Var(si) ∩Var(sj) = ∅ and
(C3) ∀j ∈ [1, b] \ τ(q),Var(si) ∩ V ar(tj) = ∅

Example 14. The rule p(X1)← X1 = Z ∧ Y1 = Z � p(Y1) is flat and the set of po-
sitions 〈p 7→ {1}〉 is DNsyn for it. The rule p(X)← X > 0 � p(Y) has no DNsyn
set of positions in Rlin . ut

Proposition 2. Let r be a flat rule and τ be a set of positions. If τ is DNsyn
for r then τ is DN for r. If τ is DN for r then (C1) of Definition 10 holds.

Notice that a DN set of positions is not necessarily DNsyn because (C2) or
(C3) of Definition 10 may not hold:

Example 15. Let C := Rlin .

– Let r1 := p1(X1, X2)← X1 = A ∧ X2 = A + B ��. The set of positions τ1 :=
〈p1 7→ {1, 2}〉 is DNlog for r1, so τ1 is DN for r1. But τ1 is not DNsyn for
r1 because, as the terms A and A + B share the variable A, (C2) does not
hold.

– Let r2 := p2(X1, X2)← X1 = A ∧ X2 = 0 ∧ Y2 = A− A � p2(Y1, Y2). The set of
positions τ2 := 〈p2 7→ {1}〉 is DNlog for r2, so τ2 is DN for r2. But τ2 is not
DNsyn for r2 because, as the terms A and A−A share the variable A, (C3)
does not hold. ut

In the special case of logic programming, we have an equivalence:

Theorem 4 (Logic Programming). Suppose that C = Term. Let r be a flat
rule and τ be a set of positions. Then, τ is DNsyn for r if and only if τ is DN
for r

Every rule p(s̃) ← q(t̃) in logic programming can be easily translated to a rule
p(x̃)← (x̃ = s̃∧ ỹ = t̃) � q(ỹ) in flat form. As the only universal terms in ΣTerm

are the variables, Definition 10 is equivalent to that we gave in [13] for Derivation
Neutral. Therefore, Theorem 4 states that in the case of logic programming, we
have a form of completeness because we cannot get a better syntactic criterion
than that of [13] (by “better”, we mean a criterion allowing to distinguish at
least the same positions).

5 Algorithms

In this section, we describe a set of correct algorithms that allow to infer classes
of left looping atomic queries from the text of a (non necessary binary) given
program P . Using the operator T β

P , our technique first computes a finite subset
of bin unf(P) which is then analysed using DN sets of positions and a data
structure called loop dictionary.

5.1 Loop Dictionaries

Definition 11 (Looping Pair, Loop Dictionary). A looping pair has the
form (BinSeq , τ) where BinSeq is a finite ordered sequence of binary rules, τ is
a set of positions that is DN for BinSeq and

– either BinSeq = [p(x̃) ← c � p(ỹ)] where DC |= ∃c and 〈p(ỹ) | c〉 is τ -more
general than 〈p(x̃) | c〉

– or BinSeq = [p(x̃)← c � q(ỹ), p1(x̃1)← c1 � q1(ỹ1)|BinSeq ′] and there exists
a set of positions τ ′ which is such that ([p1(x̃1)← c1 � q1(ỹ1)|BinSeq ′], τ ′) is
a looping pair and 〈q(ỹ) | c〉 is τ ′-more general than 〈p1(x̃1) | c1〉.

A loop dictionary is a finite set of looping pairs.

Example 16. In the constraint domainRlin , the pair (BinSeq , τ) where BinSeq :=
[p(X)← X > 0 ∧ X = Y � q(Y), q(X)← Y = 2 ∗ X � q(Y)] and τ is the set of posi-
tions 〈p 7→ ∅, q 7→ {1}〉, is a looping one because:

– as τ is DNlog for BinSeq , by Theorem 3 it is DN for BinSeq ,
– ([q(X)← Y = 2 ∗ X � q(Y)], τ ′), where τ ′ := 〈q 7→ {1}〉, is a looping pair be-

cause τ ′ is DN for [q(X)← Y = 2 ∗ X � q(Y)] (because it is DNlog for that
program), DRlin

|= ∃(Y = 2 ∗ X) and 〈q(Y) | Y = 2 ∗ X〉 is τ ′-more general
than 〈q(X) | Y = 2 ∗ X〉,

– 〈q(Y) | X > 0 ∧ X = Y〉 is τ ′-more general than 〈q(X) | Y = 2 ∗ X〉. ut

One motivation for introducing this definition is that a looping pair immediately
provides a looping atomic query:

Proposition 3. Let ([p(x̃)← c�q(ỹ)|BinSeq], τ) be a looping pair. Then, 〈p(x̃) | c〉
loops w.r.t. [p(x̃)← c � q(ỹ)|BinSeq].

Proof. By induction on the length of BinSeq , using Proposition 1 and Corol-
lary 2. ut

A second motivation for using loop dictionaries is that they can be built incre-
mentally by simple algorithms as those described below.

5.2 Getting a Loop Dictionary from a Binary Program

The most simple form of a looping pair is ([p(x̃)← c � p(ỹ)], τ) where τ is a set
of positions that is DN for [p(x̃) ← c � p(ỹ)], where DC |= ∃c and 〈p(ỹ) | c〉 is
τ -more general than 〈p(x̃) | c〉. So, given a binary rule p(x̃)← c � p(ỹ) such that
DC |= ∃c, if we hold a set of positions τ that is DN for p(x̃)← c � p(ỹ), it suffices
to test if 〈p(ỹ) | c〉 is τ -more general than 〈p(x̃) | c〉. If so, we have a looping pair
([p(x̃)← c � p(ỹ)], τ). This is how the following function works.

unit loop(p(x̃)← c � p(ỹ), Dict):

in: p(x̃)← c � p(ỹ): a binary rule
Dict: a loop dictionary

out: Dict′: a loop dictionary

1: Dict′ := Dict

2: if DC |= ∃c then
3: τ := a DN set of positions for p(x̃)← c � p(ỹ)
4: if 〈p(ỹ) | c〉 is τ -more general than 〈p(x̃) | c〉 then
5: Dict ′ := Dict ′ ∪ {([p(x̃)← c � p(ỹ)], τ)}
6: return Dict ′

Termination of unit loop is straightforward, provided that at line 3 we use a
terminating algorithm to compute τ . Partial correctness is deduced from the
following theorem.

Theorem 5 (Partial Correctness of unit loop). If p(x̃) ← c � p(ỹ) is a
binary rule and Dict a loop dictionary, then unit loop(p(x̃)← c � p(ỹ),Dict) is
a loop dictionary, every element (BinSeq , τ) of which is such that (BinSeq , τ) ∈
Dict or BinSeq = [p(x̃)← c � p(ỹ)].

Now suppose we hold a loop dictionary Dict and a rule p(x̃) ← c � q(ỹ).
Then we may get some more looping pairs: it suffices to take the elements(
[p1(x̃1)← c1 � q1(ỹ1)|BinSeq ′], τ ′

)
of Dict such that 〈q(ỹ) | c〉 is τ ′-more general

than 〈p1(x̃1) | c1〉 and to compute a set of positions τ that is DN for [p(x̃) ←
c � q(ỹ), p1(x̃1) ← c1 � q1(ỹ1)|BinSeq ′]. Then ([p(x̃) ← c � q(ỹ), p1(x̃1) ← c1 �
q1(ỹ1)|BinSeq ′], τ) is a looping pair. The following function works this way.

loops from dict(p(x̃)← c � q(ỹ), Dict):

in: p(x̃)← c � q(ỹ): a binary rule
Dict : a loop dictionary

out: Dict ′: a loop dictionary

1: Dict ′ := Dict
2: for each

(
[p1(x̃1)← c1 � q1(ỹ1)|BinSeq ′], τ ′

)
∈ Dict do

3: if 〈q(ỹ) | c〉 is τ ′-more general than 〈p1(x̃1) | c1〉 then

4: BinSeq := [p(x̃)← c � q(ỹ), p1(x̃1)← c1 � q1(ỹ1)|BinSeq ′]
5: τ := a DN set of positions for BinSeq
6: Dict ′ := Dict ′ ∪ {(BinSeq , τ)}
7: return Dict ′

Termination of loops from dict follows from finiteness of Dict (because Dict
is a loop dictionary), provided that we use a terminating algorithm to compute
τ at line 5. Partial correctness follows from the result below.

Theorem 6 (Partial Correctness of loops from dict). Suppose that p(x̃)←
c�q(ỹ) is a binary rule and Dict is a loop dictionary. Then, loops from dict(p(x̃)
← c � q(ỹ),Dict) is a loop dictionary, every element (BinSeq , τ) of which is
such that (BinSeq , τ) ∈ Dict or BinSeq = [p(x̃) ← c � q(ỹ)|BinSeq ′] for some
(BinSeq ′, τ ′) in Dict.

Finally, here is the top-level function for inferring loop dictionaries from a
finite set of binary rules.

infer loop dict(BinProg):

in: BinProg : a finite set of binary rules
out: a loop dictionary

1: Dict := ∅
2: for each p(x̃)← c � q(ỹ) ∈ BinProg do
3: if q = p then
4: Dict := unit loop(p(x̃)← c � q(ỹ),Dict)
5: Dict := loops from dict(p(x̃)← c � q(ỹ),Dict)
6: return Dict

Theorem 7 (Correctness of infer loop dict). Let BinProg be a finite set
of binary rules. Then, infer loop dict(BinProg) terminates and returns a loop
dictionary, every element (BinSeq , τ) of which is such that BinSeq ⊆ BinProg.

Proof. By Theorem 5 and Theorem 6. ut

5.3 Inferring Looping Conditions

Finally, we present an algorithm which infers classes of left looping atomic queries
from the text of a given program. The classes we consider are defined by a pair
(S, τ) which finitely denotes the possibly infinite set [S]τ :

Definition 12. Let S be an atomic query and τ be a set of positions. Then [S]τ

denotes the class of atomic queries defined as:

[S]τ
def
= {S′ : an atomic query | S′ is τ -more general than S} .

Once each element of [S]τ left loops w.r.t. a CLP(C) program, we get a looping
condition for that program:

Definition 13 (Looping Condition). Let P be a CLP(C) program. A looping
condition for P is a pair (S, τ) such that each element of [S]τ left loops w.r.t. P .

Looping conditions can be easily infered from a loop dictionary. It suffices
to consider the property of looping pairs stated by Proposition 3. The follow-
ing function computes a finite set of looping conditions for any given CLP(C)
program.

infer loop cond(P , max):

in: P : a CLP(C) program
max : a non-negative integer

out: a finite set of looping conditions for P

1: L := ∅
2: Dict := infer loop dict(T β

P ↑ max)
3: for each ([p(x̃)← c � q(ỹ)|BinSeq], τ) ∈ Dict do
4: L := L ∪ {(〈p(x̃) | c〉, τ)}
5: return L

A call to infer loop cond(P , max) terminates for any program P and any
non-negative integer max because, as T β

P ↑ max is finite, at line 2 the call
to infer loop dict terminates and the loop at line 3 has a finite number of
iterations (because, by correctness of infer loop dict, Dict is finite.) From
some preliminary experiments we made over 50 logic programs, we find that the
maximum value for max is 4. Partial correctness of infer loop cond follows
from the next theorem.

Theorem 8 (Partial Correctness of infer loop cond). If P is a program
and max a non-negative integer, then infer loop cond(P,max) is a finite set
of looping conditions for P .

Proof. By Proposition 3, Theorem 7 and the Observing Termination Theorem 1.
ut

We point out that correctness of infer loop cond is independent of whether the
predicate symbols are analysed according to a topological sort of the strongly
connected components of the call graph of P . However, inference of looping
classes is much more efficient if predicate symbols are processed bottom-up.
Precision issues could be dealt with by comparing non-termination analysis with
termination analysis, as in [13].

Example 17. Consider the CLP(Rlin) program SUM:

sum(X1, X2) ← X1 > 0 ∧ Y1 = X1 ∧ Y2 = 1 ∧ Z1 = X1 − 1 ∧ X2 = Y3 + Z2 �
pow2(Y1, Y2, Y3), sum(Z1, Z2)

pow2(X1, X2, X3) ← X1 ≤ 0 ∧ X2 = X3 ��
pow2(X1, X2, X3) ← X1 > 0 ∧ Y1 = X1 − 1 ∧ Y2 = 2 ∗ X2 ∧ Y3 = X3 �

pow2(Y1, Y2, Y3)

The set T β
SUM ↑ 1 includes:

br1 := sum(X1, X2) ← X1 > 0 ∧ Y1 = X1 ∧ Y2 = 1 ∧ Z1 = X1 − 1∧
X2 = Y3 + Z2 � pow2(Y1, Y2, Y3)

br2 := pow2(X1, X2, X3) ← X1 > 0 ∧ Y1 = X1 − 1 ∧ Y2 = 2 ∗ X2 ∧ Y3 = X3 �
pow2(Y1, Y2, Y3)

A call to unit loop(br2, ∅) returns Dict1 := {([br2], τ2)} where τ2 = 〈pow2 7→
{2, 3}〉. A call to loops from dict(br1,Dict1) returns Dict1 ∪ {([br1, br2], τ1)}
where τ1 = 〈sum 7→ {2}, pow2 7→ {2, 3}〉. Hence, a call to infer loop cond(SUM,
1) returns the looping conditions (〈sum(X1, X2) | c1〉, τ1) and (〈pow2(X1, X2, X3) | c2〉,
τ2) where c1 and c2 are the constraints of br1 and br2 respectively. ut

6 Conclusion

We have proposed a self contained framework for non-termination analysis of
constraint logic programs. As usual [9], we were able to give simpler definitions
and proofs than in the logic programming setting. Also, starting from an opera-
tional definition of derivation neutrality, we have given a new equivalent logical
definition. Then, by reexamining the syntactic criterion of derivation neutrality
that we proposed in [13], we have proved that this syntactic criterion can be
considered as a correct and complete implementation of derivation neutrality.

Acknowledgements

We thank Mike Codish for some useful comments on a previous version of this
paper.

References

1. K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and
Databases, pages 293–322. Plenum Press, New York, 1978.

2. M. Codish and C. Taboch. A semantic basis for the termination analysis of logic
programs. Journal of Logic Programming, 41(1):103–123, 1999.

3. D. De Schreye, M. Bruynooghe, and K. Verschaetse. On the existence of non-
terminating queries for a restricted class of Prolog-clauses. Artificial Intelligence,
41:237–248, 1989.

4. D. De Schreye and S. Decorte. Termination of logic programs : the never-ending
story. Journal of Logic Programming, 19-20:199–260, 1994.

5. D. De Schreye, K. Verschaetse, and M. Bruynooghe. A practical technique for
detecting non-terminating queries for a restricted class of Horn clauses, using di-
rected, weighted graphs. In Proc. of ICLP’90, pages 649–663. The MIT Press,
1990.

6. M. Gabbrielli and R. Giacobazzi. Goal independency and call patterns in the
analysis of logic programs. In Proceedings of the ACM Symposium on applied
computing, pages 394–399. ACM Press, 1994.

7. S. Genaim and M. Codish. Inferring termination condition for logic programs using
backwards analysis. In Proceedings of Logic for Programming, Artificial intelligence
and Reasoning, Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2001.

8. J. Jaffar and J. L. Lassez. Constraint logic programming. In Proc. of the ACM
Symposium on Principles of Programming Languages, pages 111–119. ACM Press,
1987.

9. J. Jaffar, M. J. Maher, K. Marriott, and P. J. Stuckey. The semantics of constraint
logic programs. Journal of Logic Programming, 37(1-3):1–46, 1998.

10. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.
11. F. Mesnard. Inferring left-terminating classes of queries for constraint logic pro-

grams by means of approximations. In M. J. Maher, editor, Proc. of the 1996 Joint
Intl. Conf. and Symp. on Logic Programming, pages 7–21. MIT Press, 1996.

12. F. Mesnard and U. Neumerkel. Applying static analysis techniques for inferring
termination conditions of logic programs. In P. Cousot, editor, Static Analysis
Symposium, volume 2126 of Lecture Notes in Computer Science, pages 93–110.
Springer-Verlag, Berlin, 2001.

13. F. Mesnard, E. Payet, and U. Neumerkel. Detecting optimal termination condi-
tions of logic programs. In M. Hermenegildo and G. Puebla, editors, Proc. of the
9th International Symposium on Static Analysis, volume 2477 of Lecture Notes in
Computer Science, pages 509–525. Springer-Verlag, Berlin, 2002.

14. F. Mesnard and S. Ruggieri. On proving left termination of constraint logic pro-
grams. ACM Transactions on Computational Logic, pages 207–259, 2003.

15. P. Refalo and P. Van Hentenryck. CLP (Rlin) revised. In M. Maher, editor, Proc. of
the Joint International Conf. and Symposium on Logic Programming, pages 22–36.
The MIT Press, 1996.

16. J. Shoenfield. Mathematical Logic. Addison Wesley, Reading, 1967.

