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Abstract. In this paper, we are interested in the combination of ab-
stract interpretation and interactive theorem proving, which stand at the
opposite ends of the program verification automation spectrum. Our idea
is to take advantage of the respective strengths of these two techniques.
As a first case study, we focus on groundness analysis of logic programs.
Using the proof assistant LPTP (Logic Program Theorem Prover), we
automate the formal certification of groundness invariants generated by
abstract interpretation. We present an experimental evaluation of our
approach by applying it to a set of logic programs. Our experiments are
twofold. On the one hand, to certify groundness invariants we use auto-
mated theorem provers drawing on the theoretical framework of LPTP.
On the other hand, we generate and certify natural deduction proofs of
groundness invariants with the proof checker of LPTP.
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1 Introduction

Abstract interpretation [8] is a tool of choice for the static analysis of program-
ming languages. In practice, abstract interpreters are complex programs and
potentially contain defects, which raises the question of the validity of the com-
puted information [5]. This article describes two possible answers in the context
of groundness analysis of logic programs. Our goal is to automatically certify
groundness properties inferred by bottom-up abstract interpretation. We rely
on the theoretical framework of LPTP (Logic Program Theorem Prover) [17]
and its implementation. On the one hand, we use automated demonstration to
prove our target conjectures expressed in the specification language of LPTP ax-
iomatized in first order logic. On the other hand, we first construct derivations
of the groundness properties by running an implemented completeness theorem
for propositional natural deduction, as natural deduction is the proof format of
LPTP. Then we certify these derivations by using the proof checker integrated
in LPTP.

This article is organized as follow. In Section 2, we introduce some prelim-
inary notions. Section 3 highlights analysis techniques based on abstract inter-
pretation applied to logic programs to infer inter-arguments relations as boolean



relations. In Section 4, we leverage automated theorem proving to generate proofs
of groundness properties expressed in FOF (First Order Form), a well-known
logic language from TPTP (Thousands of Problems for Theorem Provers) [18]
for expressing first-order logic axioms and conjectures. Section 5 describes how
we formulate groundness properties in LPTP syntax directly from the invari-
ants inferred by abstract interpretation. We present an algorithm to construct
a derivation in natural deduction for these properties in the theoretical frame-
work of LPTP. To do so, we explicit elements based on the proof by induction
of a propositional formula. Finally, in Section 6, we present an experimental
evaluation of the two approaches on several logic programs.

2 Preliminaries

We refer to [1,13] for the basics of logic programming including SLD resolution
for the operational semantics. We only consider positive logic programs and our
reference semantics is the s-semantics [3], a non-ground semantics of logic pro-
grams. Let P be a positive logic program. Elements of the least fixpoint of the
immediate consequences operator Tp are approximated by abstract compilation,
for instance using a boolean bottom-up implementation of Tp.

We will prove that these elements belong to the non-ground representation of
the least term model Mp of P with LPTP. According to [3], as Mp = lfp(Tp),
these proofs certify that these elements belong to the least fixpoint of Tp for the
s-semantics.

3 Groundness Analysis

Abstract interpretation [8] is a formal method applied to approximate program
semantics by collecting information about data flow for concrete domains, which
can be unbounded when the program is executed. The result of this static anal-
ysis is an abstraction of the program behaviour [7]. Abstract interpretation was
extended to the analysis of logic programs [4,9].

In the context of ¢TI (constraint-based Termination Inference) [15], an ab-
stract interpretation technique named abstract compilation provides approxima-
tions of the analysed program. These approximations are expressed as inter-
arguments relations in the form of boolean relations. We use them to formulate
groundness properties. Indeed, dependencies between variables groundness can
be represented by boolean constraints [2]. For instance, a relation such as “if the
variable Y is instantiated to a ground term, then the variable X is ground” can
be denoted by the boolean constraint y = x. The boolean variable y (resp. x)
represents the instantiation state (ground or possibly not ground) of the variable
Y (resp. X).

Let us consider the logic program P defining the predicate append/3:

append([], Xs, Xs).
append ([X|Xs], Ys, [XIZs]) :-
append(Xs, Ys, Zs).



The analysis of P by abstract interpretation provides the inter-argument de-
pendency relation (z A y) < z. This formula expresses the fact that if the call
append(z, y, z) succeeds, then, after its proof (via SLD-resolution or bottom-up
computation) the third argument z is ground if and only if the first argument x
and the second argument y are ground.

4 Automatic proofs by Automated Theorem Proving

In the mid-90s, Robert F. Stiark showed that for any logic programs P, if gr(t) is
provable, (gr/1 is a predefined predicate of IND(P), the theoretical framework
of LPTP), then t is ground [17]. So gr(t) actually expresses the groundness
of a term t. IND(P) consists of first-order logic axioms associated to P. This
theory includes Clark’s completion [6] and induction along the definition of the
predicates. This guarantee allows us to formulate groundness properties about P
in the specification language of LPTP, whose semantics is the first-order calculus
of classical logic [17].

We follow the methodology introduced in [14] to prove groundness properties
inferred by abstract interpretation. The requirements for proving a property
are the corresponding logic program P (append in our running example) and
the invariant to be certified. We compile P into the FOF version of IND(P).
Moreover, the groundness property to prove and its induction axiom are compiled
as a FOF conjecture. Both this conjecture and IND(P) are stored in a single file.
For instance, for our running example, the conjecture is

fof (’lemma-append3’, conjecture,
! [Xx1,Xx2,Xx3] : ( append_succeeds(Xx1,Xx2,Xx3)
=> ( ( ( C ( gr(Xx3) & gr(Xx2) ) & gr(Xx1) ) |
(7" (gr(Xx3) ) & gr(Xx2) ) & ~ (grXx1) ) ) ) |
(" (gr(Xx3) ) &~ (gr(Xx2) ) ) & grXx1) ) ) |
( (7 (gr(Xx3) ) & ~ (gr(Xx2) ) ) & ~ (gr(Xx1) ) ) ) )

Then we apply both Vampire [12] and E Theorem Prover [16] to the FOF
file to try to prove the conjecture within a time limit. So we get either a positive
answer or a "don’t know" answer. We also have a trace of the positive answer.
This trace is not expressed as a LPTP derivation but in a FOF format. The
results of our experiments on several logic programs are reported in Sect. 6.

5 Automatic Generation of LPTP Proofs

We consider a groundness property formula provided by ¢TI for a pure logic pro-
gram P. In [14], we showed IND(P) (see [17]) allows us the generate an induction
axiom for a directly recursive predicate and a formula to prove. For example,
let us prove Lemma append3 gr below that is inferred by abstract interpre-
tation, where the expression Sappend(x1,xs,x3) expresses success of the goal



append (1, T2, r3) and the unary predicate gr of LPTP expresses groundness of
its argument.

Lemma [append3 gr] V1,22, x3 (S append(z1,22,23) — (gr(zs) A gr(za) A
gr(@1))V (mgr(zs) Agr(zz) A—gr(z1))V (mgr(zs) A—gr(z2) Agr(x1)) V (—gr(zs) A
—gr(z2) A —gr(z1))).

Axiom II of IND(P), whose application is hard-coded in LPTP, allows one
to introduce equivalences involving gr applied to compound terms:

Axiom IT of IND(P) for gr [17]
4. gr(c) [if ¢ is a constant]
S.gr(x) A A gr(am) < gr(f(xz1,...,zm)) [f is m-ary]

The automatic translation by LPTP of the code of append/3 into an induc-
tive definition results in the formula:

v,y 2 (Sappend(z,y,2) > (x = [ Az =)V
Fug, zs, zs(x = [vg|as] A z = [vg|2s] A S append(zs, y, zs)))

The general form of the groundness property to prove is an implication whose
conclusion is in clausal disjunctive normal form. It is derived from the groundness
formula inferred by cTI:

Va1, &n SR(x1, ..., 2,) — \/ /\gr_ngr(xj)

where R is a n-ary user-defined predicate and gr_ngr(x;) denotes either gr(z;)
or —gr(x;).

We implement an algorithm inspired by the proof of the next proposition,
which is used in [11] to show the completeness of natural deduction for proposi-
tional logic.

Proposition 1 (Prop. 1.38 of [11]). Let ¢ be a formula such that p1,...,pn
are its only propositional atoms. Let | be any line number in ¢’s truth table. For
all 1 < i <mn, let p; be p; if the entry in line | of p; is True, otherwise p; is —p;.
Then we have

1. p1,...,Pn b @ is provable if the entry for ¢ in line l is True.
2. P1,...,Pn b @ is provable if the entry for ¢ in line | is False.

This result is proved by structural induction on ¢. Taking our inspiration from it,
we replace the propositional variables in the groundness formula to prove by calls
to gr. As LPTP is implemented in Prolog, we reuse its syntax, its declarative
operator S for predicate success and its tactics to mechanize the generation of a
complete proof term.

First of all, we enumerate the variables of the target groundness formula ¢.
The idea is to generate a proof matching the lines of the truth table of ¢. We note



that the number of lines of the table is 2™, where n is the number of variables. We
implemented the procedure prove_with_premises, given in pseudo-code below.
It returns a derivation (Deriv) from a groundness property (Phi), some premises
(Premises) and a truth value (TruthValue). It considers all possible relations
(groundness gr, negation ~, conjunction &, disjunction \/ and implication =>)
and contains recursive calls on the sub-formulas of Phi (see Form, Phil and Phi2
below). The procedure assemble_derivation transforms the groundness sub-
formulas by application of Axiom II of IND(P) before assembling the groundness
formula derivation in LPTP syntax from the sole Premises passed as argument
for the formula truth value (TruthValue) to be shown.

prove_with_premises(Phi, TruthValue, Premises)

switch Phi

case gr(Form)

Deriv := assemble_derivation(gr(Form), TruthValue, Premises)
case ~ Form :

Deriv := prove_with_premises(Form, ~ TruthValue, Premises)
case Phil & Phi2 :

D1 := prove_with_premises(Phil, TruthValue, Premises)

D2 := prove_with_premises(Phi2, TruthValue, Premises)

Deriv := concat(D1, D2)
case Phil \/ Phi2 :
D1 := prove_with_premises/(
Phil, TruthValue, concat(~ Phi2, Premises)

)
D2 := prove_with_premises(

Phi2, TruthValue, concat(™ Phil, Premises)
)

Deriv := concat(D1, D2)
case Phil => Phi2 :
Deriv := prove_with_premises/(
Phi2, TruthValue, concat(Phil, Premises)
)

return Deriv

We apply the disjunction elimination rule in a systematic way from the 2"
cases we get. This can be translated directly in LPTP by the recursive applica-
tion of the cases tactic for disjunctions expressing that a variable is ground or
free. The target groundness formula ¢ is reduced by syntactic decomposition to
produce a derivation. Hence, the sequents we get depend solely on the premises
originating from the successive application of the law of excluded middle for each
variable. As a result, we cover all 2" groundness cases for all variables at stake
by grouping these sequents altogether.

Back to our running example, the induction axiom schema for append/3 and
the groundness formula provided by abstract interpretation allow us to generate
a proof of Lemma append3 gr with two gaps (GAP), one in the base case and



one in the induction step. We apply the algorithm described above to fill these
gaps. In both cases, we aim at proving a tautology (for all possible variables
groundness) in disjunctive normal form. Beginning with the base case (between
the two horizontal lines below), we observe that gr([]) is true by application
of Axiom I1.4 of IND(P). Moreover, we find the unique variable x4, so two
cases must be considered depending on its groundness. The algorithm previously
described provides the following excerpt after filling the gap in the base case.

Lemma [append3 gr] Va1, xo, 23 (S append(x1, g, 23) —
(gr(xs) A gr(z2) A gr(z1)) V (mgr(zs) A gr(z2) A —gr(z1)) V
(mgr(xs) A —gr(z2) A gr(z1)) V (mgr(xs) A —gr(z2) A —gr(z1))).
Proof.
Induction : Vay,xe, z3 (S append(z1, x2,x3) —
(gr(zs) A gr(x2) A gr(z1)) V (mgr(xs) A gr(ze) A —gr(z1)) V
(mgr(zs) A —gr(ze) A gr(z)) V (mgr(xs) A —gr(z2) A —gr(z1))).

Hypothesis, : none.
Case,: gr(ws). gr(za) A gr(ws). gr(za) A gr(za) A gr([])-

(97‘(334) A gr(m) Agr() V (mgr(za) A gr(za) A —gr([]))-
(g7(z4) A gr(za) Agr([]) V (mgr(za) A gr(za) A—gr([) V
(—gr(za) A —gr(zy ) A gr([]))-
(gr(za) A gr(u) gr([] )V (mgr(wa) A gr(zs) A —gr([]) V

( (mgr(za) A —gr(za) A=gr([]))-

(mgr(za) A —gr(za) Agr([]) v
Case,: —gr(za). ngr(zg) A gr(zy).
ﬂgT(334) —gr(za)
(mgr(za) A gr(xa)
(gr(za) A gr(za) A gr([]

(D) V (=gr(za) A =gr(za) A gr([])).
)V (mgr(za) A gr(za) A —gr([]) V
(mgr(xa) Amgr(za) Agr([])) V (mgr(za) A—gr(zs) A —gr(]])).
Hence,, in all cases: (gr(w4) Agr(za) Agr([]))V (mgr(za) Agr(za) A=gr([]) V
(mgr(za) A =gr(@a) Agr([]) V (mgr(za) A —gr(za) A —gr(]])).
Conclusion, : (gr(za) Agr(za) Agr(]]) V (mgr(zg) A gr(zs) A—gr(]]) V
(mgr(xa) A—gr(xa) Agr([])) V (mgr(za) A —gr(za) A —gr(]])).

Hypothesis : Va5, z6, 27, 73 (gr(xg) A gr(zr) A gr(xze) V
~gr(xzs) A gr(zr) A —gr(ze) V —gr(zs) A —gr(zz) A gr(ze) V
—gr(xs) A —gr(z7) A —gr(ze) and S append(xg, 27,25)). L by GAP.
Conclusion : (gr([zs|zs]) A gr(zz) A gr([zs|zs])) V (mgr([zs|zs]) A gr(zr) A
~gr([s|ze])) V (mgr([ws|@s]) A —gr(@r) Agr([as|ae])) V (mgr([ws|@s]) A =gr(z7) A
~gr([zs|zg])). O
We apply the same technique to the induction step after enumerating its
variables (x5, xg, 27, 2g). The complete derivations are publicly available online®.
Finally, we check the generated proof term with LPTP to certify the derivations
that we have built.

! github.com/atp-lptp /automated-certification-of-logic-program-groundness-analysis



6 Experimentation
We experimented our methodology using programs from the LPTP library, to

which other programs were added, see Table 1, sorted in ascending order of
number of lines of code in LPTP format (column LOC).

Table 1. Experimental results

Inf. | V/E | FOF |Deriv.| Cert.

Prog. Prop.|Vars (ms) (II(S) LOC | (ms) | (ms) LOC
member.pl 1 3 3 3 66 6 7 269
for.pl 2 4 |4 8 243 8 6 273
addmul.pl 2 6 4 18 1412 |9 16 911
ackermann.pl 1 3 4 17 1972 |8 16 949
fib.pl 2 5 5 19 1768 |10 14 970
nat.pl 4 8 6 166 |2383 |11 16 975
int.pl 6 11 |10 |55 6386 |16 19 1049
split.pl 1 3 9 10 974 14 28 1123
suffix.pl 4 10 |12 |17 554 18 22 1203
list.pl 5 12 |19 |2456 |6760 |26 67 2873
derivDLS.pl 1 3 20 [12306|4705 |263 |146 3931
reverse.pl 4 10 |20 (493 [3451 |43 93 3958
averagel.pl 3 7 7 22 752 17 116 8846
permutation.pl 7 19 |22 |215 |2864 |36 216 9335
transitiveclosure.pl|6 18 |43 (105 [10220 |541 |654 |14213
sort.pl 9 22 |72 |12755|867612(319 [12187|71067

We used SWI-Prolog version 9.2.2 and an Apple MacBook Pro M2 running
macOS Sonoma 14.6.1. For each program (column Prog.), we measured the num-
ber of groundness properties inferred by ¢TI (column Prop.), the total number
of variables that these properties contain (column Vars) and the time it takes
for ¢TI to compute them (column Inf.). Using the methodology described in
Sect. 4 (without proof reconstruction in LPTP format), we successfully certified
all these properties automatically using Vampire (version 4.9) and E Theorem
Prover (version 3.1), with a time limit of 1 min. The shortest certification time
performed by either Vampire or E Theorem Prover has been reported in column
V/E. The number of lines of the proofs in FOF format is provided in column
FOF LOC. We also applied the technique presented in Sect. 5. We measured the
time required to construct the groundness properties proof (column Deriv.) and
the time to certify their derivations with LPTP (column Cert.).

We didn’t find any wrong invariant from this limited experiment. Such a
case would result in a timeout in the V/E column and a failure to construct the
LPTP derivation for the wrong invariant.

We observe that the number of lines in the FOF format proofs (column FOF
LOC) ranges from comparable to up to an order of magnitude greater than the
number of lines of code in LPTP format (column LOC). Moreover, the space



complexity to generate the derivation cases is exponential in the number of
variables occurring in each groundness property. This complexity is one of the
main limitations of our implementation. It originates from the choice of Huth
and Ryan’s algorithm to construct a tautology in natural deduction.

7 Conclusion

Proof assistants like Isabelle with Sledgehammer use tools like cve52 without ab-
stract interpretation. Using such tools participates in saving time when proving
facts by suggesting lemmas and tactics. In order to keep the possibility for users
to check entire proofs, a proof reconstruction mechanism based on certificates
has been introduced [10].

This article illustrated this idea in the context of logic programming. We
combine the advantage of invariants algorithmic generation by abstract inter-
pretation and formal verification offered by an interactive proof assistant. We
have considered two techniques to certify groundness properties. First, we lever-
aged automated theorem provers without guaranteed termination and no proof
in LPTP format. Second, we have used the proof checker integrated within LPTP
by automatically constructing proofs for each groundness property by applying
Huth and Ryan’s algorithm, which always terminates, with a complexity expo-
nential in the number of propositional variables.

More in-depth work is needed to better compare these two techniques. We
would like to take into account negation by failure as well. We aim at reduc-
ing computing time complexity exposed above. Other inter-arguments relations
types, matching other abstract domains and proof procedures, belong to paths
yvet to be explored to show the genericity of our approach.
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