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Abstract. In this short paper, we consider non-looping non-termination
in term rewriting and logic programming. We describe a strict general-
isation of the recurrent pair approach that we introduced previously.
We also present an experimental evaluation of our contribution that we
implemented in our tool NTI.
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1 Introduction

This paper is concerned with non-termination in term rewriting and logic pro-
gramming, where one rewrites terms or sequences of terms according to the
operational semantics described, e.g., in [1, 2]. Rewriting is formalised by binary
relations ⇒r indexed by rules r from a given program and non-termination as
the existence of an infinite rewrite sequence t0 ⇒r1 t1 ⇒r2 · · · . The vast major-
ity of the papers related to this topic provide necessary or sufficient conditions
for the existence of loops, i.e., finite rewrite sequences t0 ⇒r1 · · ·⇒rn tn where
tn satisfies a condition C which entails the possibility of starting again, i.e.,
tn ⇒r1 · · ·⇒rn t2n where t2n also satisfies C, and so on.

In this paper, we rather consider non-looping non-termination, i.e., infinite
rewrite sequences that do not embed any loop. Our contribution is a strict ex-
tension of an approach introduced previously [8, 9] for detecting non-termination
of the form t0 (⇒∗

w1
◦⇒w2) t1 (⇒∗

w1
◦⇒w2) · · · , where w1 and w2 are finite se-

quences of rules. We illustrate it by the following example.

Example 1. Consider the term rewrite system or binary logic program consisting
of the following rules (i.e., pairs of terms):

r1 = (u1, v1) =
(
f(x, s3(y)), f(s2(x), s(y))

)
r2 = (u2, v2) =

(
f(x, s3(0)), f(0, s7(x))

)
Here, x and y are variables and f, s and 0 are function symbols of arity 2, 1 and 0
respectively. Moreover, by sn we mean n successive applications of s. Let ∆ = 2.
We observe that there is a move of s’s between the arguments of f. From u1 to
v1, ∆ occurrences of s are added at the root position of the first argument of f



while ∆ occurrences are removed from the root position of the second one. On
the other hand, suppose that in r2 the term bound to x has the form sm(· · · ).
Then, in v2, the number of occurrences of s at the root position of the second
argument of f is 7 + m = ∆ × 2 + m + 3; so, if m = ∆ × n for some n ∈ N,
then we have 7+m = ∆× (n+2)+3. Therefore, for all naturals n, we have the
infinite rewrite sequence:

f
(
0, s∆×n+3(0)

) n⇒
r1

f
(
s∆×n(0), s3(0)

)
⇒
r2

f
(
0, s∆×(n+2)+3(0)

)
n+2⇒
r1

f
(
s∆×(n+2)(0), s3(0)

)
⇒
r2

f
(
0, s∆×(n+4)+3(0)

)
n+4⇒
r1

· · ·

It has the form t0 (⇒∗
r1 ◦⇒r2) t1 (⇒∗

r1 ◦⇒r2) · · · and does not embed a loop,
because the number of applications of r1 gradually increases. The approach of
this paper detects its existence (see Def. 3 and Cor. 1), contrary to that of [8, 9]
which only considers the case ∆ = 1 (Def. 3 considers any ∆ ∈ N).

The paper is organised as follows. Section 2 provides some basic definitions
and notations, Sect. 3 describes an extension of the recurrent pair approach
introduced in [8, 9], Sect. 4 presents an experimental evaluation, Sect. 5 briefly
introduces related work and Sect. 6 concludes with future work.

2 Preliminaries

We let N denote the set of natural numbers. Let A be a set. Then, A is the set of
finite sequences of elements of A, which includes the empty sequence, denoted as
e. We use the delimiters ⟨ and ⟩ for writing elements of A and juxtaposition to
denote the concatenation operation, e.g., ⟨a0, a1⟩ ⟨a2, a3⟩ = ⟨a0, a1, a2, a3⟩. We
generally denote elements of A using lowercase letters with an overline, e.g., a.

2.1 Binary Relations

A binary relation ϕ on a set A is a subset of A2 = A×A. For all φ ⊆ A2, we let
ϕ ◦ φ denote the composition of ϕ and φ:

ϕ ◦ φ =
{
(a, a′) ∈ A2

∣∣ ∃a1 ∈ A : (a, a1) ∈ ϕ ∧ (a1, a
′) ∈ φ

}
We let ϕ0 be the identity relation and, for any n ∈ N, ϕn+1 = ϕn ◦ ϕ. Moreover,
ϕ+ =

⋃
{ϕn | n > 0} (resp. ϕ∗ = ϕ0 ∪ϕ+) denotes the transitive (resp. reflexive

and transitive) closure of ϕ. A ϕ-chain, or simply chain if ϕ is clear from the
context, is a (possibly infinite) sequence of elements of A such that (a, a′) ∈ ϕ for
any two consecutive elements a, a′ (hence, the empty sequence and the singletons
are chains). For binary relations that have the form of an arrow, e.g., ⇒, we may
write chains a0, a1, . . . as a0 ⇒ a1 ⇒· · · .



2.2 Terms and Substitutions

We use the same definitions and notations as [2] for terms. A signature is a set of
function symbols, each element of which has an arity in N. The 0-ary elements of
a signature are called constant symbols. We denote function symbols by letters
or digits in the sans serif font, e.g., f, 0. . .

Let Σ be a signature and X be a set of variables disjoint from Σ. For m ∈ N,
we let Σ(m) denote the set of all m-ary elements of Σ. The set T (Σ,X) of Σ-
terms over X is defined as: X ⊆ T (Σ,X) and, for all m ∈ N, all f ∈ Σ(m) and
all s1, . . . , sm ∈ T (Σ,X), f(s1, . . . , sm) ∈ T (Σ,X). For all s ∈ T (Σ,X), we let
Var(s) denote the set of variables occurring in s. We use the superscript notation
to denote several successive applications of a unary function symbol, e.g., s3(0)
is a shortcut for s(s(s(0))) and s0(0) = 0.

A T (Σ,X)-substitution (or simply substitution if the set of terms is irrelevant
or clear from the context) is a function θ from X to T (Σ,X) such that θ(x) ̸= x
for only finitely many variables x. The domain of θ is Dom(θ) = {x ∈ X | θ(x) ̸=
x}. We usually write θ as {x1 7→ θ(x1), . . . , xn 7→ θ(xm)} where {x1, . . . , xm} =
Dom(θ) (hence, the identity substitution is written as ∅). A (variable) renaming
is a substitution that is a bijection on X. We let S(Σ,X) denote the set of all
T (Σ,X)-substitutions.

The application of θ ∈ S(Σ,X) to s ∈ T (Σ,X) is denoted as sθ and is defined
as: sθ = θ(s) if s ∈ X and sθ = f(s1θ, . . . , smθ) if s = f(s1, . . . , sm). Application
of θ is extended to finite sequences of terms, i.e., ⟨s1, . . . , sm⟩ θ = ⟨s1θ, . . . , smθ⟩.

The composition of σ, θ ∈ S(Σ,X) is the T (Σ,X)-substitution denoted as σθ
and defined as: for all x ∈ X, σθ(x) = (σ(x))θ. This is an associative operation,
i.e., for all s ∈ T (Σ,X), (sσ)θ = s(σθ). We say that σ is more general than θ if
θ = ση for some η ∈ S(Σ,X).

Let s, t ∈ T (Σ,X). We say that s unifies with t (or that s and t unify) if
sσ = tσ for some σ ∈ S(Σ,X). Then, σ is called a unifier of s and t. Moreover,
σ is called a most general unifier (mgu) of s and t if it is a unifier of s and t
that is more general than all unifiers of s and t. We let mgu(s, t) denote the set
of mgu’s of s and t.

2.3 The Signature Used in the Paper

We regard the symbol e denoting the empty sequence as a special constant
symbol. To simplify the statements of this paper, from now on we fix a signature
Σ and a set H = {□n | n ∈ N\{0}} of constant symbols (called holes) such that
Σ, {e} and H are disjoint from each other. We also fix an infinite countable set
X of variables disjoint from Σ ∪ {e} ∪H. A term is an element of T (Σ,X). Let
n be a positive integer. An n-context is an element of T (Σ∪H,X) that contains
occurrences of □1, . . . , □n but no occurrence of another hole. For all n-contexts
c and all s1, . . . , sn ∈ T (Σ ∪ H,X), we let c(s1, · · · , sn) denote the element of
T (Σ ∪ H,X) obtained from c by replacing all the occurrences of □i by si, for
all 1 ≤ i ≤ n. We use the superscript notation for denoting several successive
embeddings of a 1-context c into itself: c0 = □1 and, for all n ∈ N, cn+1 = c(cn).



Terms are generally denoted by s, t, u, v, variables by x, y and contexts by c,
possibly with subscripts and primes.

2.4 Term Rewriting and Logic Programming

We refer to [2] for the basics of term rewriting and to [1] for those of logic
programming. For the sake of harmonisation, we consider the following notion
of rule that encompasses term rewriting and logic programming rules (in term
rewriting, usually the right-hand side of a rule is a term).

Definition 1. A program is a subset of T (Σ,X) × T (Σ,X), every element of
which is called a rule. A rule (u, v) is binary if v is empty or is a singleton.
We let ℜ denote the set of binary rules. For the sake of readability, we omit
the delimiters ⟨ and ⟩ in the right-hand side of a binary rule, which amounts to
considering that ℜ ⊆ T (Σ,X)× (T (Σ,X) ∪ {e}).

Given a rule (u, v), we let [(u, v)] = {(uγ, vγ) | γ is a renaming} denote its
equivalence class modulo renaming. Moreover, for all sets of rules U and se-
quences of terms S, we write r ≪S U to denote that r is a sequence of elements
of U variable disjoint from S and from each other.

The rules of a program allow one to rewrite terms and finite sequences of
terms. This is formalised by the following binary relations.

Definition 2. For all programs P and all ⇒ ∈ {→,⇝, ↪→}, we let ⇒P =⋃
{⇒r | r ∈ P} where, for all r ∈ P ,

→
r
=

{(
s, c(vθ)

)
∈ T (Σ,X)2

∣∣∣∣ r = (u, ⟨v⟩), s = c(uθ), θ ∈ S(Σ,X)
c is a 1-context with exactly one □1

}
⇝
r
=
{(

⟨s⟩ s, (v s)θ
)
∈ T (Σ,X)

2
∣∣∣ ⟨(u, v)⟩ ≪⟨s⟩s [r], θ ∈ mgu(u, s)

}
↪→
r

=
{(

uθ, vθ
)
∈ ℜ

∣∣ r = (u, v) ∈ ℜ, Var(v) ⊆ Var(u), θ ∈ S(Σ,X)
}

For instance, in Ex. 1, we have Var(v1) ⊆ Var(u1). So, for θ = {x 7→ 0, y 7→
s(x)}, we have u1θ ↪→r1 v1θ where u1θ = f(0, s4(x)) and v1θ = f(s2(0), s2(x)). We
also have u1θ = c(u1θ) and v1θ = c(v1θ) for the 1-context c = □1. Hence, we have
u1θ→r1 v1θ. On the other hand, let u′

1 = f(x′, s3(y)) and v′1 = f(s2(x′), s(y)).
Then, we have ⟨(u′

1, v
′
1)⟩ ≪⟨u1θ⟩ [r1] and θ′ ∈ mgu(u′

1, u1θ) where θ′ = {x′ 7→
0, y 7→ s(x)}. So, we have ⟨u1θ⟩⇝r1 ⟨v′1θ′⟩ where v′1θ

′ = v1θ (in this example,
the sequence s of the definition of ⇝ is empty).

The binary relation →P (resp.⇝P ) corresponds to the operational semantics
of term rewriting (resp. logic programming with the leftmost selection rule). In
the proofs of Sect. 3, we need the closure under substitutions property (Lemma 1
below). Contrary to →P , the relation ⇝P does not satisfy it. This is why we
introduce ↪→P : it satisfies this property and is a restriction of ⇝P to binary
rules (i.e., for all r ∈ P , s ↪→r t implies ⟨s⟩⇝r t where t = e if t = e and t = ⟨t⟩
otherwise, see Lemma 2.15 of [9]). We also note that ↪→P is a restriction of →P

(i.e., ↪→r ⊆ →r for all r ∈ P ) where one rewrites terms at the root position only.



Lemma 1. Let P be a program and ⇒ ∈ {→, ↪→}. Then, ⇒P is closed under
substitutions, i.e., s⇒P t implies sθ⇒P tθ for all terms s, t and substitutions θ.

In the rest of this paper, given a program P , we only consider the relations
→P and ↪→P . In logic programming with the leftmost selection rule, one may
consider the binary unfolding [3]of P , denoted as binunf (P ), which is a set of
binary rules obtained from P that enjoys the following property:

Theorem 1 ([3]). Let P be a program and s be a sequence of terms. Then,
there is an infinite ⇝P -chain that starts from s if and only if there is an infinite
⇝binunf (P )-chain that starts from s.

Hence, the existence of an infinite ↪→binunf (P )-chain that starts from a term s
implies that of an infinite ⇝binunf (P )-chain that starts from ⟨s⟩, which itself
implies that of an infinite ⇝P -chain that starts from ⟨s⟩.

3 Extending Recurrent Pairs

Let P be a program and ⇒ ∈ {→, ↪→}. In this section, we describe a technique
for detecting infinite ⇒P -chains using a strict extension of recurrent pairs [8,
9]. For all w ∈ P , we let ⇒w be the identity relation if w is empty and ⇒w =
(⇒r1 ◦ · · · ◦ ⇒rn) if w = ⟨r1, . . . , rn⟩ with n ≥ 1. So, any finite non-empty ⇒P -
chain has the form s⇒w t for some s, t ∈ T (Σ,X) and some w ∈ P . Moreover,
for all m,n ∈ N, we let [n]m be the set of integers greater than n that are
congruent to n modulo m, i.e., [n]m = {n+ k ×m | k ∈ N}.
Definition 3. Let P be a program and ⇒ ∈ {→, ↪→}. A recurrent pair for ⇒P

is a pair (u1 ⇒w1
v1, u2 ⇒w2

v2) of finite non-empty ⇒P -chains such that

– u1 = c1(x, c
m1
2 (y)) and v1 = c1(c

n1
2 (x), cn2

2 (y)),
– u2 = c1(x, c

m2
2 (s)) and v2 = c1(c

n3
2 (t), cn4

2 (x)) with t ∈ {s, x},
– c1 is a 2-context, c2 is a 1-context, x, y ∈ X, s ∈ T (Σ,X),
– x ̸= y and {x, y} ∩Var(c1, c2, s) = ∅,
– {m1,m2, n1, n2, n3, n4} ⊆ N,
– n2 ≤ m1, n2 ≤ m2 and {n1, n3, n4 −m2} ⊆ [0]∆ where ∆ = (m1 − n2).

This definition is a strict generalisation of that provided in [9], which itself is
a strict generalisation of that of [8] (we always have (m1, n2,m2) = (1, 0, 0) in [8]
and (m1, n2) = (1, 0) in [9]). Intuitively, u1 ⇒w1 v1 and u2 ⇒w2 v2 are “mutually
recursive” ⇒P -chains where occurrences of context c2 are moved between □1 and
□2 in c1 (see Lemma 2 and Lemma 4 below). In some very special situations, the
existence of a recurrent pair implies that of a loop, e.g., if n3 = 0 and m2 = n4

then we have c1(s, c
m2
2 (s))⇒w2

c1(s, c
m2
2 (s))⇒w2

· · · . But this is not always the
case: in this section, we prove that the existence of a recurrent pair implies that
of an infinite (⇒∗

w1
◦⇒w2)-chain (see Cor. 1).

Example 2. In Ex. 1, let ⇒ ∈ {→, ↪→} and P = {r1, r2}. We have u1 ⇒r1 v1 and
u2 ⇒r2 v2. Moreover, the pair (u1 ⇒r1 v1, u2 ⇒r2 v2) is recurrent for ⇒P with
c1 = f(□1,□2), c2 = s(□1), s = t = 0, m1 = m2 = 3, (n1, n2, n3, n4) = (2, 1, 0, 7)
and ∆ = (m1 − n2) = 2.



Example 3. Let ⇒ ∈ {→, ↪→} and P be the program consisting of the rules

r1 = (u1, v1) =
(
f(x, s2(y)), f(x, s(y))

)
r2 = (u2, v2) = (f(x, s(0)), f(s(x), s(x)))

We have u1 ⇒r1 v1 and u2 ⇒r2 v2. Moreover, the pair (u1 ⇒r1 v1, u2 ⇒r2 v2) is
recurrent for ⇒P with c1 = f(□1,□2), c2 = s(□1), s = 0, t = x, (m1,m2) =
(2, 1), (n1, n2, n3, n4) = (0, 1, 1, 1) and ∆ = (m1 − n2) = 1.

Example 4. Let ⇒ ∈ {→, ↪→} and P be the program consisting of the rules

r1 = (u1, v1) =
(
f(x, s7(y)), f(s3(x), s4(y))

)
r2 = (u2, v2) =

(
f(x, s6(0)), f(x, s11(x))

)
We have u1 ⇒r1 v1 and u2 ⇒r2 v2. Moreover, the pair (u1 ⇒r1 v1, u2 ⇒r2 v2) is
recurrent for ⇒P with c1 = f(□1,□2), c2 = s(□1), s = s(0), t = x, (m1,m2) =
(7, 5), (n1, n2, n3, n4) = (3, 4, 0, 11) and ∆ = (m1 − n2) = 3. Note that if we
choose s = 0 instead then we get m2 = 6 and we have (n4 −m2) ̸∈ [0]∆.

The next statements are parametric in a program P , in ⇒ ∈ {→, ↪→} and in
a recurrent pair for ⇒P , with the notations of Def. 3 as well as this new one,
introduced for the sake of readability:

Definition 4. For all m,n ∈ N, c1(m,n) denotes the term c1(c
m
2 (s), cn2 (s)).

First, we introduce a couple of technical lemmas stating properties of the
relations ⇒w1

and ⇒w2
. Their proofs are based on the fact that → and ↪→ are

closed under substitutions (see Lemma 1).

Lemma 2. For all m,n ∈ N with m1 ≤ n, we have

c1(m,n)⇒
w1

c1(m+ n1, n−∆)

Proof. Let m,n ∈ N with m1 ≤ n. Then, c1(m,n) = c1(c
m
2 (s), cn2 (s)) = u1θ

where θ = {x 7→ cm2 (s), y 7→ cn−m1
2 (s)}. So, as u1 ⇒w1 v1, by Lemma 1 we have

c1(m,n)⇒w1 v1θ where v1θ = c1
(
cm+n1
2 (s), cn2+n−m1

2 (s)
)
= c1(m+n1, n2+n−

m1), where n2 + n−m1 = n−∆. ⊓⊔

By iterating the application of Lemma 2, one gets the following result.

Lemma 3. For all m ∈ N and n ∈ [m2]∆, there exists k ∈ N such that

c1(m,n)
k⇒
w1

c1(m+ k × n1,m2)

Proof. Let m ∈ N and n ∈ [m2]∆. Then, we have n = m2 + k∆ for some k ∈ N.

– Suppose that m1 ≤ m2. Then, we have m1 ≤ m2 ≤ n. Therefore, one can
apply Lemma 2 k times to get c1(m,n)⇒k

w1
c1(m + k × n1, n − k∆), with

(n− k∆) = m2.



– Suppose that m2 < m1.
• If k = 0 then n = m2 and c1(m,n)⇒k

w1
c1(m+ k × n1,m2).

• Otherwise, m2+∆ = m2+(m1−n2) = m1+(m2−n2), i.e., m2+∆−m1 =
m2−n2. But, as n2 ≤ m2, we have 0 ≤ (m2−n2). So, 0 ≤ (m2+∆−m1),
i.e., m1 ≤ (m2 +∆). Consequently, we have m2 < m1 ≤ (m2 +∆) ≤ n.
So, one can apply Lemma 2 k times to get c1(m,n)⇒k

w1
c1(m + k ×

n1, n− k∆), with (n− k∆) = m2. ⊓⊔

Lemma 4. For all m ∈ N, we have c1(m,m2)⇒w2
c1(n3 + m′, n4 + m) where

m′ = 0 if t = s and m′ = m if t = x.

Proof. Let m ∈ N. We have c1(m,m2) = c1(c
m
2 (s), cm2

2 (s)) = u2{x 7→ cm2 (s)}.
So, as u2 ⇒w2

v2, by Lemma 1 we have c1(m,m2)⇒w2
v2{x 7→ cm2 (s)}.

– If t = s then v2{x 7→ cm2 (s)} = c1(c
n3
2 (s), cn4+m

2 (s)) = c1(n3, n4 +m).
– If t = x then v2{x 7→ cm2 (s)} = c1(c

n3+m
2 (s), cn4+m

2 (s)) = c1(n3+m,n4+m).
⊓⊔

By combining Lemma 3 and Lemma 4, one gets the next proposition.

Proposition 1. For all m ∈ [0]∆ and n ∈ [m2]∆, there exist m′ ∈ [0]∆ and
n′ ∈ [m2]∆ such that c1(m,n) (⇒∗

w1
◦⇒w2) c1(m

′, n′).

Proof. Let m ∈ [0]∆ and n ∈ [m2]∆. By Lemma 3, there exists k ∈ N such that
c1(m,n)⇒k

w1
c1(l,m2) and l = m+ k × n1. By Lemma 4, c1(l,m2)⇒w2

c1(n3 +
l′, n4+ l) where l′ = 0 if t = s and l′ = l if t = x. Therefore, for m′ = n3+ l′ and
n′ = n4 + l, we have c1(m,n) (⇒k

w1
◦⇒w2

) c1(m
′, n′). We note that m′ ∈ [0]∆

because {m,n1, n3} ⊆ [0]∆. Moreover, (n4−m2) ∈ [0]∆ implies that n4 ∈ [m2]∆;
hence, as l ∈ [0]∆ (because {m,n1} ⊆ [0]∆), we have (n4 + l) ∈ [m2]∆, i.e.,
n′ ∈ [m2]∆. ⊓⊔

The main result of this paper is a straightforward consequence of Prop. 1:

Corollary 1. Let P be a program, ⇒ ∈ {→, ↪→} and (u1 ⇒w1
v1, u2 ⇒w2

v2) be
a recurrent pair for ⇒P , with the notations of Def. 3. Then, for all m ∈ [0]∆
and n ∈ [m2]∆, the term c1(m,n) starts an infinite (⇒∗

w1
◦⇒w2)-chain.

This result implies the existence of infinite chains in the above examples. Each
of these chains does not embed any loop because the number of applications of
r1 gradually increases.

Example 5. In Ex. 1-2, we have the following infinite (⇒∗
r1 ◦⇒r2)-chain:

c1(0,m2)︷ ︸︸ ︷
f(0, s3(0)) (

0⇒
r1

◦⇒
r2
) f(0, s7(0))

2⇒
r1

f(s4(0), s3(0))⇒
r2

f(0, s11(0))
4⇒
r1

· · ·

It corresponds to the case n = 0 in Ex. 1.



Example 6. In Ex. 3, we have the following infinite (⇒∗
r1 ◦⇒r2)-chain:

c1(0,m2)︷ ︸︸ ︷
f(0, s(0)) (

0⇒
r1

◦⇒
r2
) f(s(0), s(0)) (

0⇒
r1

◦⇒
r2
) f(s2(0), s2(0))

1⇒
r1

f(s2(0), s(0))⇒
r2

f(s3(0), s3(0))
2⇒
r1

· · ·

Example 7. In Ex. 4, we have the following infinite (⇒∗
r1 ◦⇒r2)-chain:

c1(0,m2)︷ ︸︸ ︷
f(s(0), s6(0)) (

0⇒
r1

◦⇒
r2
) f(s(0), s12(0))

2⇒
r1

f(s7(0), s6(0))⇒
r2

f(s7(0), s18(0))
4⇒
r1

· · ·

4 Experimental Evaluation

We have implemented the approach of Sect. 3 in our tool NTI for term rewrite
systems (TRSs) and logic programs (LPs). More precisely, NTI unfolds the pro-
gram under analysis (using a user-provided time limit to stop this possibly in-
finite process) and tries to detect pairs of unfolded rules ((u1, v1), (u2, v2)) that
satisfy Def. 3. Since we started to work on this topic a few years ago, we have
added several examples of non-looping non-terminating TRSs and LPs to the
TPDB.1 They are all similar to the programs of Ex. 1-4. In Table 1, we re-
port the results of the analysers participating in the International Termination
Competition2 that are capable of detecting non-looping non-terminating TRSs
(NTI’24 refers to the version of NTI that implements the approach of this paper).
We point out that AProVE and NTI are the only two tools that participate in
the “logic programming” category of the competition and that AProVE is not
able to detect non-termination of LPs. We note that NTI’24 is the only tool that
succeeds on all benchmarks. Our results can be reproduced using our tool and
the benchmarks available online.3

5 Related Work

Apart from [8, 9], we are aware of only a few papers dealing with non-looping non-
termination: [7, 12] in the field of string rewriting, [4, 5, 11, 12] in term rewriting
and [10] in logic programming. How all these approaches are related to ours is
an open question that we leave for future work.

6 Conclusion

We have presented a natural, strict, generalisation of the recurrent pairs of [8,
9] to encompass a broader range of infinite rewrite sequences, specifically those
1 Termination Problem Data Base: http://termination-portal.org/wiki/TPDB
2 http://termination-portal.org/wiki/Termination_Competition
3 https://github.com/etiennepayet/nti



Table 1. Results of the Termination Competition 2024 on the TRSs and LPs we added
to the TPDB (time limit = 300 seconds, see https://termcomp.github.io/Y2024/). The
last column on the right gives the values of ∆ for the recurrent pairs found by NTI.

Directory of the TPDB AProVE [6] AutoNon [5] NTI’23 [9] NTI’24 ∆

TRS_Standard/payet_21 0/3 3/3 3/3 3/3 {1}
TRS_Standard/Payet_23 0/10 0/10 10/10 10/10 {1}
TRS_Standard/Payet_24 1/5 0/5 0/5 5/5 {1, 2, 3, 5}

Logic_Programming/Payet_22 0/5 - 4/5 5/5 {1}
Logic_Programming/Payet_23 0/9 - 9/9 9/9 {1}
Logic_Programming/Payet_24 0/4 - 0/4 4/4 {2, 3, 5}

where ∆ can be any natural number, rather than being restricted to 1. On the
theoretical side, this leads to the definition of a wider class of non-terminating
behaviours, compared to [8, 9]. On the practical side, this allows the detection
of infinite rewrite sequences that were not detectable by previous approaches.
We still have to investigate whether these infinite sequences correspond to situ-
ations arising in real programs or in programs introduced by other sources than
ourselves (in the TPDB, our extension only solves problems that we specifically
added to illustrate our contribution, contrary to the approach of [8, 9] that solves
problems from, e.g., [12]).

Future work will also focus on extending our approach to deal with more
general situations, e.g., by considering recurrent tuples with more than two rules
to detect infinite rewrite sequences t0 ↣ t1 ↣ · · · where ↣ has the form
(⇒∗

w1
◦ · · · ◦ ⇒∗

wn−1
◦⇒wn

) for some natural n ≥ 1, some ⇒ ∈ {→, ↪→} and
some finite sequences of rules w1, . . . , wn.

Example 8. Consider the following variant of Ex. 1:

r1 = (u1, v1) =
(
f(x, s3(y), z), f(s2(x), s(y), z)

)
r2 = (u2, v2) =

(
f(x, y, s3(z)), f(x, y, s(z))

)
r3 = (u3, v3) =

(
f(x, s3(0), s3(0)), f(0, s7(x), s7(x))

)
Let ∆ = 2 and ⇒ ∈ {→, ↪→}. For all n ∈ N, we have the infinite rewrite sequence

f
(
0, s∆×n+3(0), s∆×n+3(0)

)
(
n⇒
r1

◦ n⇒
r2
) f

(
s∆×n(0), s3(0), s3(0)

)
⇒
r3

f
(
0, s∆×(n+2)+3(0), s∆×(n+2)+3(0)

)
(
n+2⇒
r1

◦ n+2⇒
r2

) f
(
s∆×(n+2)(0), s3(0), s3(0)

)
⇒
r3

f
(
0, s∆×(n+4)+3(0), s∆×(n+4)+3(0)

)
(
n+4⇒
r1

◦ n+4⇒
r2

) · · ·

It has the form t0 ↣ t1 ↣ · · · where ↣ = (⇒∗
r1 ◦⇒

∗
r2 ◦⇒r3) and it does

not embed any loop, because the number of applications of r1 and r2 gradually



increases. Moreover, it is not a (⇒∗
w1

◦⇒w2
)-chain for some finite sequences of

rules w1 and w2 (see Cor. 1). We observe that the pair (r1, r3) is not recurrent:
if it was then, in r1, the context c1 would be f(□1,□2, z) and, in r3, it would be
f(□1,□2, s

3(0)) or f(□1, s
3(0),□2), which is not possible because these contexts

are different. For the same reasons, the pair (r2, r3) is not recurrent either. Hence,
our approach does not apply to this example.
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