
Guided Unfoldings for Finding Loops in1

Standard Term Rewriting2

[Extended Abstract]3

Étienne Payet4

LIM, Université de La Réunion, France5

etienne.payet@univ-reunion.fr6

Abstract. In this paper, we reconsider the unfolding-based technique7

that we have introduced previously for detecting loops in standard term8

rewriting. We improve it by guiding the unfolding process, using distin-9

guished positions in the rewrite rules. This results in a depth-first compu-10

tation of the unfoldings, whereas the original technique was breadth-first.11

We have implemented this new approach in our tool NTI and compared12

it to the previous one on a bunch of rewrite systems. The results we get13

are promising (better times, more successful proofs).14

Keywords: term rewrite systems, dependency pairs, non-termination, loop, un-15

folding16

1 Introduction17

In [8], we have introduced a technique for finding loops (a periodic, special form,18

of non-termination) in standard term rewriting. It consists in unfolding the term19

rewrite system (TRS) R under analysis and in performing a semi-unification [7]20

test on the unfolded rules for detecting loops. The unfolding operator UR which21

is applied processes both forwards and backwards and considers every subterm22

of the rules to unfold, including variable subterms.23

Example 1. Let R be the TRS consisting of the following rules (x is a variable):24

R1 = f(s(0), s(1), x)︸ ︷︷ ︸
l

→ f(x, x, x)︸ ︷︷ ︸
r

R2 = h→ 0 R3 = h→ 1 .25

Unfolding the subterm 0 of l backwards with the rule R2, we get the un-26

folded rule U1 = f(s(h), s(1), x)→ f(x, x, x). Unfolding the subterm x (a vari-27

able) of l backwards with R2, we get U2 = f(s(0), s(1), h)→ f(0, 0, 0). Unfold-28

ing the first (from the left) occurrence of x in r forwards with R2, we get29

U3 = f(s(0), s(1), h)→ f(0, h, h). We have {U1, U2, U3} ⊆ UR(R). Now, if we un-30

fold the subterm 1 of U1 backwards with R3, we get f(s(h), s(h), x)→ f(x, x, x),31

which is an element of UR(UR(R)). The left-hand side l1 of this rule semi-unifies32

with its right-hand side r1 i.e., l1θ1θ2 = r1θ2 for the substitutions θ1 = {x/s(h)}33

and θ2 = {}. Therefore, lθ1 = f(s(h), s(h), s(h)) loops with respect to R because34

it can be rewritten to itself using the rules of R:35

f(s(h), s(h), s(h))→
R2

f(s(0), s(h), s(h))→
R3

f(s(0), s(1), s(h))→
R1

f(s(h), s(h), s(h)) .36

Iterative applications of the operator UR result in a combinatorial explosion37

which significatively limits the approach. In order to reduce it, a mechanism38

is introduced in [8] for eliminating the unfolded rules which are estimated as39

useless for detecting loops. Moreover, in practice, three analyses are run in par-40

allel (in different threads): one with forward unfoldings only, one with backward41

unfoldings only and one with forward and backward unfoldings together.42

So, the technique of [8] roughly consists in computing all the rules of UR(R),43

UR(UR(R)), . . . and removing the useless ones, until the semi-unification test44

succeeds on an unfolded rule or a time limit is reached. Therefore, this approach45

corresponds to a breadth-first search for a loop, as the successive iterations of46

UR are computed thoroughly, one after the other. However, it is not always47

necessary to compute all the elements of each iteration of UR. For instance, in48

Ex. 1 above, U2 and U3 do not lead to an unfolded rule satisfying the semi-49

unification criterion. This is detected by the eliminating mechanism of [8], but50

only after these two rules are generated. In order to avoid the generation of51

these useless rules, one can notice that 〈s(0), x〉 is the leftmost and downmost52

disagreement pair of l and r. Hence, one can first concentrate on resolving this53

disagreement, unfolding this pair only, and then, once this is resolved, apply the54

same process to the next disagreement pair.55

Example 2 (Ex. 1 continued). 〈s(0), x〉 is the leftmost and downmost disagree-56

ment pair of l and r. There are two ways to resolve it (i.e., make it disappear).57

The first way consists in unifying s(0) and x, i.e., in computing R1θ where θ is58

the substitution {x/s(0)}, which gives U0 = f(s(0), s(1), s(0))→ f(s(0), s(0), s(0)).59

The other way is to unfold s(0) or x. We decide not to unfold variable sub-60

terms, hence we select s(0). As it occurs in the left-hand side of R1, we unfold61

it backwards. The only possibility is to use R2, which results in62

U1 = f(s(h), s(1), x)→ f(x, x, x) .63

Note that this approach only generates two rules (U0 and U1) at the first iteration64

of the unfolding operator. In comparison, the approach of [8] produces 14 rules,65

as all the subterms of R1 are considered for unfolding.66

Hence, the disagreement pair 〈s(0), x〉 has been replaced with the disagree-67

ment pair 〈s(h), x〉. Unifying s(h) and x i.e., computing U1θ
′ where θ′ is the68

substitution {x/s(h)}, we get U ′1 = f(s(h), s(1), s(h))→ f(s(h), s(h), s(h)). So, the69

disagreement 〈s(0), x〉 is solved: it has been replaced with 〈s(h), s(h)〉. Now, the70

leftmost and downmost disagreement pair in U ′1 is 〈1, h〉 (here we mean the sec-71

ond occurrence of h in the right-hand side of U ′1). Unfolding 1 backwards with72

R3, we get V1 = f(s(h), s(h), s(h))→ f(s(h), s(h), s(h)) and unfolding h forwards73

with R3, we get V ′1 = f(s(h), s(1), s(h))→ f(s(h), s(1), s(h)). The semi-unification74

2

test succeeds on both rules: V1 yields the looping term f(s(h), s(h), s(h)) and V ′175

yields f(s(h), s(1), s(h)).76

The approach which is sketched in Ex. 2 corresponds to a depth-first search77

for a loop. The iterations of UR are not thoroughly computed. Only a selected78

disagreement pair is considered and once it is resolved we backtrack to the next79

one. Hence, the unfoldings are guided by disagreement pairs. In this paper, we80

formally describe the intuitions presented above (Sect. 3 and Sect. 4) and we81

report some experiments on a bunch of rewrite systems from the TPBD [9]82

(Sect 5). The results we get are promising and we do not need to perform several83

analyses in parallel, nor to unfold variable subterms, unlike with the approach84

of [8].85

2 Preliminaries86

We refer to [4] for the basics of rewriting. From now on, we fix a finite signature87

F together with an infinite countable set V of variables with F∩V = ∅. Elements88

of F are denoted by f, g, h, 0, 1, . . . and elements of V by x, y, z, . . . The set of89

terms over F ∪ V is denoted by T (F ,V). For any t ∈ T (F ,V), we let root(t)90

denote the root symbol of t: root(t) = f if t = f(t1, . . . , tm) and root(t) = ⊥ if91

t ∈ V. Moreover, we let Var(t) denote the set of variables occurring in t and92

Pos(t) denote the set of positions of t. For any p ∈ Pos(t), we write t|p to denote93

the subterm of t at position p and we write t[p← s] to denote the term obtained94

from t by replacing t|p with a term s. For any p, q ∈ Pos(t), we write p ≤ q if95

and only if p is a prefix of q. We also define96

NPos(t, p) = {q ∈ Pos(t) | q ≤ p ∨ p ≤ q, t|q 6∈ V} .97

For any non-empty set of positions S, we let minS denote the position in S98

which is leftmost and downmost (for instance, min{1, 2, 1.2, 1.3, 2.1} = 1.2). We99

let min ∅ be undefined.100

We write substitutions as sets of the form {x1/t1, . . . , xn/tn} denoting that101

for each 1 ≤ i ≤ n, variable xi is mapped to term ti (note that xi may occur102

in ti). The empty substitution (identity) is denoted by id . The application of a103

substitution θ to a syntactic object o is denoted by oθ. We let mgu(s, t) denote104

the set of most general unifiers of terms s and t. A disagreement pair of s and t105

is an ordered pair 〈s|p, t|p〉 where p ∈ Pos(s)∩Pos(t), root(s|p) 6= root(t|p) and,106

for every q ≤ p, root(s|q) = root(t|q).107

Example 3. Let s = f(s(0), s(1), y), t = f(x, x, x), p1 = 1, p2 = 2 and p3 = 3.108

Then, 〈s|p1
, t|p1
〉 = 〈s(0), x〉 and 〈s|p2

, t|p2
〉 = 〈s(1), x〉 are disagreement pairs109

of s and t. However, 〈s|p3 , t|p3〉 = 〈y, x〉 is not a disagreement pair of s and t110

because root(y) = root(x) = ⊥.111

A rewrite rule (or rule) over F ∪ V has the form l→ r with l, r ∈ T (F ,V),112

l 6∈ V and Var(r) ⊆ Var(l). A term rewriting system (TRS) over F ∪V is a finite113

set of rewrite rules over F ∪ V. We consider rules modulo variable renaming.114

3

Any new occurrence of a rule contains fresh variables. Given a TRS R and some115

terms s and t, we write s→
R
t if there is a rewrite rule l→ r in R, a substitution θ116

and p ∈ Pos(s) such that s|p = lθ and t = s[p← rθ]. We let
+→
R

(resp.
∗→
R

) denote117

the transitive (resp. reflexive and transitive) closure of →
R

. We say that a term118

t is non-terminating with respect to (w.r.t.) R when there exist infinitely many119

terms t1, t2, . . . such that t→
R
t1→
R
t2→
R
· · · . We say that R is non-terminating120

if there exists a non-terminating term w.r.t. it. A term t loops w.r.t. R when121

t
+→
R
C[tθ] for some context C and substitution θ. Then t

+→
R
C[tθ] is called a loop122

for R. We say that R is looping when it admits a loop. If a term loops w.r.t. R123

then it is non-terminating w.r.t. R.124

We refer to [3] for details on dependency pairs. The defined symbols of a TRS125

R over F ∪ V are DR = {root(l) | l→ r ∈ R}. For every f ∈ F we let f# be a126

fresh tuple symbol with the same arity as f. The set of tuple symbols is denoted127

as F#. The notations and definitions above with terms over F ∪V are naturally128

extended to terms over (F∪F#)∪V. Elements of F∪F# are denoted as f, g, . . .129

If t = f(t1, . . . , tm) ∈ T (F ,V), we let t# denote the term f#(t1, . . . , tm), and we130

call t# an F#-term. An F#-rule is a rule whose left-hand and right-hand sides131

are F#-terms. The set of dependency pairs of R is132

{l#→ t# | l→ r ∈ R, t is a subterm of r, root(t) ∈ DR} .133

A sequence s1→ t1, . . . , sn→ tn of dependency pairs of R is an R-chain if there134

exists a substitution σ such that tiσ
∗→
R
si+1σ holds for two consecutive pairs135

si→ ti and si+1→ ti+1 in the sequence.136

Theorem 1 ([3]). R is non-terminating iff there exists an infinite R-chain.137

The functions cap and ren from T (F ∪F#,V) to T (F ∪F#,V) are defined as138

cap(x) = x if x ∈ V139

cap(f(t1, . . . , tm)) =

{
a fresh variable if f ∈ DR
f(cap(t1), . . . ,cap(tm)) if f 6∈ DR

140

ren(x) = a fresh variable if x ∈ V141

ren(f(t1, . . . , tm)) = f(ren(t1), . . . ,ren(tm))142
143

A term s is connectable to a term t if ren(cap(s)) unifies with t. An F#-rule144

l→ r is connectable to an F#-rule s→ t if r is connectable to s. The dependency145

graph of R is denoted as DG(R). Its nodes are the dependency pairs of R and146

there is an arc from N to N ′ iff N is connectable to N ′.147

Finite sequences are written as [e1, . . . , en]. We let :: denote the concate-148

nation operator over finite sequences. A path in DG(R) is a finite sequence149

[N1, N2, . . . , Nn] of nodes where, for each 1 ≤ i < n, there is an arc from Ni150

to Ni+1. When there is also an arc from Nn to N1, the path is called a cycle.151

It is called a simple cycle if, moreover, there is no repetition of nodes (modulo152

4

variable renaming). We let SCC (R) denote the set of strongly connected com-153

ponents of DG(R) that contain at least one arc. Hence, a strongly connected154

component consisting of a unique node is in SCC (R) only if there is an arc from155

the node to itself.156

Example 4. Let R be the TRS of Ex. 1. We have SCC (R) = {C} where C157

consists of the node N = f#(s(0), s(1), x)→ f#(x, x, x) and of the arc (N,N).158

Example 5. Let R′ = {f(0)→ f(1), f(2)→ f(0), 1→ 0}. We have SCC (R′) =159

{C′} where C′ consists of the nodes N1 = f#(0)→ f#(1) and N2 = f#(2)→ f#(0)160

and of the arcs {N1, N2}× {N1, N2} \ {(N2, N2)}. The strongly connected com-161

ponent of DG(R′) which consists of the unique node f#(0)→ 1# does not belong162

to SCC (R′) because it has no arc.163

3 Guided unfoldings164

In the sequel of this paper, we let R denote a TRS over F ∪ V.165

While the method sketched in Ex. 2 can be applied directly to the TRS166

R under analysis, we use a refinement based on the dependency graph of R.167

The cycles in DG(R) are over-approximations of the infinite R-chains i.e., any168

infinite R-chain corresponds to a cycle in the graph but some cycles in the graph169

may not correspond to any infinite R-chain. Moreover, by Theorem 1, if we find170

an infinite R-chain then we have proved that R is non-terminating. Hence, we171

concentrate on the cycles in DG(R). We try to solve them i.e., to find out if172

they correspond to any infinite R-chain. This is done by iteratively unfolding173

the F#-rules of the cycles. If the semi-unification test succeeds on one of the174

generated unfolded rules, then we have found a loop.175

Definition 1 (Syntactic loop). A syntactic loop in R is a finite sequence176

[N1, . . . , Nn] of distinct (modulo variable renaming) F#-rules where, for each177

1 ≤ i < n, Ni is connectable to Ni+1 and Nn is connectable to N1. We identify178

syntactic loops consisting of the same (modulo variable renaming) elements, not179

necessarily in the same order.180

Note that the simple cycles in DG(R) are syntactic loops. For any C ∈181

SCC (R), we let s-cycles(C) denote the set of simple cycles in C. We also let182

s-cycles(R) = ∪C∈SCC (R) s-cycles(C)183

be the set of simple cycles in R. The rules of any simple cycle in R are assumed184

to be pairwise variable disjoint.185

Example 6 (Ex. 4 and 5 continued). We have186

s-cycles(R) = {[N]} and s-cycles(R′) = {[N1], [N1, N2]}187

with, in s-cycles(R′), [N1, N2] = [N2, N1].188

5

The operators we use for unfolding an F#-rule are defined as follows. They189

only unfold non-variable subterms.190

Definition 2 (Forward guided unfoldings). Let l→ r be an F#-rule, s be191

an F#-term and p be the position of a disagreement pair of r and s. The forward192

unfoldings of l→ r at position p, guided by s and w.r.t. R are193

FR(l→ r, s, p) =

{
U

∣∣∣∣ q ∈ NPos(r, p), q ≤ p
θ ∈ mgu(r|q, s|q), U = (l→ r)θ

}
∪194 {

U

∣∣∣∣ q ∈ NPos(r, p), l′→ r′ ∈ R
θ ∈ mgu(r|q, l′), U = (l→ r[q← r′])θ

}
.195

196

Definition 3 (Backward guided unfoldings). Let s→ t be an F#-rule, r197

be an F#-term and p be the position of a disagreement pair of r and s. The198

backward unfoldings of s→ t at position p, guided by r and w.r.t. R are199

BR(s→ t, r, p) =

{
U

∣∣∣∣ q ∈ NPos(s, p), q ≤ p
θ ∈ mgu(r|q, s|q), U = (s→ t)θ

}(1)

∪200 {
U

∣∣∣∣ q ∈ NPos(s, p), l′→ r′ ∈ R
θ ∈ mgu(s|q, r′), U = (s[q← l′]→ t)θ

}(2)

.201

202

Example 7 (Ex. 4 and 6 continued). [N] is a simple cycle in R with203

N = f#(s(0), s(1), x)︸ ︷︷ ︸
s

→ f#(x, x, x)︸ ︷︷ ︸
t

.204

Let r = t. Then p = 1 is a disagreement pair position of r and s. Moreover,205

q = 1.1 ∈ NPos(s, p) because p ≤ q and s|q = 0 is not a variable. Let l′→ r′ =206

h→ 0 ∈ R. We have id ∈ mgu(s|q, r′). Hence, by (2) in Def. 3, we have207

U1 = f#(s(h), s(1), x)︸ ︷︷ ︸
s1

→ f#(x, x, x)︸ ︷︷ ︸
t1

∈ BR(N, r, p) .208

Let r1 = t1. Then, p is a disagreement pair position of r1 and s1. Moreover, p ∈209

NPos(s1, p) with s1|p = s(h), p ≤ p and r1|p = x. As {x/s(h)} ∈ mgu(r1|p, s1|p),210

by (1) in Def. 3 we have211

U ′1 = f#(s(h), s(1), s(h))→ f#(s(h), s(h), s(h)) ∈ BR(U1, r1, p) .212

We choose to guide the unfoldings using the leftmost and downmost disagree-213

ment pair of the left-hand and right-hand sides of rules.214

Definition 4 (Disagreement). The minimal disagreement position of terms215

s and t is denoted as minpos(s, t). It is defined as216

minpos(s, t) = min

{
p

∣∣∣∣ p ∈ Pos(s) ∩ Pos(t)
〈s|p, t|p〉 is a disagreement pair of s and t

}
.217

So, minpos(s, t) is undefined if there is no disagreement pair of s and t.218

6

Example 8. We have minpos(f#(x, x, x), f#(s(0), s(1), x)) = 1 because219

〈f#(x, x, x)|1, f#(s(0), s(1), x)|1〉 = 〈x, s(0)〉220

is the leftmost and downmost disagreement pair of the terms f#(x, x, x) and221

f#(s(0), s(1), x).222

Our approach consists in iteratively unfolding syntactic loops using the fol-223

lowing operator.224

Definition 5 (Guided unfoldings). Let X be a set of syntactic loops in R.225

The guided unfoldings of X w.r.t. R are defined as226

GUR(X) =

{
[U] ::L

∣∣∣∣ [l→ r, s→ t] ::L ∈ X, θ ∈ mgu(r, s)
U = (l→ t)θ, [U] ::L is a syntactic loop

}(1)

∪227 [U, s→ t] ::L

∣∣∣∣∣∣
[l→ r, s→ t] ::L ∈ X, mgu(r, s) = ∅
p = minpos(r, s), U ∈ FR(l→ r, s, p)
[U, s→ t] ::L is a syntactic loop


(2)

∪228

[l→ r, U] ::L

∣∣∣∣∣∣
[l→ r, s→ t] ::L ∈ X, mgu(r, s) = ∅
p = minpos(r, s), U ∈ BR(s→ t, r, p)
[l→ r, U] ::L is a syntactic loop


(3)

∪229

[U]

∣∣∣∣∣∣
[l→ r] ∈ X, p = minpos(r, l)
U ∈ FR(l→ r, l, p) ∪BR(l→ r, r, p)
[U] is a syntactic loop


(4)

.230

231

So, the idea is to walk through the syntactic loops, from the first rule on the232

left to the last rule on the right. Whenever the right-hand side of the first rule233

unifies with the left-hand side of the second rule, then the first and second rules234

are merged (case (1) in Def. 5), meaning that we succeeded in passing the first235

rule and in reaching the second one. When the right-hand side of the first rule236

does not unify with the left-hand side of the second rule, then we cannot reach237

the second rule from the first one yet. We use the operators FR and BR to try238

to reach the second rule (cases (2) and (3) in Def. 5). Once we have reached239

the last rule of a syntactic loop, then we have computed a compressed form of240

the loop. We keep on unfolding this compressed form (case (4) in Def. 5), which241

corresponds to a walk through the entire loop, forwards or backwards, in one242

go. Note that after unfolding a rule, we might get a sequence which is not a243

syntactic loop: the newly generated rule might be identical to another rule in244

the sequence or it might not be connectable to its predecessor or successor in245

the sequence. Therefore, (1)–(4) in Def. 5 require that the generated sequence is246

a syntactic loop.247

The guided unfolding semantics is defined as follows, in the style of [1, 8].248

Definition 6 (Guided unfolding semantics). The guided unfolding seman-249

tics of R is the limit of the unfolding process described in Def. 5, starting from250

the simple cycles in R:251

gunf (R) =
⋃
n∈N

(GUR ↑ n)(s-cycles(R)) .252

7

Example 9. By Ex. 7 and (4) in Def. 5, we have U ′1 ∈ gunf (R).253

Example 10. Let R = {f(0)→ g(1), g(1)→ f(0)}. Then, SCC (R) = {C} where254

C consists of the nodes N1 = f#(0)→ g#(1) and N2 = g#(1)→ f#(0) and of255

the arcs (N1, N2) and (N2, N1). Moreover, s-cycles(R) = {[N1, N2]}. As id ∈256

mgu(g#(1), g#(1)) and (f#(0)→ f#(0))id = f#(0)→ f#(0), by (1) in Def. 5, we257

have [f#(0)→ f#(0)] ∈ gunf (R).258

Proposition 1. For any [s#→ t#] ∈ gunf (R) there exists some context C such259

that s
+→
R
C[t].260

Proof. For some context C, we have s→C[t] ∈ unf (R), where unf (R) is the261

unfolding semantics of R defined in [8]. Hence, by Prop. 3.12 of [8], we have262

s
+→
R
C[t].263

4 Inferring terms that loop264

As in [8], we use semi-unification [7] for detecting loops. A polynomial-time265

algorithm for semi-unification can be found in [6].266

Theorem 2. If for [s#→ t#] ∈ gunf (R) there exist some substitutions θ1 and267

θ2 such that sθ1θ2 = tθ1, then the term sθ1 loops w.r.t. R.268

Proof. By Prop. 1, s
+→
R
C[t] for some context C. Since →

R
is stable, we have269

sθ1
+→
R
C[t]θ1 i.e., sθ1

+→
R
Cθ1[tθ1] i.e., sθ1

+→
R
Cθ1[sθ1θ2] .270

Hence, sθ1 loops w.r.t. R.271

Example 11 (Ex. 9 continued). We have272

[f#(s(h), s(h), s(h))→ f#(s(h), s(h), s(h))] ∈ gunf (R)273

with f(s(h), s(h), s(h))θ1θ2 = f(s(h), s(h), s(h))θ1 for θ1 = θ2 = id . Consequently,274

f(s(h), s(h), s(h))θ1 = f(s(h), s(h), s(h)) loops w.r.t. R.275

Example 12 (Ex. 10 continued). [f#(0)→ f#(0)] ∈ gunf (R) with f(0)θ1θ2 =276

f(0)θ1 for θ1 = θ2 = id . Hence, f(0)θ1 = f(0) loops w.r.t. R.277

5 Experiments278

We have implemented the technique of this paper in our analyser NTI1 (Non-279

Termination Inference) and we have run it on a set of selected rewrite systems280

built as follows. We have extracted from the directory TRS_Standard of the281

1 http://lim.univ-reunion.fr/staff/epayet/Research/NTI/NTI.html

8

TPBD [9] all the valid rewrite systems2 that are proved looping by AProVE [2,282

5]. We ended up with a set of 171 rewrite systems, some characteristics of which283

are reported in Table 1. Note that the complete set of simple cycles of a TRS284

may be really huge, hence NTI only computes a subset of it. The simple cycle285

characteristics reported in Table 1 relate to the subsets computed by NTI.286

Min Max Average

TRS size 1 [17] 104 [1] 10.98

Number of SCCs 1 [100] 12 [1] 1.94

SCC size 1 [95] 192 [1] 4.47

Number of simple cycles 1 [47] 185 [1] 8.54

Simple cycle size 1 [156] 9 [2] 2.25

Number of function symbols 1 [4] 66 [1] 9.01

Function symbol arity 0 [151] 5 [2] 1.07

Number of defined function symbols 1 [28] 58 [1] 5.16

Defined function symbol arity 0 [73] 5 [2] 1.38

Table 1. Some characteristics of the 171 analysed TRSs. Sizes are in number of rules.
In square brackets, we report the number of TRSs with the corresponding min or max.

We have compared our new approach to that of [8], which is also imple-287

mented in NTI. The results are promising (see Table 2). We get a larger number288

of successful proofs with better times. However, the results regarding the num-289

ber of generated unfolded rules are worse. This may come from the fact that in290

the new approach we did not implement any mechanism for eliminating useless291

unfolded rules (unlike in the approach of [8]). Another point to note is that the292

implementation of the new approach does not unfold variable subterms (in com-293

pliance with Def. 2 and Def. 3) and does not perform several analyses in parallel,294

unlike the implementation of [8] which unfolds variable subterms and performs295

three analyses in parallel (one with forward unfoldings only, one with backward296

unfoldings only and one with forward and backward unfoldings together).297

AProVE is able to prove loopingness of all the 171 rewrite systems of our set.298

In comparison, our approach succeeds on 152 systems only. Similarly to our ap-299

proach, AProVE handles the SCCs of the dependency graph independently, but300

it performs both a termination and a non-termination analysis on each SCC.301

Hence, when an SCC is proved terminating, then its non-termination analysis is302

stopped, and vice-versa. On the contrary, NTI is a pure non-termination anal-303

yser i.e., it only performs non-termination analyses. If an SCC is terminating, it304

cannot prove it and keeps on trying a non-termination proof, unnecessarily gen-305

erating unfolded rules at the expense of the analysis of the other SCCs. Hence,306

in our opinion, a comparison of our approach with AProVE does not make sense307

2 Surprisingly, the subdirectory Transformed CSR 04 contains 60 files where an invalid
rule i.e., a pair l→ r with Var(r) 6⊆ Var(l), occurs.

9

NTI’08 NTI’18

Success 150 152

Don’t know 0 2

Time out 21 17

Total time 2862.34s 2144.09s

Total number of
generated rules

10 845 546 11 219 422

Average time
for a success

2.28s 0.51s

Average number of
generated rules

for a success
7206 8298

Table 2. Analysis results on our selected set of 171 rewrite systems. The time limit
fixed for a proof is 120s. NTI’08 refers to the technique of [8], NTI’18 to the technique
presented in this paper. We used an Intel 2-core i5 at 2 GHz with 8 GB of RAM.

(we do not know how to turn off the termination analyser of AProVE in order308

to only compare its non-termination analyser with ours).309

6 Conclusion310

We have reconsidered the unfolding-based technique introduced in [8] for de-311

tecting loops in standard term rewriting. We have improved it by guiding the312

unfoldings, using disagreement pairs. This results in a depth-first search for313

loops, whereas the technique of [8] is breadth-first. Another difference is that314

the new approach unfolds the dependency pairs, whereas [8] directly works with315

the rules of the TRS under analysis. Moreover, the new approach is modular,316

in the sense that it considers the SCCs of the dependency graph independently;317

in [8], no SCC is computed.318

We have implemented the new approach in our tool NTI and compared it319

to [8] on a set of 171 rewrite systems. The results we get are promising (bet-320

ter times, more successful proofs) but the number of generated rules is still too321

important (it is larger than with the approach of [8]). We plan to add an elimina-322

tion mechanism to the new technique, similarly to [8], to address this problem.323

Another possibility that we are considering is to select the rules which are usable324

for unfolding an element of a syntactic loop; this would avoid the generation of325

useless rules, whereas an elimination mechanism would require to generate the326

rule first and then to eliminate it afterwards.327

References328

1. M. Alpuente, M. Falaschi, G. Moreno, and G. Vidal. Safe folding/unfolding with329

conditional narrowing. In M. Hanus, J. Heering, and K. Meinke, editors, Proc. of330

10

Algebraic and Logic Programming, 6th International Joint Conference (ALP/HOA331

97), volume 1298 of Lecture Notes in Computer Science, pages 1–15. Springer, 1997.332

2. AProVE Web site. http://aprove.informatik.rwth-aachen.de/.333

3. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-334

oretical Computer Science, 236:133–178, 2000.335

4. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University336

Press, 1998.337

5. J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, J. Hensel,338

C. Otto, M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swiderski, and R. Thie-339

mann. Analyzing program termination and complexity automatically with AProVE.340

Journal of Automated Reasoning, 58(1):3–31, 2017.341

6. D. Kapur, D. Musser, P. Narendran, and J. Stillman. Semi-unification. Theoretical342

Computer Science, 81(2):169–187, 1991.343

7. D.S. Lankford and D. R. Musser. A finite termination criterion. Unpublished Draft,344

USC Information Sciences Institute, Marina Del Rey, CA, 1978.345

8. É. Payet. Loop detection in term rewriting using the eliminating unfoldings. The-346

oretical Computer Science, 403(2-3):307–327, 2008.347

9. Termination Problems Data Base. http://termination-portal.org/wiki/TPDB.348

11

