
A Second-Order Formulation of Non-Termination

Fred Mesnard, Étienne Payet

Université de La Réunion, EA2525-LIM, Saint-Denis de La Réunion, F-97490, France

Abstract

We consider the termination/non-termination property of a class of loops. Such
loops are commonly used abstractions of real program pieces. Second-order logic
is a convenient language to express non-termination. Of course, such property is
generally undecidable. However, by restricting the language to known decidable
cases, we exhibit new classes of loops, the non-termination of which is decidable.
We present a bunch of examples.

Keywords: Termination, non-termination, monadic second-order logic.

1. Introduction

In this paper, we recall that second-order logic is a convenient language
to express non-termination of while loops, modeled as rules. Such rules are
commonly used abstractions of real program pieces, see, e.g., [13] for the Java
programming language. Our main contribution is the definition of two new
classes of rules, the termination of which is decidable, by restricting the language
to known decidable cases, namely S1S and S2S. We also show and illustrate how
decision procedures for their weak versions WS1S and WS2S can help proving
termination/non-termination.

We organize the paper as follows. Section 2 presents the main concepts
we need while Section 3 gives the theoretical results of the paper. Section 4
illustrates the results by means of examples and in Section 5 we discuss related
works. Finally, Section 6 concludes the paper.

2. Preliminaries

We give a quick description of S1S and S2S, see [14] for a more detailed
presentation. S1S is the monadic Second-order theory of 1 Successor. Inter-
pretations correspond to finite or infinite words over a given finite alphabet Σ.
Terms are constructed from the constant 0 and first-order variables x, y, . . . by

Email addresses: frederic.mesnard@univ-reunion.fr (Fred Mesnard),

etienne.payet@univ-reunion.fr (Étienne Payet)

Preprint submitted to Elsevier February 23, 2015



application of the successor function +1, which is left-associative. We abbrevi-
ate n successive applications of +1 starting from 0 (i.e., 0 + 1 + 1 + · · ·+ 1) to n.
Atomic formulæ are constructed from terms, second-order variables X, Y , . . .
and predicates of the form Pa where a ∈ Σ. They have the form t = t′, t < t′,
t ∈ X, Pa(t) where t and t′ are terms. Formulæ are constructed from atomic
formulæ, the usual boolean connectives (∨, ∧, . . . ) and quantification (∀ and
∃) over first and second-order variables. First-order variables are interpreted as
elements of N representing positions in words and second-order variables as sub-
sets of N. Constant 0 is interpreted as the first position in a word and function
+1 as the next position. The formula Pa(t) is true in a word w if at position
t of w there is character a. WS1S (Weak S1S) is a restriction of S1S where
second-order variables are interpreted as finite sets only.

S2S is the monadic Second-order theory of 2 Successors. Interpretations cor-
respond to finite or infinite labelled binary trees over a given finite alphabet Σ.
Terms and formulæ are constructed as in S1S except that constant 0 is replaced
with ε and the successor function +1 is replaced with functions .0 and .1, which
are left-associative. We abbreviate successive applications of these functions, for
instance x.0110 stands for x.0.1.1.0, which corresponds to (((x.0).1).1).0, and
0110 stands for ε.0.1.1.0. First-order variables are interpreted as elements of
{0, 1}∗ representing positions in binary trees and second-order variables as sub-
sets of {0, 1}∗. Constant ε is interpreted as the root position of a binary tree, .0
as the left successor, .1 as the right successor and < as the proper-prefix relation
(for instance 01 < 0110 but 00 6< 0110). WS2S (Weak S2S) is a restriction of
S2S where second-order variables are interpreted as finite sets only.

A rule has the form r : x̃ → ψ(x̃, ỹ), ỹ where r is the identifier of the rule,
ψ is a binary relation and x̃ and ỹ are tuples of distinct first-order variables
ranging over a given domain. If r is a monadic rule of the form x → ψ(x, y), y
and ψ(x, y) is a monadic second-order formula of S1S (S2S) with x and y as free
variables, we call r a monadic S1S (respectively, S2S) rule. Some examples can
be found in Section 4. We define an operational semantics as follows. Starting
from a concrete tuple x̃0 of elements of the domain, we first check whether
there exists a concrete tuple x̃1 such that ψ(x̃0, x̃1). If no such tuple exists, the
computation stops. Otherwise, we choose any such tuple x̃1 and reiterate. The
rule r loops if we can find a concrete tuple x̃0 starting an infinite computation.
If no such tuple exists, r terminates.

3. A Second-Order Formulation of Non-Termination

We consider the following second-order formulation of non-termination. Let
r : x̃→ ψ(x̃, ỹ), ỹ be a rule.

Definition 1 (recurrence set [8]). We let φr denote the second-order for-
mula

∃X

{
∃x̃ x̃ ∈ X ∧ (1)

∀x̃∃ỹ (x̃ ∈ X ⇒ [ψ(x̃, ỹ) ∧ ỹ ∈ X]) (2)

A recurrence set for r is a set X satisfying φr.

2



Condition (1) of Definition 1 simply states that the recurrence set X is not
empty. Condition (2) ensures that for any element x̃ of X, there is an element
ỹ of X which satisfies the formula ψ(x̃, ỹ) defining the rule r. The existence of
a recurrence set is equivalent to non-termination.

Theorem 2 ([8]). φr is true if and only if r loops.

Proof. We prove both implications.
(⇒). As φr is true, we can start by selecting any arbitrary x̃0 ∈ X. We know
that there exists ỹ0 ∈ X s.t. ψ(x̃0, ỹ0). By iterating this process, we construct
an infinite computation. Hence r loops.
(⇐). As there exists x̃0 such that r loops, let us consider an infinite computation
starting at x̃0: x̃0, x̃1, . . . , x̃n, . . . Let X = {x̃i|i ≥ 0}. X is a non-empty set
verifying ∀x̃∃ỹ (x̃ ∈ X ⇒ [ψ(x̃, ỹ) ∧ ỹ ∈ X]). Hence φr holds. �

The second-order formula φr is a necessary and sufficient condition for non-
termination of at least one of the computations r can generate. Symmetrically,
¬φr is true if and only if for every value x̃0, any computation starting at x̃0
halts. As such a problem is in general undecidable (see, e.g., [3]), it follows
that φr is not computable. However, when the second-order logic is restricted
to decidable cases, we obtain classes of rules for which the termination/non-
termination property is decidable.

Theorem 3. Termination of a monadic S1S or S2S rule is decidable.

Proof. The monadic second-order logics S1S and S2S are decidable [5, 12] and
so is φr for a monadic S1S or S2S rule r. If φr is true then r loops else r
terminates. �

Weak versions of these logics, where second-order variables range over finite
sets, are also decidable and decision procedures have been implemented (see,
e.g., MONA [9]). Let r be a monadic S1S or S2S rule.

Corollary 1. Decision procedures for WS1S and WS2S provide computable suf-
ficient conditions for proving non-termination of r in the corresponding struc-
ture.

Proof. If such a decision procedure states that φr is true, then we know that
there exists a non-empty finite set X such that φr holds. Hence r loops. �

Note that if the decision procedure states that φr is false, then there is no
finite set X satisfying φr but an infinite set X satisfying φr may exist. Hence
we cannot conclude, except in the following case.

Corollary 2. When we know that the set of points which can start a compu-
tation from r is finite, decision procedures for WS1S and WS2S also decide
termination of r in the corresponding structure.

3



Proof. If a decision procedure states that φr is true, then by Corollary 1 r loops.
Else it states that φr is false. So there does not exist a finite set X satisfying
φr. As X cannot be infinite by hypothesis, it means that there does not exist a
set X such that φr holds. Hence r terminates. �

Note that the condition of Corollary 2 can be decided in WS1S as it can be
stated as ∃m ∀x (x > m ⇒ ¬ ∃y ψ(x, y)). However Example 6 shows that it
does not decide termination.

4. Examples

Example 4 (S1S). Consider r : x→ ψ(x, y), y where

ψ(x, y) = (3 < x ∧ x < 10 ∧ y < x) ∨ (x < 3 ∧ y = x+ 1)

The set of points which can start a computation from r is finite: {x ∈ N|x 6=
3 ∧ x < 10}. MONA tells us that φr is false. By Corollary 2, r terminates. �

Example 5 (S1S). Consider r : x→ ψ(x, y), y where

ψ(x, y) = (3 < x ∧ y < x) ∨ (x < 4 ∧ y = x+ 1)

MONA reports that φr is true, with a computed satisfying X = {3, 4}. Indeed
for any x ∈ X = {3, 4}, there is a y in X such that ψ(x, y) holds: if x = 3, take
y = 4 and if x = 4, y = 3. Note that the set X is not unique, as φr is also true
for, e.g., X = {2, 3, 4, 2014}. By Corollary 1, r loops. �

Example 6 (S1S). Consider r : x→ ψ(x, y), y where

ψ(x, y) = (x < y)

Although MONA tells us that there is no finite X satisfying φr, as the set of
points which can start a computation is infinite, we cannot apply Corollary 2.
Indeed, taking X = N shows that φr is true. Hence by Theorem 2, r loops.
Note that any decision procedure for S1S will prove that φr is true. �

Example 7 (S1S). Consider r : x→ ψ(x, y), y where

ψ(x, y) = (y < x)

MONA reports that there is no finite X satisfying φr. As the set of points
which can start a computation is infinite, we cannot apply Corollary 2. Assume
that φr is true. So there is a non-empty X ⊆ N satisfying φr. Let e be its
least element. Condition (2) of Definition 1 states that there exists d in X such
that d < e, which contradicts that e is the least element of X. Hence φr is
false, as should be shown by any decision procedure for S1S. By Theorem 2, r
terminates. �

4



Example 8 (S1S). Consider r : x→ ψ(x, y), y where

ψ(x, y) = (∀X (x ∈ X ∧ ψ′(X))⇒ y ∈ X)

with
ψ′(X) = (∀z z ∈ X ⇒ z + 1 ∈ X)

We have ψ′(X) is true if and only if X is closed by application of the successor
function +1. So, ψ(x, y) is true if and only if x ≤ y. MONA reports that φr is
true, with a computed satisfying X = {0}. By Corollary 1, r loops. �

Example 9 (S2S). Consider r : x→ ψ(x, y), y where

ψ(x, y) = (y = x.1 ∨ x = y.1)

The set X = {ε, 1} is not empty and for any x in X there is a y in X such that
ψ(x, y) holds. So φr is true (also shown by MONA). By Corollary 1, r loops. �

Example 10 (S2S). Consider r : x→ ψ(x, y), y where

ψ(x, y) =

(∃z x < 04 ∧ x = z.0 ∧ y = z.1) ∨
(∃z z.01 ≤ x ∧ y = z.11) ∨
(x = 12 ∧ y = 03)

The set X = {12, 03, 021, 012} is not empty and for any x in X there is a y in X
such that ψ(x, y) holds. Hence φr is true (also shown by MONA), so r loops.

Example 11 (S2S). Consider r : x→ ψ(x, y), y where

ψ(x, y) =

(∃z x = z.0 ∧ y = z.1) ∨
(∃z x = z.1 ∧ y = z.10)

The infinite set X = {0, 1, 10, 11, 110, 111, . . .} = 1∗(0 + 1) is not empty and for
any x in X there is a y in X such that ψ(x, y) holds. Hence φr is true, as should
be shown by any decision procedure for S2S. So r loops.

Example 12 (S2S). Consider r : x→ ψ(x, y), y where

ψ(x, y) = (∀X (x ∈ X ∧ ψ′(X))⇒ y ∈ X)

with
ψ′(X) = (∀z z ∈ X ⇒ (z.0 ∈ X ∧ z.1 ∈ X))

We have ψ′(X) is true if and only if X is closed by application of the successor
functions .0 and .1. So, ψ(x, y) is true if and only if x ≤ y. MONA reports that
φr is true, with a computed satisfying X = {ε}. By Corollary 1, r loops. �

5



5. Related Works

Recurrence sets were first introduced in [8] where ψ denotes any binary
relation. Two symbolic analyses are presented in this paper for constructing
such sets: a bitwise analysis, which assumes that the state space is finite and
encoded using Boolean variables, and a linear arithmetic analysis, which assumes
that the program transitions can be represented as rational linear constraints.
In contrast to our work, no second-order formulation is considered in this paper.

Let us now focus on termination-decidable classes of rules. In [7], the authors
present a decision procedure for an arbitrary rule x̃→ ψ(x̃, ỹ), ỹ where ψ(x̃, ỹ) is
a conjunction of equality constraints over rational trees. In [11, 6, 1], one finds
variations of a decision procedure for finite sets of rules x̃ → ψ(x̃, ỹ), ỹ where
ψ(x̃, ỹ) is a conjunction of constraints x > y or x ≥ y over a well-founded domain
(such as the natural numbers) or the integers. Generalizing [15], termination of
an arbitrary deterministic linear loop is shown decidable in [4] over the integers,
the rationals, and the reals. To the best of our knowledge, termination of
a non-deterministic linear loop remains an open problem. By restricting the
transition relation ψ to an integer octagon or an integer linear affine relation
with the finite monoid property, [2] shows that the non-termination precondition
is decidable. The application of their techniques to integer data programs with
control structure consisting in more than one loop is presented in [10].

In comparison with other analyses, a drawback of our result comes from the
restriction to monadic rules, which implies that our approach can only consider
abstractions of program pieces which focus on the evolution of only one variable.
On the other hand, as illustrated in the examples of Section 4, the specification
of the transition relation may benefit from the expressiveness of S1S or S2S.

6. Conclusion

We have seen that second-order logic is a convenient language to express
non-termination as a necessary and sufficient condition. Such a condition is
in general undecidable. By restricting the language to the decidable cases S1S
and S2S, we have defined two new classes of rules, the termination of which is
decidable. Finally, we have shown that the weak versions of these logics provide
sufficient conditions for termination and non-termination of such rules.

Acknowledgements

We thank the anonymous reviewers for their useful remarks.

[1] A. M. Ben-Amram. Monotonicity constraints for termination in the integer
domain. Logical Methods in Computer Science, 7(3), 2011.

[2] M. Bozga, R. Iosif, and F. Konečný. Deciding conditional termination.
Logical Methods in Computer Science, 10(3), 2014.

6



[3] A. R. Bradley, Z. Manna, and H. B. Sipma. Termination of polynomial pro-
grams. In R. Cousot, editor, Proc. of the 6th International Conference on
Verification, Model Checking and Abstract Interpretation (VMCAI’05), vol-
ume 3385 of Lecture Notes in Computer Science, pages 113–129. Springer,
2005.

[4] M. Braverman. Termination of integer linear programs. In T. Ball and R. B.
Jones, editors, Proc. of the 18th International Conference on Computer
Aided Verification (CAV’06), volume 4144 of Lecture Notes in Computer
Science, pages 372–385. Springer, 2006.

[5] J. R. Büchi. On a decision method in restricted second-order arithmetic. In
E. Nagel, P. Suppes, and A. Tarski, editors, Proc. of the 1960 International
Congress on Logic, Methodology and Philosophy of Science (LMPS’60),
pages 1–11. Stanford University Press, June 1962.

[6] M. Codish, V. Lagoon, and P. Stuckey. Testing for termination with mono-
tonicity constraints. In M. Gabbrielli and G. Gupta, editors, Proc. of the
21st International Conference on Logic Programming (ICLP’05), volume
3668 of Lecture Notes in Computer Science, pages 326–340. Springer, 2005.

[7] D. De Schreye, M. Bruynooghe, and K. Verschaetse. On the existence of
nonterminating queries for a restricted class of Prolog-clauses. Artificial
Intelligence, 41:237–248, 1989.

[8] A. Gupta, Thomas A. Henzinger, R. Majumdar, A. Rybalchenko, and R.-
G. Xu. Proving non-termination. In G. C. Necula and P. Wadler, editors,
Proc. of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’08), pages 147–158. ACM Press, 2008.

[9] N. Klarlund and A. Møller. MONA Version 1.4 User Manual. BRICS, De-
partment of Computer Science, Aarhus University, January 2001. Notes
Series NS-01-1. Available from http://www.brics.dk/mona/. Revision of
BRICS NS-98-3.

[10] F. Konečný. Relational Verification of Programs with Integer Data. PhD
thesis, Brno University of Technology and Université de Grenoble, 2012.

[11] C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle
for program termination. In C. Hankin and D. Schmidt, editors, Proc. of the
28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’01), pages 81–92. ACM Press, 2001.

[12] M. O. Rabin. Decidability of Second-Order Theories and Automata on
Infinite Trees. Transactions of the American Mathematical Society, 141:1–
35, 1969.

[13] F. Spoto, F. Mesnard, and É. Payet. A termination analyzer for Java byte-
code based on path-length. ACM Transactions on Programming Languages
and Systems, 32(3), 2010.

7



[14] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Volume B: Formal Models and
Semantics, pages 133–191. Elsevier and MIT Press, 1990.

[15] A. Tiwari. Termination of linear programs. In R. Alur and D. Peled, editors,
Proc. of the 16th International Conference on Computer Aided Verification
(CAV’04), volume 3114 of Lecture Notes in Computer Science, pages 70–82.
Springer, 2004.

8


	Introduction
	Preliminaries
	A Second-Order Formulation of Non-Termination
	Examples
	Related Works
	Conclusion

