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LPTP (Logic Program Theorem Prover) is an interactive natural-deduction-based theorem prover for
pure Prolog programs with negation as failure, unification with the occurs check, and a restricted
but extensible set of built-in predicates. With LPTP, one can formally prove termination and partial
correctness of such Prolog programs. LPTP was designed in the mid-1990’s by Robert F. Stärk. It is
written in ISO-Prolog and comes with an Emacs user-interface.

From a theoretical point of view, in his publications about LPTP, Stärk associates a set of first-
order axioms IND(P) to the considered Prolog program P. IND(P) contains the Clark’s equality
theory for P, definitions of success, failure and termination for each user-defined logic procedure in
P, axioms relating these three points of view, and an axiom schema for proving inductive properties.
LPTP is thus a dedicated proof editor where these axioms are hard-wired.

We propose to translate these axioms as first-order formulas (FOFs), and apply automated theo-
rem provers to check the property of interest. Using FOF as an intermediary language, we experiment
the use of automated theorem provers for Prolog program verification. We evaluate the approach over
a benchmark of about 400 properties of Prolog programs from the library available with LPTP. Both
the compiler which generates a set of FOF files from a given input Prolog program together with its
properties and the benchmark are publicly available.

1 Introduction

In the mid-1990’s, Robert F. Stärk defined a framework for Prolog verification [26, 29]. He considered
a subset of ISO-Prolog [13]: pure Prolog programs with negation as failure, unification with the occurs
check, and allowed a restricted but extensible set of built-in predicates. He presented a first-order formal-
isation with axiom schemas of the usual operational semantics of Prolog. A safeness condition included
in termination condition imposes groundness before evaluation of negated goals. He showed soundness
and completeness for termination, success, and failure. The framework also allows partial correctness
properties to be proved by induction w.r.t. the clauses defining predicates, considered as inductive defini-
tions. Some examples will be discussed in Section 3 and Section 4. The logical theory was hard-wired in
an interactive dedicated first-order natural-deduction-based theorem prover called LPTP (Logic Program
Theorem Prover). Stärk implemented LPTP in ISO-Prolog, together with an Emacs user-interface, an
HTML and TEX manager, a detailed user-manual, and a library of predicates for Peano numbers, in-
tegers, lists, sorting algorithms, etc. with numerous proven properties. A copy of LPTP is vailable at
https://github.com/FredMesnard/lptp.

Thirty years later, LPTP is still running on any ISO-Prolog processor, with its initial interface. Today,
formal verification of computer programs is an established discipline within computer science. Nonethe-
less, program verification by interactive theorem proving is still a slow process and requires non-trivial
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skills. On the other hand, during the last three decades, the increase in computing power and the ad-
vances in automated theorem proving have been notable. For instance, TPTP (Thousands of Problems
for Theorem Provers, [30]) is a library of test problems for automated theorem proving. It provides on-
line tools to check the syntax of input problems and apply a bunch of user selected automated theorem
provers. Among them, E [25] and Vampire [16] are two powerful freely available automated theorem
provers, performing very well in many international competitions over the years. Interactive theorem
prover implementers were able to take advantage of these progress by implementing so-called hammers
for their tools, see e.g. [23, 3].

This evolution raises the following questions: can we also use the TPTP FOF Esperanto to formulate
the logic theory Stärk associates to a logic program? Can we use off-the-shelf TPTP provers and obtain
automatic proofs in reasonable time? Can we get an acceptable success rate with such an approach?

The main contribution of this paper is the following. Using FOF (First-Order Form, one of the logic
languages proposed by TPTP, see [31]) as an intermediary language, we describe the first – to the best
of our knowledge – experiment of the use of automated theorem provers, namely E and Vampire, for
Prolog program verification, including termination and partial correctness. We evaluate the approach
over about 400 properties of Prolog programs. Both the compiler applying Stärk’s theory to a given
input Prolog program and its properties to a set of FOF files and the benchmark are publicly available at
https://github.com/atp-lptp/automated-theorem-proving-for-prolog-verification.

We organize the paper as follows. The next section presents a brief summary of the LPTP system.
The third section describes step by step how to compile a Prolog program, its associated LPTP axioms
and a property of interest into a FOF file. Then we present an experimental evaluation, related work and
we conclude.

2 Notation

FOF (First Order Form) is a well-known logic language from TPTP for expressing first-order logic (FOL)
axioms and conjectures. A formula is written fof(name,role,formula ), where name is the name of
the formula, role is either axiom or conjecture and formula is informally defined as follows:

FOL FOF FOL FOF
A∧B A & B ¬p(x) ˜ p(X)
A∨B A | B ∃x.A ?[X] : A
A → B A => B ∀x.A ![X] : A

Numerous examples will appear in the next sections.
Let P be a pure logic program where negative literals may appear in the body of clauses (also called

normal program in [19]). For sake of conciseness, we do not consider built-in predicates (see [29] for a
full treatment) other than the equality =/2. We start with L , the first-order language associated with P.
The goals of L are:

G,H ::= true |fail | s = t | A | \+ G | (G,H) | (G;H) | some x G

where s and t are two terms, x is a variable and A is an atomic goal. The goals of L have the operational
semantics specified by ISO-Prolog [13] assuming the occurs check.

L̂ is the specification language of LPTP. For each user-defined predicate symbol R, L̂ does not
include R, but instead it contains three predicate symbols Rs, R f , Rt of the same arity as R, which respec-
tively express success, failure and termination of R. L̂ also contains a unary constraint for groundness
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gr, expressing that its argument is ground. The formulas of L̂ are:

φ ,ψ ::=⊤ | ⊥ | s = t | R( #»t ) | ¬φ | φ ∧ψ | φ ∨ψ | φ → ψ | ∀xφ | ∃xφ

where #»t is a sequence of n terms and R denotes a n-ary predicate symbol of L̂ . The semantics of L̂ is
the first-order predicate calculus of classical logic.

For any of the user-defined logic procedure R in a logic program P, DP
R(

#»x ) denotes its Clark’s if-
and-only-if completed definition, cf. [5, 19].

For defining the declarative semantics of logic programs, Stärk uses three syntactic operators S, F
and T which map goals of L into L̂ -formulas. Intuitively, SG means G succeeds (any breadth-first
evaluation of G succeeds), FG means G fails (the ISO-Prolog evaluation stops without any answer), and
TG means G terminates (the ISO-Prolog evaluation produces a finite number of answers then stops). The
definition of the operators follows:

SR( #»t ) := Rs(
#»t ) S true :=⊤ S fail :=⊥ S(s = t) := (s = t)

S\+G := FG S(G,H) := SG∧SH S(G;H) := SG∨SH S(some x G) := ∃xSG

FR( #»t ) := R f (
#»t ) F true :=⊥ F fail :=⊤ F(s = t) := ¬(s = t)

F\+G := SG F(G,H) := FG∨FH F(G;H) := FG∧FH F(some x G) := ∀xFG

TR( #»t ) := Rt(
#»t ) T true :=⊤

T fail :=⊤ T(s = t) :=⊤
T\+G := TG∧gr(G) T(G,H) := TG∧ (FG∨TH)
T(G;H) := TG∧TH T(some x G) := ∀xTG

Note that termination requires a safe use of negation, see the definition of T\+G where the goal G has
to be proved terminating and ground at proof time. Finally, we add the definition of gr, which belongs to
the specification language and is needed for defining T\+G:

gr(true) :=⊤ gr((G,H)) := gr(G)∧gr(H)
gr(fail) :=⊤ gr((G;H)) := gr(G)∧gr(H)
gr(s = t) := gr(s)∧gr(t) gr(some x G) := ∃x gr(G)
gr(R(t1, . . . , tn)) := gr(t1)∧ . . .∧gr(tn) gr(\+G) := gr(G)

We refer the reader to the papers of Stärk [26, 27, 28, 29] for a complete presentation of LPTP.

3 Compiling LPTP axioms to FOF

With LPTP, we prove properties of a logic program P w.r.t. its inductive extension IND(P) which in-
cludes Clark’s completion [5] and induction along the definition of the predicates. Stärk shows that the
inductive extension is always consistent and proves various correctness and completeness results w.r.t.
the operational semantics of Prolog [29]. The first-order theory IND(P) (cf. [29], pp. 253–254) is de-
fined by nine axiom schemas which we describe now, along with their translation in FOF. We omit the
fixed point axioms for builtins. Let us also point out that the specification language L̂ of LPTP can be
extended by new function and predicate symbols at a logical level (there is no associated Prolog code).
As shown in [21], such function and predicate definitions can also be compiled into FOF.

3.1 First steps

Let us consider the following logic program ADD as our running example.
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nat(0). add(0,Y,Y).
nat(s(X)) :- nat(X). add(s(X),Y,s(Z)) :- add(X,Y,Z).

We discuss the axioms proposed by Stärk and apply them to the ADD program.

The axioms of Clark’s equality theory

1. f (x1, . . . ,xn) = f (y1, . . . ,yn)→ xi = yi [if f is n-ary and 1 ≤ i ≤ n]

2. f (x1, . . . ,xn) ̸= g(y1, . . . ,ym) [if n ̸= m or f ̸≡ g]

3. t ̸= x [if x occurs in t and t ̸≡ x]

The first two axioms specify some properties of the trees built from the function symbols extracted
from the program under consideration. The third axiom forbids infinite trees. Note that it is actually an
axiom schema, i.e., an infinite set of first order axioms. We will omit it but we stay sound. Here is the
FOF version (see Section 2 for the FOF syntax):

fof(id1,axiom,! [Xx4] : ! [Xx5] : (s(Xx4) = s(Xx5) => Xx4 = Xx5)).
fof(id2,axiom,! [Xx3] : ~ (’0’ = s(Xx3))).

Axioms for gr/1

4. gr(c) [if c is a constant]

5. gr(x1)∧ . . .∧gr(xm)↔ gr( f (x1, . . . ,xm)) [ f is m-ary]

Actually, LPTP deals with non-ground terms and offers a predefined predicate gr/1 that we can consider
as a constraint. This relation is useful for instance for dealing with negation as failure as LPTP only
allows negation by failure for ground goals (see the definition T\+G). Back to our example, here is the
FOF version:

fof(id4,axiom,gr(’0’)).
fof(id5,axiom,! [Xx6] : (gr(Xx6) <=> gr(s(Xx6)))).

The ADD program contains two user-defined predicates, add/3 and nat/1. LPTP considers each user-
defined predicate through three points of view: failure, success and termination. So LPTP creates the
following predicates: add_fails/3, add_succeeds/3, add_terminates/3, and similarly for nat/1.
These three viewpoints are linked with the following axioms, where Rs (resp. R f and Rt) denotes R_-
succeeds/3 (resp. R_fails/3 and R_terminates/3).

Uniqueness axioms and totality axioms

6. ¬(Rs( #»x )∧R f ( #»x )) [if R is a user-defined predicate]

7. Rt( #»x )→ (Rs( #»x )∨R f ( #»x )) [if R is a user-defined predicate]

Axiom 6 says that for any tuple of (possibly non-ground) terms, we cannot have at the same time
success and failure of R. Axiom 7 states that given termination, we have success or failure. Altogether, it
means that for any tuple of terms #»x , assuming termination, either R( #»x ) succeeds or (exclusively) R( #»x )
fails. So for our example, we get:

fof(ida6,axiom,! [Xx7,Xx8,Xx9] :
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~ ((add_succeeds(Xx7,Xx8,Xx9) & add_fails(Xx7,Xx8,Xx9)))).
fof(ida7,axiom,! [Xx7,Xx8,Xx9] :

(add_terminates(Xx7,Xx8,Xx9) =>
(add_succeeds(Xx7,Xx8,Xx9) | add_fails(Xx7,Xx8,Xx9)))).

fof(idn6,axiom,! [Xx10] :
~ ((nat_succeeds(Xx10) & nat_fails(Xx10)))).

fof(idn7,axiom,! [Xx10] :
(nat_terminates(Xx10) =>
(nat_succeeds(Xx10) | nat_fails(Xx10)))).

Fixed point axioms for user-defined predicates R

8. Rs( #»x )↔ SDP
R(

#»x ), R f ( #»x )↔ FDP
R(

#»x ), Rt( #»x )↔ TDP
R(

#»x )

We recall that DP
R(

#»x ) denotes the definition of the completion [5] of the user-defined procedure R( #»x ) in
the logic program P. In the previous section, we saw how to apply the operator S, F and T to formulas.
So for instance, the first equivalence Rs( #»x )↔ SDP

R(
#»x ) defines Rs( #»x ). Back to our running example, we

get:

fof(idns8,axiom,! [Xx1] : (nat_succeeds(Xx1) <=>
(? [Xx2] : (Xx1 = s(Xx2) & nat_succeeds(Xx2)) | Xx1 = ’0’))).

fof(idnf8,axiom,! [Xx1] : (nat_fails(Xx1) <=>
(! [Xx2] : (~ (Xx1 = s(Xx2)) |

nat_fails(Xx2)) & ~ (Xx1 = ’0’)))).
fof(idnt8,axiom,! [Xx1] : (nat_terminates(Xx1) <=>

(! [Xx2] : ((~ (Xx1 = s(Xx2)) | nat_terminates(Xx2)))))).

and similarly for add/3.

Finally, for any property of the form ∀ #»x [Rs( #»x )→ φ( #»x )], where R( #»x ) is a user-defined procedure
and φ( #»x ) an L̂ -formula, we have an induction schema. The interactive prover LPTP is able to dy-
namically generate an induction axiom on demand while the user interacts with it. In our approach, we
statically generate the induction axiom once from the conjecture to be proved, if the conjecture can be
easily rewritten as required. This is a potential source of imprecision, but again we stay sound. Let
us examine a simple case. It is exactly what happens using LPTP, which slightly generalizes [29]. By
directly recursive user-defined predicate in the box below, we forbid mutual recursive definitions. Of
course, LPTP is able to handle mutually recursive properties, see [26] for some examples.
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A (simplified) induction schema for a user-defined predicate R

Let R be a directly recursive user-defined predicate and let φ( #»x ) be an L̂ -formula such that the
length of #»x is equal to the arity of R.
Let sub(φ( #»x )/R) be the formula to be proven ∀ #»x (Rs( #»x )→ φ( #»x )).
Let closed(φ( #»x )/R) be the formula obtained from ∀ #»x (SDP

R(
#»x )→ Rs( #»x )) by replacing

• Rs( #»x ) by φ( #»x ) on the right of →,

• all occurrences of R( #»t ) appearing on the left of → by φ(
#»t )∧R( #»t ).

Then the induction axiom is the following formula:

9. closed(φ( #»x )/R)→ sub(φ( #»x )/R)

Let us apply this axiom to the following property, informally stated as: for any term x, if nat(x)
then add(x,0,x). Expressed in LPTP, it gives: for any term x, if nat_succeeds(x) then add_-
succeeds(x,0,x), which is exactly the formula sub(φ( #»x )/R) of axiom 9. So R ≡ nat, Rs ≡ nat_-
succeeds and φ( #»x )≡ add_succeeds(x,0,x).

For the left-hand side of axiom 9, we start from

∀x(SDADD
nat (x)→ nat_succeeds(x))

We have DADD
nat (x)≡ x= 0∨∃y(x= s(y)∧nat(y)). We replace nat(y) by nat(y)∧add_succeeds(y,0,y).

We replace nat_succeeds(x) by add_succeeds(x, 0,x). We get: ∀x (S [x = 0∨∃y(x = s(y)∧nat(y)∧
add_succeeds(y,0,y))]→ add_succeeds(x,0,x)). We apply S and obtain: ∀x([x = 0∨∃y(x = s(y)∧
nat_succeeds(y)∧add_succeeds(y,0,y))]→ add_succeeds(x,0,x)).

Summarizing, in FOF, associated with the property to be proved:

fof(lemma,conjecture,
! [Xx] : (nat_succeeds(Xx) => add_succeeds(Xx,’0’,Xx))).

we obtain the following induction axiom:

fof(induction,axiom,(
! [Xx] :

((? [Xx2] : (Xx = s(Xx2) & (nat_succeeds(Xx2)
& add_succeeds(Xx2,’0’,Xx2)))

| Xx = ’0’) => add_succeeds(Xx,’0’,Xx))
=>

! [Xx] : (nat_succeeds(Xx) => add_succeeds(Xx,’0’,Xx)))).

We can gather all the 15 axioms, including the axioms defining add_success/3, add_fails/3, and
add_terminates/3 and the conjecture plus its induction axiom in a file, say test.fof and submit it to
the E prover or to Vampire. Both systems will find a refutation in a fraction of a second on a standard
laptop.

It allows us to conclude for any term x, if nat(x) then add(x,0,x) is true. Operationally, for any
natural number n, in the Prolog search tree corresponding to the goal add(sn(0),0,sn(0)), the empty
clause appears. Assuming termination, which will be shown later, it means that the user will get (at least)
one positive answer for the query :- add(sn(0),0,sn(0)). when executed with any ISO-Prolog system.

Here’s the manual proof of the same property in its LPTP version (a Prolog file), followed by its TEX
version produced by LPTP. Using the interactive LPTP Emacs mode, we began this proof by invoking the
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ind tactic, asking for an inductive proof. Both the base case and the inductive case were automatically
generated and completed by LPTP.
:- lemma(add:x_0_x, all [x]: succeeds nat(?x) => succeeds add(?x,0,?x),
induction([all x: succeeds nat(?x) => succeeds add(?x,0,?x)],
[step([],[],[],succeeds add(0,0,0)),
step([x], [succeeds add(?x,0,?x), succeeds nat(?x)], [],
succeeds add(s(?x),0,s(?x)))])).

Lemma [add:x_0_x] ∀x(Snat(x)→ Sadd(x,0,x)).
Proof.
Induction0: ∀x(Snat(x)→ Sadd(x,0,x)).

Hypothesis1: none.
Conclusion1: Sadd(0,0,0).
Hypothesis1: Sadd(x,0,x) and Snat(x).
Conclusion1: Sadd(s(x),0,s(x)). ⊔⊓

3.2 A second property

Now let us consider the following property: for any x, y and z such that nat(x), nat(y) and add(s(x),y,z),
we have add(x,s(y),z). Let us first assert the previous property as an axiom, which can now be freely
used by the automated prover, then we have our new conjecture:
fof(’lemma-(add:x_0_x)’,axiom,

! [Xx] : (nat_succeeds(Xx) => add_succeeds(Xx,’0’,Xx))).

fof(’lemma-(add:succ)’,conjecture,
! [Xx,Xy,Xz] : (((nat_succeeds(Xx) & nat_succeeds(Xy))

& add_succeeds(s(Xx),Xy,Xz))
=> add_succeeds(Xx,s(Xy),Xz))).

In order to generate an induction axiom for this property, we first rewrite it in the form ∀ #»x [Rs( #»x )→
φ( #»x )] and we apply the simplified induction schema for user-defined predicates. It gives:
fof(induction,axiom,(
! [Xx] :

((? [Xy25] :
(Xx = s(Xy25) & (nat_succeeds(Xy25)
& ! [Xy,Xz] : ((add_succeeds(s(Xy25),Xy,Xz)

& nat_succeeds(Xy))
=> add_succeeds(Xy25,s(Xy),Xz))))

| Xx = ’0’) =>
! [Xy,Xz] : ((add_succeeds(s(Xx),Xy,Xz) & nat_succeeds(Xy))

=> add_succeeds(Xx,s(Xy),Xz)))
=> ! [Xx] : (nat_succeeds(Xx)

=> ! [Xy,Xz] : ((add_succeeds(s(Xx),Xy,Xz) & nat_succeeds(Xy))
=> add_succeeds(Xx,s(Xy),Xz))))).

Again, we can gather all axioms, the conjecture and its induction axiom in a file and submit it to
Vampire, which will find a refutation in about one minute.
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3.3 Commutativity of Peano addition

We are now equipped to consider commutativity of Peano addition: for any x,y,z, if add(x,y,z) then
add(y,x,z). Of course, stated this way, the property is false. We need to enforce that x and y are Peano
numbers. So first we add our two previous properties as axioms. Here is our new conjecture, associated
with its induction axiom:

fof(’theorem-(add:commutative)’,conjecture,
! [Xx,Xy,Xz] : (((nat_succeeds(Xx) & nat_succeeds(Xy))

& add_succeeds(Xx,Xy,Xz))
=> add_succeeds(Xy,Xx,Xz))).

fof(induction,axiom,
(! [Xx] :

((? [Xy26] : (Xx = s(Xy26) & (nat_succeeds(Xy26)
& ! [Xy,Xz] : ((add_succeeds(Xy26,Xy,Xz) & nat_succeeds(Xy))
=> add_succeeds(Xy,Xy26,Xz))))
| Xx = ’0’) =>

! [Xy,Xz] : ((add_succeeds(Xx,Xy,Xz) & nat_succeeds(Xy))
=> add_succeeds(Xy,Xx,Xz)))

=>
! [Xx] : (nat_succeeds(Xx) =>

! [Xy,Xz] : ((add_succeeds(Xx,Xy,Xz) & nat_succeeds(Xy))
=> add_succeeds(Xy,Xx,Xz))))).

The conjecture is proved in a fraction of a second by Vampire.

3.4 Some termination proofs

Finally, let us prove some termination properties about add/3. It is immediate to see that the Prolog
proof of add(x,y,z) terminates if nat(x) or nat(z). We prove this by stating two lemmas which we will
gather in a theorem. Here are the LPTP properties and their proofs (we omit the second one).

Lemma [add:term:1] ∀x,y,z(Snat(x)→ Tadd(x,y,z)). Proof.

Induction0: ∀x(Snat(x)→∀y,z Tadd(x,y,z)).

Hypothesis1: none.

Conclusion1: ∀y,z Tadd(0,y,z).

Hypothesis1: ∀y,z Tadd(x,y,z) and Snat(x).

Conclusion1: ∀y,z Tadd(s(x),y,z). ⊔⊓

Lemma [add:term:3] ∀x,y,z(Snat(z)→ Tadd(x,y,z)). Proof. Similar. ⊔⊓
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Theorem [add:term] ∀x,y,z(Snat(x)∨Snat(z)→ Tadd(x,y,z)). Proof.
Assumption0: Snat(x)∨Snat(z).

Case1: Snat(x). Tadd(x,y,z) by Lemma 1 [add:term:1].
Case1: Snat(z). Tadd(x,y,z) by Lemma 2 [add:term:3].
Hence1, in all cases: Tadd(x,y,z).

Thus0: Snat(x)∨Snat(z)→ Tadd(x,y,z). ⊔⊓
Each of the three statements is proved in a fraction of a second by Vampire. Our compiler generates

an instance of the induction axiom for each lemma and not for the theorem. For instance, here is the first
conjecture and its induction axiom:

fof(’lemma-(add:term:1)’,conjecture,
! [Xx,Xy,Xz] : (nat_succeeds(Xx) => add_terminates(Xx,Xy,Xz))).

fof(induction,axiom,(
! [Xx] :

((? [Xx2] : (Xx = s(Xx2) & (nat_succeeds(Xx2)
& ! [Xy,Xz] : add_terminates(Xx2,Xy,Xz)))

| Xx = ’0’)
=> ! [Xy,Xz] : add_terminates(Xx,Xy,Xz))

=>
! [Xx] : (nat_succeeds(Xx) => ! [Xy,Xz] : add_terminates(Xx,Xy,Xz)))).

4 Experimental Results

We applied the schema explained in the previous sections to various libraries available with LPTP which
we summarize now. The library nat defines some basic Peano relations with the expected properties. The
library ack defines the relational version of the Ackermann function with three properties (see below).
The library gcd defines a version of the greatest common divisor relation, with its full correctness proof.
The library int defines integers. The library list proposes some elementary relations about lists with
their properties. The library suffix defines two versions of the sublist relation, one as the prefix of a
suffix, the other as the suffix of a prefix, and shows that the two versions are equivalent w.r.t. termination,
success and failure. Similarly, the library reverse defines the two classical versions of the reverse
relation, one with the append relation, the other with an accumulator and shows their full equivalence.
The library permutation defines the permutation relation with some useful properties for the correctness
proofs of the sorting algorithms defined in the libraries sort and mergesort. The library taut defines a
tautology checker for propositional formulas, together with its correctness proof (see [27] for a detailed
description).

How do we process such files? Given a program from the LPTP library, we first enumerate the
requirements for trying to prove the properties listed in its associated LPTP proof file. Requirements
are the logic program P and the associated LPTP proof file. If P depends on other logic programs, we
must include them. If the associated LPTP proof file uses other proof files, we must include them as
well. We assume there is no circularity such as assuming a lemma before trying to prove it. We use these
requirements to build a target logic program P′ and a target LPTP proof file. Then P′ is compiled into the
FOF version of IND(P′). Each fact (i.e., lemma, corollary or theorem) is compiled as a FOF conjecture
(possibly with its induction axiom) and stored in a single file. Such file also contains the logic theory
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IND(P′) compiled as FOF axioms. Previously processed FOF conjectures are converted as FOF axioms
as well. As a result, we produce as many FOF files as there are facts in the initial LPTP proof file. At
last, both the E Theorem Prover and Vampire are applied to each FOF file with the commands vampire
–mode casc -m 16384 –cores 7 -t $TO $FILE and eprover –delete-bad-limit=2000000000
–definitional-cnf -s –auto-schedule=8 –proof-object –cpu-limit=$TO $FILE.

We gather the results in Table 1. The first column gives the library names. The second column gives
the number of (lemmas/corollaries/theorems) of the associated proof file. The remaining nine columns
can be divided in three groups. On a MacBook Pro, 8 cores, M2, 24 GB, macOS Sonoma, the first group
gives the success rate for a 1 second timeout for the E prover (column E-1s), Vampire (column V-1s) and
for the combination of the two provers (column EV-1s). The second group (resp. third group) gives the
success rate for a timeout of 10 seconds (resp. 60 seconds).

lib # E-1s V-1s EV-1s E-10s V-10s EV-10s E-60s V-60s EV-60s
nat 91 70% 88% 88% 76% 95% 95% 78% 97% 97%
gcd 11 45% 45% 45% 45% 45% 45% 45% 45% 45%
ack 3 33% 33% 33% 33% 33% 33% 33% 33% 33%
int 67 76% 82% 87% 79% 88% 90% 79% 91% 91%
list 84 75% 94% 94% 80% 96% 96% 81% 99% 99%
suffix 31 94% 100% 100% 94% 100% 100% 97% 100% 100%
reverse 25 72% 88% 88% 84% 100% 100% 84% 100% 100%
permut. 42 48% 71% 71% 60% 79% 81% 62% 86% 86%
sort 42 45% 62% 62% 50% 74% 74% 55% 76% 76%
merges. 24 79% 88% 88% 79% 92% 92% 79% 100% 100%
taut 43 65% 81% 81% 70% 84% 84% 74% 84% 84%

Table 1: Experimental Evaluation

Let us comment these results. The gcd Prolog file contains a mutually recursive definition for the
predicates gcd/3 and gcd_leq/3. Proving properties of such definitions is currently out of scope of our
translation schema.

The ack proof file contains the following three properties. The first one is successfully checked. The
last two ones cannot be proved with our simplified induction schema. Indeed, the LPTP proofs use an
induction inside the top level induction, which is out of scope of our translation schema.

Lemma [ackermann:types] ∀m,n,k (Sackermann(m,n,k)∧Snat(n)→ Snat(k)).

Lemma [ack:existence] ∀m,n(Snat(m)∧Snat(n)→∃k Sackermann(m,n,k)).

Lemma [ack:termination] ∀m,n,k (Snat(m)∧Snat(n)→ Tackermann(m,n,k)).

5 Related Work

There is quite a few Prolog verification frameworks, see e.g. [7, 10, 2, 24] and more recently [8]. Most
of them aim at paper and pencil proofs. Although they may offer interesting and elegant methods, the
validity of the proofs relies on the usual mathematical writing in natural language, and proofs are not
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automatically checked. In our opinion, writing and verifying such hand-written proofs can be a time
consuming and error-prone process compared to a push-button approach as the one we present here.

Recently, some quite interesting works have been reported on including datatypes, taking into ac-
count the acyclicity of their values, and induction in modern first-oder theorem provers, see, e.g., [4, 12].
We have not yet tested these extensions within our framework.

For Answer Set Programming (a declarative specification language with a Prolog syntax, oriented
towards knowledge representation and search problems), [9] describes an approach toward verification
in which Vampire checks the equivalence of Answer Set programs.

Some programming languages include automated verification tools by design. For example, Dafny
[17] makes heavy use of SMT solving. The Why3 system [11] allows to export verification conditions
to many automatic and interactive theorem provers.

An earlier account of the integration of automated and interactive theorem proving is described in [1].
As already announced in the introduction, most interactive theorem provers now include the possibility
to run some automated theorem provers. Starting with Isabelle, [20, 23, 3, 22], hammers can be found in
e.g., ACL2, [14], Coq, [6] and Lean, [18].

6 Conclusion

Let us recall the questions of the introduction and propose our answers after this experiment:

• Can we also use the TPTP FOF Esperanto to formulate the logic theory Stärk associates to a logic
program? Yes. One axiom schema was not implemented: Axiom 3 which forbids rational terms.
Another one was partially implemented: Axiom 9 for induction. Actually an inductive argument
inside an inductive proof is not possible with our approach. We lose precision but in both cases we
stay sound.

• Can we use off-the-shelf TPTP provers and obtain automatic proofs in reasonable time? Yes.
We use Vampire and the E prover with their most basic options, essentially a timeout. Although
Vampire seems to find refutations faster, the E prover can sometimes find proofs while Vampire
cannot conclude within the time limit. Hence the two provers are complementary. For the moment,
we did not try advanced features offered by the provers like the one proposed in [15].

• Can we get an acceptable success rate with such an approach? Yes. With the E prover and Vampire
running in parallel, the average success rate we get from our benchmark is about 83% for a one
minute timeout on a standard laptop.

Compared to the efforts one spends while manually, laboriously elaborating certain proofs with an
interactive theorem prover, the use of state of the art automated theorem provers is clearly a time-saver.
We did not expect such a good success rate for this first experiment. We think there are various reasons
that can explain it. Clearly, the computing power of our current laptops is huge and automated theorem
provers have been largely improved. Also, thanks to Stärk’s ideas, the clean and simple semantics of
both the pure subset of Prolog targeted by LPTP and the LPTP specification language – essentially first-
order logic – implies a straightforward translation to FOF. Last but not least, Stärk’s art of proving, by
slicing the proofs of the LPTP library properties into manageable lemmas, certainly has an impact on the
success rate we obtain.

Finally, there is room for improvement of the presented work, which can be considered as a first
approach towards a hammer for LPTP according to [3]. The first step of a hammer – the premise selector,
which selects subparts of the LPTP library potentially useful for a proof – and the third step – the proof
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reconstruction module, which rewrites the proof found by the automatic prover in the LPTP proof format
– are yet to be investigated.
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