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Abstract Static analyses based on denotational semantics can naturally model functional
behaviours of the code in a compositional and completely context and flow sensitive way.
But they only model the functional i.e., input/output behaviour of a program P , not enough if
one needs P ’s internal behaviours i.e., from the input to some internal program points. This
is, however, a frequent requirement for a useful static analysis. In this paper, we overcome
this limitation, for the case of mono-threaded Java bytecode, with a technique used up to now
for logic programs only. Namely, we define a program transformation that adds new magic
blocks of code to the program P , whose functional behaviours are the internal behaviours
of P . We prove the transformation correct w.r.t. an operational semantics and define an
equivalent denotational semantics, devised for abstract interpretation, whose denotations for
the magic blocks are hence the internal behaviours of P . We implement our transformation
and instantiate it with abstract domains modelling sharing of two variables, non-cyclicity of
variables, nullness of variables, class initialisation information and size of the values bound
to program variables. We get a static analyser for full mono-threaded Java bytecode that is
faster and scales better than another operational pair-sharing analyser. It has the same speed
but is more precise than a constraint-based nullness analyser. It makes a polyhedral size
analysis of Java bytecode scale up to 1300 methods in a couple of minutes and a zone-based
size analysis scale to still larger applications.

Keywords Magic-sets · Abstract interpretation · Static analysis · Denotational semantics

1 Introduction

Static analysis determines at compile-time properties about the run-time behaviour of com-
puter programs. It is used for optimising their compilation [1], deriving loop invariants and
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for program verification. Correctness is usually mandatory for static analysis and proved
w.r.t. a reference semantics of the analysed language. Abstract interpretation [15] shows
here its strength since it derives static analyses from the semantics itself, so that they are by
construction correct or even optimal. The derived analyses inherit semantical features such
as compositionality, context and flow sensitivity and can only model program properties that
can be formalised in terms of the reference semantics. For Java bytecode, possibly down-
loaded from insecure networks in a machine-independent, non-optimised format, the source
code is not available so that a direct analysis of the bytecode is desirable. Static analysis for
Java bytecode is however more difficult than for Java, since the former uses an operand stack
of temporary values and its code is not explicitly structured. Moreover, analyses that per-
form well on Java might be quite imprecise for Java bytecode, as formally discussed in [28].
Nevertheless, the analysis of Java bytecode is considered an important topic at the moment,
since it is often used in contexts were verification of security properties is desirable [9, 11,
22, 36, 48].

Denotational static analysis Given a piece of code c, denotational semantics provides
a denotation i.e., a function from the input state provided to c (the computational state
before c is executed) to the resulting output state (the computational state after c has been
executed), in the style of the denotation of commands at page 58 of [49], that we copy as
our Definition 6. Denotational semantics has some good points that speak in favor of its use
for static analysis instead, for instance, of an operational semantics:

– if method m (constructor, function, procedure. . . ) is called at program points p1, . . . , pn,
denotational analyses compute m’s denotation only once and then extend it at each pi .
Hence they can be very fast for analysing complex software where n is often large. Analy-
ses based on operational semantics process instead m from scratch for every pi . Memo-
isation, which takes note of the input states for which m has been already analysed and
caches the results, is a partial solution to this problem, since each pi often calls m with
different input states;

– denotations i.e., functions from input to output, can be represented as Boolean functions,
namely, logical implications from the properties of the input to the properties of the out-
put. Boolean functions have an efficient implementation as binary decision diagrams [10].
Hence there is a potentially very efficient implementation for many denotational static
analyses, which is not always the case for operational static analyses;

– denotational semantics is naturally context and flow sensitive i.e., it can distinguish differ-
ent invocations of the same method from different program points and can distinguish the
values of the same variable at different program points. This contributes to the precision
of the analyses;

– denotational semantics is compositional i.e., the denotation of a piece of code is computed
bottom-up from those of its subcomponents (commands or expressions). The derived sta-
tic analyses are hence compositional, an invaluable simplification when one formalises,
implements and debugs them;

– denotational semantics does not use program counters, nor activation stacks nor return
points from calls. Hence it is simpler to abstract than an operational semantics. Note
that the operand stack of the Java Virtual Machine is still modelled by a denotational
semantics;

– denotational semantics models naturally properties of the functional behaviour of the
code, such as information flows [36] or relational information [26, 27, 42]. Operational
semantics is very awkward there.
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public class List {
private Element head; private List tail;

public List(Element head, List tail) {
this.head = head; this.tail = tail; }

public List clone() {
if (tail == null) return new List(head, null);
else return new List(head, tail.clone()); }

public List deepClone() {
if (tail == null) return new List(head.copy(), null);
else return new List(head.copy(), tail.deepClone()); }

public abstract static class Element {
public abstract Element copy(); }

}

public class Record extends List.Element {
private int amount;

public Record(int amount) {
this.amount = amount; }

public void update(int amount) {
this.amount = amount; }

public List.Element copy() {
return new Record(amount); }

}

public class Main {
public static void main(String[] args) {

List l = new List(new Record(20), null);
List l1 = l.clone(), l2;
try { l2 = l.deepClone(); }
catch (NullPointerException e) {}

}
}

Fig. 1 Our running example

There is however a major drawback in the use of traditional denotational semantics to
build static analyses. Namely, denotations only model the functional i.e., input/output be-
haviour of the code: they do not model the state of the computation at internal program
points i.e., before the execution of the code has finished; we call localised this missing in-
formation about the input/internal program points behaviours. The derived static analyses
inherit this drawback, which makes them of little practical use, with some notable excep-
tions, such as analyses which are not localised at internal program points, as for instance
strictness analysis. Consider for instance the Java code in Fig. 1, which implements a list of
mutable records. Those lists provide two cloning methods: clone returns a shallow copy of
a list while deepClone performs a deep copy, where also the records are copied. Method
main builds a list of one element and then calls clone and deepClone. We have used
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a list of one element in order to keep the subsequent examples simple, but nothing would
change by using longer lists. In main:

1. the return value of clone shares its record with the list l. Moreover, it is not a cyclical
list, since l was not a cyclical list;

2. the return value of deepClone does not share anything with l nor with l1, since it is
a deep copy, and it is not cyclical;

3. the calls head.copy() and the recursive call tail.deepClone() inside method
deepClone() always find a non-null receiver bound to head and tail, respectively.
Hence the catch statement in method main is not actually needed.

Sharing analysis of pairs of variables, cyclicity analysis of variables and nullness analy-
sis of variables, based on denotational semantics and implemented with a pair-sharing do-
main [38], a cyclicity domain [35] and a nullness domain [41], cannot prove any of these
results, since 1 needs information at the internal program point of main just after the call
to clone, 2 needs information at the internal program point of main just after the call to
deepClone and 3 needs information at the internal program point of deepClone just
before the calls to copy and deepClone.

Our contributions Our contributions here are the solution of the above limitation of deno-
tational static analyses through the definition of a magic-sets transformation for Java byte-
code that lets us apply static analyses for mono-threaded Java bytecode based on denota-
tional semantics and developed through abstract interpretation, still getting localised infor-
mation at internal program points; the proof of correctness of our magic-sets transformation
and its implementation inside our JULIA denotational analyser [47]. To evaluate the resulting
analysis framework, we instantiate it with five domains for pair-sharing [38], cyclicity [35],
nullness [39, 41], class initialisation and size analysis of program variables [42, 43]. We
show that the points 1, 2 and 3 above are solved by the first three of these analyses. We also
compare our pair-sharing analysis with an operational analyser for pair-sharing [29]. JULIA

is faster and scales much better. We compare our nullness analysis with the domain in [41]
with that in [20], based on a constraint-based approach, showing that they scale similarly but
ours is more precise. We implement our nullness analysis with the domain in [39], showing
that the results are still more precise but the analysis becomes more expensive. We compare
our size analysis, using the domain in [43], with a similar one inside the CLOUSOT analyser
for .NET code [7] and show that it scales in a similar way.

This paper is organised as follows. Section 2 gives an informal introduction to our magic-
sets transformation, which is then formalised in Sect. 3. Section 4 defines an operational se-
mantics of Java bytecode which allows us, in Sect. 5, to prove the correctness of the magic-
sets transformation. Section 6 defines a denotational semantics of Java bytecode and Sect. 7
proves it equivalent to the operational semantics of Sect. 4. Section 8 presents an example of
abstraction of our concrete denotational semantics. The content of this last section has been
already published in [41] and we refer to that paper for its proof of correctness. Section 9
shows the experiments with the magic-sets transformation applied to the sharing, cyclicity,
nullness, class initialisation and size analysis of Java bytecode, comparing the results with
similar analyses. Section 10 concludes the paper. A preliminary version of this paper ap-
peared in the 2007 Static Analysis Symposium [33]. Compared to that previous conference
publication, this journal version includes the treatment of exceptions and of virtual calls,
provides proofs, has a larger introduction, much more examples and expanded discussions.
The experiments with class initialisation analysis are also new.
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Related work Java bytecode is an object-oriented language. Hence we model late bind-
ing, inheritance and overriding by using a list of possible run-time targets after each call
bytecode, which are filtered by suitable receiver_is bytecodes put at the beginning of
instance methods. The implementation of an instance method is only executed when its re-
ceiver has a class from where dynamic look-up of the method signature actually leads to that
implementation. This compilative approach to late-binding is also used in [2], although the
formalisation is different.

A possible solution to the localisation limitation of denotational semantics is to define
a denotational trace semantics, in the style of what has been already done for operational
semantics [37]. Traces express the sequence of states during the execution of the program
and hence contain information about the states arising at internal program points. However,
this obliges one to deal with complex semantical structures that implement traces of states,
which results in very slow static analyses. The termination of the analyses is not guaranteed
even when the domain is finite, since traces can grow indefinitely longer. Some form of nor-
mal form must be devised for the traces in order to keep the computation finite. Convergence
can be forced by using a widening operator on traces, but heavy computations over traces
are anyhow required and the definition of the widening operator is not trivial.

Another solution is to look, between the traditional (input/output) denotational seman-
tics and a trace-based semantics, for an intermediate denotational semantics. An example is
the watchpoint semantics defined by one of the authors of this paper [40]. There, traces are
projected over the states occurring at a fixed set of program points, called watchpoints. The
abstraction of those traces is computed through a relational domain binding properties at the
input of the traces to properties at the output of the traces and at the watchpoints. Since the
set of watchpoints is finite, the computation of the abstract analyses is finite when the ab-
stract domain is finite. However, abstract denotations become very complex objects, dealing
with a large amount of variables, because of the high number of watchpoints. Experiments
have consequently shown that this does not let analyses scale to large programs.

A further possibility is the transformation of the program into static single assignment
form before the analysis is performed. This means that a new fresh variable x ′ is introduced
wherever a program variable x is updated, so that different values of x at different pro-
gram points can be recovered from x itself or from x ′, depending on the program point. For
instance, the sequence of assignments

x:=2
x:=x*3

is first transformed into

x:=2
x’:=x*3

and then analysed through any kind of static analysis. A denotational analysis is well pos-
sible and gives information at internal program points: the value of x between the two as-
signments is the value of x at the end of the sequence, since x is not updated anymore
by the second statement. To the best of our knowledge, this technique has been applied to
Java bytecode in [2] only, followed by an operational analysis. A static single assignment
transformation works well for relatively small methods. For larger methods, the number of
assignments and hence of new extra variables grows so much that static analyses become
too expensive: for most static analyses, the cost grows with the number of variables (this is
the case of our cyclicity and sharing analysis, but also of size analyses based on polyhedra
or other relational domains). This is very problematic in the case of Java bytecode, where
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the operand stack is updated by most bytecodes, so that many extra variables are introduced
by the transformation. In [2], for instance, this problem is faced and (partially) solved by
program simplifications and by removing variables that are not significant for the kind of
analysis that is performed. But not all extra variables can be removed this way. Our magic-
sets transformation, instead, does not increase the number of variables used in the denota-
tions. Another problem of static single assignment transformations is that the analyses can
be easily proved to be correct w.r.t. the transformed program, but relating this correctness
to the original, untransformed program requires an extra proof, dealing with tedious vari-
able renamings. This extra proof becomes still more complex if some variables have been
simplified away. Our magic-sets transformation is proved correct in Sect. 5 for all abstract
analyses and is relatively simple since the bytecode is not transformed by our magic-sets
transformation (only the structure of the blocks of bytecode is transformed); the developer
of a new analysis will prove the correctness of its analysis as it is traditional in abstract in-
terpretation [15] and need not even know that a magic-sets transformation is used. Finally,
a single static assignment transformation is fine for property of program variables or of the
part of the heap that is reachable from each program variable, such as cyclicity, sharing,
nullness and size. But it does not work for other properties such as the set of classes that
have been already initialised at a given program point (so that their class initialiser is not
called anymore, see [25]). Such analysis abstracts the concrete states into the set of classes
that have been initialised in those states and does not consider the program variables, so
that a single static assignment transformation does not help. That analysis can be used with
our magic-sets transformation instead, which works for any abstract domain, without any
constraint.

Abstract interpretation has been applied to imperative programs since it was born [15]. In
the subsequent years, it has been mainly applied, however, to functional and logic languages
and denotational semantics was one of the standard reference semantics. The above problem
about internal program points was solved with a magic-sets transformation of the program
P , similar to ours, specific to logic languages, which adds extra magic clauses whose func-
tional behaviours are the internal behaviours of P [5, 8, 13]. Codish [12] kept the overhead
of the transformation small by exploiting the large overlapping between the clauses of P

and the new magic clauses. Abstract interpretation has moved later towards mainstream im-
perative languages that use dynamic data structures allocated in a heap, and finally towards
low-level programming languages such as Java bytecode. In that context, operational seman-
tics has been the reference semantics. This was a consequence of the intuitive definition of
operational semantics, very close to an actual implementation of the run-time engine of the
language. Recently, the importance of denotational analyses for imperative languages has
been rediscovered, when it became necessary to express relational properties of program
variables through (some fashion of) polyhedral domains [26, 42] or class invariants [27].
However, those analyses were designed for relational properties (between input and output
of methods and programs) rather than for properties localised at internal program points, for
which magic-sets are needed.

It should be clear that, although we advocate the importance of the application of deno-
tational semantics for abstract interpretation, we acknowledge as well that other approaches
have their good points. For instance, there are formulations of operational semantics which
allow the definition of multi-variant analyses [29]. This means that the analysis of a method
can be different on the basis of the context from where it is called (context-sensitivity) but
also on the basis of the history of the execution until the point of call. Operational semantics
is also the basis of verification techniques based on model-checking, that have shown to be
very effective in practice (see, for a notable example, the case of termination analysis [14]).
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Fig. 2 The Java bytecode of the method main in Fig. 1

Axiomatic semantics is (more or less explicitly) the basis for verification techniques based
on program annotations, performed through abstract interpretation [7] or through deductive
verification by theorem proving [6, 23, 24, 31]. This often leads to the verification of very
complex program properties, although a preliminary annotation is needed and the analysis
might require human intervention. Moreover, a thorough program annotation is complex and
error-prone and, when theorem provers are used, they often run out of memory on very large
programs.

Our magic-sets transformation has similarities with the continuation-passing style (CPS)
transformation [19, 44, 45] used in the functional programming setting. It is known as a
folklore result in abstract interpretation that the CPS transformation and the disjunctive
completion [16] of an abstract domain are equivalent, in the sense that any abstraction of
the CPS transformation of a program P w.r.t. an abstract domain D coincides with the ab-
straction of P itself w.r.t. the disjunctive completion of D. Hence, it is sensible to expect that
a domain refinement operator might exist, such that the analysis of a program P with the
refined domain yields the same information as the analysis of the magic-sets transformation
of P with the original, unrefined domain.
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2 Our magic-sets transformation for Java bytecode

In this section we describe, informally, our representation of the Java bytecode as blocks of
code, identical to that used in [43], and our magic-sets transformation. We give an intuitive
explanation of why input/output information computed for that transformation is actually
information at internal points of the original, untransformed program. Subsequent sections
will formalise that statement and prove its correctness.

2.1 Java bytecode as blocks of code

Figure 2 reports the Java bytecode for the method main in Fig. 1, after a light preprocess-
ing performed by our JULIA analyser. This preprocessing transforms the linear sequence of
bytecodes into a graph of basic blocks [1]. Moreover, the code in Fig. 2 is typed i.e., in-
structions are decorated with the type of their operands, and resolved i.e., method and field
references are bound to their corresponding definition(s). For type inference and resolution
we use the official algorithms [25]. Bytecode instructions that might throw an exception oc-
cur at the end of a block linked to another block starting with a catch instruction. That
instruction is only executed when the Java Virtual Machine has just incurred into an ex-
ception (see later for a formal definition). Figure 2 shows that, when an exception handler
for the exception exists, it starts with an instruction exception_is for the right kind
of exception. Default exception handlers, instead, throw back the exception to the caller of
the method. Our analyser builds this representation of the exceptional flow automatically,
from the low-level information about exception handlers coded into the .class file [25].
There is no return bytecode in our formalisation. We just assume that a method ends at
any block with no outgoing arrows, with the return value (if any) as the only element left
on the stack (which is otherwise empty). Method main is static. Instead, method copy
of class Record in Fig. 1 is an instance method, that is, it has a receiver object which is
stored, by default, in local variable 0. Figure 3 shows the Java bytecode for that method. It
has only a default exception handler that throws back all exceptions to the caller. Note the
receiver_is bytecode, which is put at the beginning of instance methods. It specifies the
run-time class of the receiver. Namely, in Fig. 3, it tells that this method is executed only with
a receiver of class Record. The enumeration of classes that follow the receiver_is is
built from the class hierarchy of the program. If, for instance, the program included a sub-
class SubRecord of Record that does not redefine method copy, then a receiver_is
Record, SubRecordwould be used in Fig. 3. But if SubRecord redefined copy, then
a receiver_is Record would be used in Fig. 3 and a receiver_is SubRecord
would be used at the beginning of the code of copy inside SubRecord. Note the use of a
block containing nop as final block of the method, that is needed whenever the last bytecode
of the method might throw an exception (strictly speaking, this extra block is only needed
if the last bytecode of the method is inside an exception handler. For simplicity, we do not
distinguish that situation).

A method or constructor implementation in class κ , named m, expecting parameters of
types �τ and returning a value of type t is written as κ.m(�τ) : t . The call instruction imple-
ments the four invoke’s available in Java bytecode. It reports, as an explicit list, a superset
of the target method or constructor implementations that it might call at run-time, accord-
ingly with the semantics of the specific invoke that it implements and taking inheritance
and overriding into account. We allow more than one implementation for late-binding, al-
though, for simplicity, the examples in Figs. 2 and 3 have one possible target only. Dynamic
lookup of the correct implementation of a method is performed by the receiver_is in-
structions put at the beginning of each instance method, as in Fig. 3. They specify for which
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Fig. 3 The Java bytecode of the
method copy of class Record
in Fig. 1

run-time class of the receiver the given method is executed. For better efficiency and for bet-
ter precision of the static analyses, the list of targets of a call bytecode is kept as smaller
as possible by using a preliminary class analysis, that we perform as in [32].

2.2 The magic-sets transformation

In this section, we give an overview of how our magic-sets transformation works.
In order to prove that the return value of deepClone inside main never shares with

local variables 0 and 1, we need information at the program point in Fig. 2 just after the
call List.deepClone():List bytecode. In order to use a denotational analysis, our
magic-sets transformation builds a new magic block of code whose functional behaviours
are the internal behaviours just after that call.

Let us describe this transformation. It starts by splitting the blocks at the program points
where the internal information is needed. Since the call to deepClone in Fig. 2 is al-
ready at the end of a block, there is no block to split in this case. For reasons that will be clear
soon, it also splits the code before each call. This leads to the code in Fig. 4. Then a new
magic block is built, one for each block of the original code. The result, for method main,
is in Fig. 5. In that figure, the magic block for block k is marked as mk and filled in grey
colour; a dashed arrow connects block k to magic block mk. Block mk contains the same
bytecode instructions as block k plus a leading blockcall mp1 · · ·mpn, where p1, . . . , pn

are the predecessors of block k, if any. For instance, since block 11 has five predecessors 0,
1, 3, 5 and 7, block m11 starts with blockcall m0 m1 m3 m5 m7 i.e., there are five
ways of reaching block 11.

We note that the functional behaviour of magic block mk coincides with the internal be-
haviour at the end of block k. For instance, the functional behaviours of m7 is a denotation
from the input state provided to main to the intermediate states just after the call to clone.
To understand why, let us start from m0. It is a clone of block 0. At its end, the compu-
tation reaches hence the intermediate states at the internal program points between 0 and
1. Block m1 executes m0 (because of the blockcall m0 instruction) and then the same
instructions as block 1. At its end, the computation reaches hence the intermediate states at
the internal program point between 1 and 2. The same reasoning applies to the other magic
blocks, until m7.

Let us consider method copy from Fig. 3 now. Its magic-sets transformation is shown in
Fig. 6. Its construction is similar to that of method main but for the first magic block m15,
which starts with a blockcall mx my instruction. The latter specifies that method copy
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Fig. 4 The Java bytecode of the method main in Fig. 1 after the first phase of the magic-sets transformation.
Blocks of code have been split at call bytecodes and after each internal program point where the abstract
information is required by the analysis

is called from a state arising just before one of the calls to copy inside method deepClone
in Fig. 1. Blocks mx and my are the magic-blocks derived from the original blocks x and
y of deepClone that immediately precede those two calls, respectively. More generally, a
method which is not main starts with a blockcall instruction that enumerates all blocks
where a call to the method occurs. This is why we split the code before each call: to
allow the states of the callers at the call points to flow into the callees. The subsequent
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instruction makescope Record.copy():List$Element builds the initial state for
copy: in Java bytecode, the caller stores the actual arguments on the operand stack and the
callee retrieves them from the local variables [25]. Hence this makescope copies the only
argument of the method, that is the implicit this parameter left on top of the stack by the
callers of this method, into local variable 0 and clears the operand stack of copy.

3 A formalisation of our magic-sets transformation

We formalise here the magic-sets transformation. From now on we assume that P is a pro-
gram i.e., a set of blocks as those in Fig. 5. This partition is arbitrary, as long as the following
constraints are satisfied. In general, however, it is better to keep the number of blocks small,
since this decreases the memory requirement for the representation of the program. In our
implementation, we use a partition of the code of the program into basic blocks [1], which
gives the largest possible extension to the blocks. The choice of the partition, however, has
no effect on the precision of the analyses.

We make the following assumptions about the blocks of P :

1. The starting block of a method has no predecessors and does not start with a call
bytecode. This does not introduce any loss of generality since it is always possible to add
an extra initial block containing nop, whenever the first bytecode of a method is a call
or has some predecessor;

2. The blocks that do not start a method have at least a predecessor, since otherwise they
would be dead-code and could be eliminated;

3. Each call bytecode is at the beginning of a block;
4. Each return ends a block with no successors;
5. The main method is not called from inside the program. This does not introduce any loss

of generality since we can always rename main into main’ wherever in the program
and add a new main that wraps a call to main’.

Original blocks are labelled with k and magic blocks with mk with k ∈ N. If � is a label,
P (�) is block � of P . We write block � with n bytecode instructions and m immediate
successor blocks b1, . . . , bm, with m,n ≥ 0, as

ins1
ins2
· · ·

insn

�

→→ b1· · ·
bm

or just as
ins1
ins2
· · ·

insn

�

when m = 0.

The magic-sets transformation of P builds a magic block mk for each block k.

Definition 1 The magic block mk, with k ∈ N, is built from P (k) as

magic
(

code
k→→ b1· · ·

bm︸ ︷︷ ︸
P(k)

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

blockcall mp1 · · ·mpl
code

mk

if l > 0

blockcall mq1 · · ·mqu

makescope κ.m(�τ ) : t
code

mk

if l = 0
and u > 0

code
mk if l = 0

and u = 0
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where p1, . . . , pl are the predecessors of P (k) and q1, . . . , qu those of the blocks of P that
begin with a call . . . κ.m(�τ) : t . . . and method κ.m(�τ) : t starts at block k.

Definition 1 has three cases. In the first case, block k does not start a method (nor a con-
structor). Hence it has l > 0 predecessors and magic block mk begins with a blockcall
to the magic blocks of these predecessors.

Example 1 Block 11 in Fig. 5 has l = 5 predecessors 0, 1, 3, 5 and 7. Hence block m11 in
Fig. 5 is derived from block 11:

magic

(
catch

throw java.lang.Throwable

11)
= blockcall m0 m1 m3 m5 m7

catch
throw java.lang.Throwble

m11

.

In the second and third case of Definition 1, block k starts a method or constructor
κ.m(�τ) : t ; hence that block has no predecessors. If the program P calls κ.m(�τ) : t (sec-
ond case), those calls have u > 0 predecessors, since we assume that call does not start
a method. Magic block mk calls those predecessors and then uses makescope to build the
scope for κ.m(�τ) : t .

Example 2 Block 15 in Fig. 6 starts the method copy, thus l = 0. The latter is called at the
beginning of two blocks of deepClone whose only predecessors are some blocks mx and
my, respectively. Hence u = 2 and we have

magic

(
receiver_is Record

new Record

15→→ 16
19

)
=

blockcall mx my
makescope Record.copy() : List$Element

receiver_is Record
new Record

m15

.

Otherwise (third case), P never calls κ.m(�τ) : t and mk is a clone of k. This would be
the case of the first block of method main (yielding block m0 in Fig. 5).

Definition 2 The magic-sets transformation of P is obtained by adding to P all blocks mk

where k ∈ N and P (k) is a block of P .

A nice property of our magic-sets transformation of a program P is that the strongly-
connected components of its blocks are never larger than those of P itself. This is important
since, otherwise, the cost of a bottom-up static analysis, as that we are going to define in
Sect. 8, based on the denotational semantics of Sect. 6, might easily explode.

Lemma 1 Let P be a program and P ′ its magic-sets transformation. If two magic blocks
mk1,mk2 ∈ P ′ belong to the same strongly-connected component of blocks of P ′, then
k1, k2 ∈ P belong to the same strongly-connected component of blocks of P .

Proof The successors of a block b→→ b1· · ·
bm

are b1, . . . , bm but also the initial block of

every method called inside b and blocks mp1, . . . ,mpl if b contains an instruction
blockcall mp1 · · ·mpl . Note that the last case is only possible when b is a magic block,
since original blocks in P do not contain blockcall’s. Also, when b is a magic block we



Higher-Order Symb Comput

have m = 0 (Definition 1). We write b1 < b2 to mean that b2 is a successor of b1 and we
allow that relationship to be transitive and reflexive. Note that the original blocks in P are
not modified by the magic-sets transformation and do not contain blockcall’s, so that
the successors of an original, non-magic block are always original, non-magic blocks. Con-
sider hence mk1 and mk2. Since they belong to the same strongly-connected component of
P ′, there is a sequence of blocks mk′

1 < · · · < mk′
s where mk′

j+1 is an immediate successor
of mk′

j for every 1 ≤ j < s, mk1 = mk′
1 and mk2 = mk′

s and there is a sequence of blocks
mk′′

1 < · · · < mk′′
w such that mk′′

j+1 is an immediate successor of mk′′
j for every 1 ≤ j < w,

mk2 = mk′′
1 and mk1 = mk′′

w . Consider the first sequence. All its blocks are magic, since
otherwise, as said before, mk′

s should be an original, non-magic block, but we know that
mk′

s = mk2, which is magic. The only way, for a magic block mk′
j+1, to be a successor of

another magic block mk′
j is that mk′

j starts with an instruction blockcall mp1 · · ·mpx

such that mk′
j+1 belongs to mp1 · · ·mpx . By Definition 1, this entails that whether the orig-

inal blocks k′
j and k′

j+1 are such that k′
j+1 < k′

j (first case of Definition 1) or rather k′
j+1 is

the immediate predecessor of a block c that begins with a call · · ·κ.m(�τ) : t · · · and block
k′

j is the first block of method κ.m(�τ) : t (second case of Definition 1). In that last case, we
have k′

j+1 < c < k′
j . In all cases, we conclude that k′

s < · · · < k′
1, with k1 = k′

1 and k2 = k′
s .

By considering the second sequence, we similarly conclude that k′′
w < · · · < k′′

1 , with k2 = k′′
1

and k1 = k′′
w . It follows that k1 and k2 must belong to the same strongly-connected com-

ponent of blocks of P (since, again, the successors of original blocks are always original
blocks). �

Proposition 1 The strongly-connected components of the blocks of the magic-sets transfor-
mation P ′ of P are never larger than those of the blocks of P itself.

Proof Let c be a strongly-connected component of blocks of P ′. It cannot contain both
original and magic blocks, since a magic block is never a successor of an original block, so
they cannot belong to the same component. Hence whether c contains original blocks only,
but then it is a component of P , or c contains magic blocks only, but then all those magic
blocks are derived from distinct original blocks of P (Definition 1) and those original blocks
must belong to the same strongly-connected component (Lemma 1). In conclusion, there is
always a component c′ of blocks of P that is at least as large as c. �

4 Operational semantics of the Java bytecode

In this section we describe an operational semantics of the Java bytecode, that we use in
Sect. 5 to prove our magic-sets transformation correct. We are aware that there are other
operational semantics for Java bytecode already. However, we need an operational semantics
exclusively defined in terms of state transformers or denotations, since it will be matched
later to a denotational semantics. Our formalisation is nevertheless indebted to [21], where
Java and Java bytecode are mathematically formalised and the compilation of Java into
bytecode and its type-safeness are machine-proved. Our formalisation of the state of the
Java Virtual Machine (Definition 4) is similar to theirs, with the exception that we do not
use a program counter nor keep the name of the current method and class inside the state. We
avoid program counters by using blocks of code linked by arrows as concrete representation
of the structure of the bytecode. Also our formalisation of the heap and of the objects inside
the heap is identical to theirs.
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Our operational semantics keeps a state, providing values for the variables of the pro-
gram. An activation stack of states is used to model the method call mechanism, exactly
as in an actual implementation of the Java Virtual Machine. For simplicity, we assume that
the only primitive type is int and the only reference types are the classes; we only al-
low instance fields and methods. Our implementation deals instead with full sequential Java
bytecode and all Java types.

Definition 3 (Classes) The set of classes K in program P is partially ordered w.r.t. ≤,
that expresses the subclass relationship. A type is an element of T = K ∪ {int}. A class
κ ∈ K has instance fields κ.f : t (field f of type t ∈ T defined in class κ) and instance
methods κ.m(�τ) : t (method m with arguments of type �τ ⊆ T, returning a value of type
t ∈ T ∪ {void}, defined in class κ). We consider constructors as methods returning void.

A state provides values to program variables.

Definition 4 (State) A value is an element of Z ∪ L ∪ {null}, where L is an infinite set
of memory locations. A state is a triple 〈l || s || μ〉 where l is an array of values (the local
variables), s a stack of values (the operand stack), that grows leftwards, and μ a memory,
or heap, that binds locations to objects. The empty stack is written ε. An object o belongs
to class o.κ ∈ K (is an instance of o.κ) and maps identifiers (the fields f of class o.κ and
of its superclasses) into values o.f . The set of states is �. We write �i,j when we want to
fix the number i of local variables and j of stack elements. A value v has type t in a state
〈l || s || μ〉 if v ∈ Z and t = int, or v = null and t ∈ K, or v ∈ L, t ∈ K and μ(v).κ ≤ t .

Example 3 State σ = 〈[�] || �′ || μ〉 ∈ �1,1 is a possible state at the beginning of the execution
of block 16 in Fig. 6. Location � must be bound to the receiver object this in μ. Location
�′ must point to an object, freshly created and pushed on the stack by the new Record
instruction at the end of block 15. It must be the case that μ(�′).amount = 0, since the
constructor of class Record has not been called yet and the field amount still holds its
default value 0.

The Java Virtual Machine allows exceptions. Hence we distinguish normal states � i.e.,
those arising during the normal execution of a piece of code, from exceptional states �, aris-
ing just after a bytecode that throws an exception. States in � have always a stack of height
1 containing a location (bound to the thrown exception object). We write them underlined
in order to distinguish them from the normal states.

Definition 5 (Java Virtual Machine State) The set of Java Virtual Machine states (from now
on just states) with i local variables and j stack elements is �i,j = �i,j ∪ �i,1.

When we denote a state by σ , we mean that we do not specify if it is normal or excep-
tional. If we want to stress that we deal with a normal or with an exceptional state, then we
write 〈l || s || μ〉 in the first case and 〈l || s || μ〉 in the second.

The semantics of a bytecode ins is a partial map ins : �i1,j1 → �i2,j2 from an initial
to a final state i.e., a denotation [49]. The indices i1, j1, i2, j2 depend on the program point
where the bytecode occurs.

Definition 6 (Denotation) A denotation is a partial map from an input or initial state to
an output or final state; the set of denotations is 	. If we want to stress how many local
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variables and stack elements are in the states, we write 	i1,j1→i2,j2 = �i1,j1 → �i2,j2 . The
sequential composition of δ1 ∈ 	i1,j1→i2,j2 and δ2 ∈ 	i2,j2→i3,j3 is δ1; δ2 ∈ 	i1,j1→i3,j3 , where
δ1; δ2 = λσ.δ2(δ1(σ )), that is undefined when δ1(σ ) or δ2(δ1(σ )) is undefined.

In the composition of denotations δ1; δ2, the idea is that δ1 describes the behaviour of
an instruction ins1, δ2 that of an instruction ins2 and δ1; δ2 describes the behaviour of the
sequential execution of ins1 followed by ins2. The fact that we allow partial denotations is
important since we model conditional jumps as an (apparently) non-deterministic choice
between two continuations. However, only one of the bytecodes at the beginning of the two
continuations will be defined.

Size and type of local variables and stack elements at each program point are statically
known [25]. In the following we silently assume that the bytecodes are run in a program
point with i local variables and j stack elements and that the semantics of the bytecodes is
undefined for input states of wrong sizes or types. These assumptions are required by [25].
Code that does not satisfy them cannot be run and is not legal Java bytecode.

We now give examples of the specification of the semantics of some bytecodes.

Basic instructions

Bytecode const v pushes v ∈ Z ∪ {null} on the stack. Formally, its semantics is the
denotation

const v = λ〈l || s || μ〉.〈l || v :: s || μ〉.
The λ-notation defines a partial map. Since 〈l || s || μ〉 (where s might be ε) is not underlined,
the map is undefined on exceptional states i.e., the bytecode is executed when the Java
Virtual Machine is not in an exceptional state. This is the case of all bytecodes but catch,
that starts the exceptional handlers from an exceptional state. Bytecode dup t duplicates the
top of the stack, that must have type t :

dup t = λ〈l || top::s || μ〉.〈l || top::top::s || μ〉.
Bytecode load i t pushes on the stack the value of local variable number i, that must exist
and have type t :

load i t = λ〈l || s || μ〉.〈l || l[i]::s || μ〉.
Conversely, bytecode store i t pops the top of the stack of type t and writes it in local
variable i:

store i t = λ〈l || top::s || μ〉.〈l[i �→ top] || s || μ〉.
If l contains less than i + 1 variables, the resulting set of local variables gets expanded. The
semantics of a conditional bytecode is undefined when its condition is false. For instance,
if_ne t checks if the top of the stack, that must have type t , is not 0 when t = int or is
not null otherwise:

if _ne t = λ〈l || top::s || μ〉.
{

〈l || s || μ〉 if top = 0 and top = null,

undefined otherwise.

Undefined here means that the denotation is a partial rather than total function. It corre-
sponds to the fact that the Java Virtual Machine does not continue the execution of the
code if the condition is false. Note that, in our formalisation, conditional bytecodes are
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used in complementary pairs (for instance, if_ne and if_eq), at the beginning of the two
branches of a condition, so that only one of them is defined for each given state. This is
exactly as for the selection of the right exception handler, shown in Fig. 2.

Object-manipulating instructions

Some bytecodes create or access objects in memory. Bytecode new κ pushes on the stack a
reference to a new object n of class κ , with reference fields initialised to null:

new κ = λ〈l || s || μ〉.
{

〈l || � :: s || μ[� �→ n]〉 if there is enough memory,

〈l || � || μ[� �→ oome]〉 otherwise

with � ∈ L fresh and oome new instance of java.lang.OutOfMemoryError. This is
the first example of a bytecode that can throw an exception. Bytecode getfield κ.f : t
reads field κ.f : t of the object pointed by the top rec (the receiver) of the stack, that has
type κ :

getfield κ.f :t = λ〈l || rec::s || μ〉.
{

〈l || μ(rec).f :: s || μ〉 if rec = null,

〈l || � || μ[� �→ npe]〉 otherwise

with � ∈ L fresh and npe new instance of java.lang.NullPointerException. This
is the first example of a bytecode that dereferences a location (rec) and might hence throw
an exception. Another is putfield κ.f :t , that writes the top of the stack, of type t , inside
field κ.f :t of the object pointed by a value rec below the top of the stack, of type κ (� and
npe are as before):

putfield κ.f :t = λ〈l || top::rec::s || μ〉.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈l || s || μ[μ(rec).f �→ top]〉
if rec = null,

〈l || � || μ[� �→ npe]〉
otherwise.

Exception handling instructions

Bytecode throw κ throws, explicitly, the object pointed by the top of the stack, of type
κ ≤ java.lang.Throwable (� and npe are as before):

throw κ = λ〈l || top::s || μ〉.
{

〈l || top || μ〉 if top =null,

〈l || � || μ[� �→ npe]〉 if top=null.

Bytecode catch starts an exception handler. It takes an exceptional state and transforms it
into a normal state, subsequently used by the bytecodes implementing the handler:

catch = λ〈l || top || μ〉.〈l || top || μ〉

where top ∈ L has type java.lang.Throwable. Note that catch is undefined on all
normal states, so that, for instance, in Fig. 2, the computation can enter the exception han-
dlers only if the previous instruction yields an exceptional state. After catch, the appro-
priate exception handler is selected on the basis of the run-time class of the exception. To
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that purpose, we use a bytecode exception_is K that filters those states whose top of
the stack points to an instance of a class in K ⊆ K:

exception_is K = λ〈l || top || μ〉.
{

〈l || top || μ〉 if top ∈ L and μ(top).κ ∈ K ,

undefined otherwise.

We also use exception_is_not K , that can be seen as a shortcut for exception_is
H , where H is the set of exception classes that are not instances of some class in K . Alter-
natively, an explicit definition of that instruction is also possible.

Method calls

When a caller transfers the control to a callee κ.m(�τ) : t , the Java Virtual Machine per-
forms an operation makescope κ.m(�τ) : t that copies the topmost stack elements into the
corresponding local variables and clears the stack.

Definition 7 Let κ.m(�τ) : t be a method or constructor and p the number of stack elements
needed to hold its actual parameters, including the implicit parameter this, if any. We
define (makescope κ.m(�τ) : t) : � → � as

makescope κ.m(�τ) : t = λ〈l || vp−1 ::· · ·::v0 ::s || μ〉.〈[v0, . . . , vp−1] || ε || μ〉.

Definition 7 formalises the fact that the ith local variable of the callee is a copy of the
element located at (p − 1) − i positions down the top of the stack of the caller.

The operational semantics

We can now define the operational semantics of our language.

Definition 8 A configuration is a pair 〈b || σ 〉 of a block b (not necessarily in P ) and a
state σ . It represents the fact that the Java Virtual Machine is going to execute b in state σ .
An activation stack is a stack c1 :: c2 :: · · · :: cn of configurations, where c1 is the topmost,
current or active configuration.

We can define now the operational semantics of a Java bytecode program. It is a relation
between activation stacks. It models the transformation of the activation stack induced by
the execution of each single bytecode.

Definition 9 The (small step) operational semantics of a Java bytecode program P is a
relation a′ ⇒P a′′ (P is usually omitted) providing the immediate successor activation stack
a′′ of an activation stack a′. It is defined by the rules:

ins is not a call nor a blockcall, ins(σ ) is defined

〈 ins
rest

�→→ b1· · ·
bm

|| σ 〉 :: a ⇒ 〈 rest
�→→ b1· · ·

bm
|| ins(σ )〉 :: a

(1)

1 ≤ i ≤ n, b is the block where method κi .m(�τ) : t starts
σ = 〈l || pars :: s || μ〉, pars are the actual parameters of the call

σ ′ = (makescope κi .m(�τ ) : t)(σ )

〈 call κ1.m(�τ) : t, . . . , κn.m(�τ) : t
rest

�→→
b1· · ·
bm

|| σ 〉 :: a ⇒ 〈b || σ ′〉 :: 〈 rest
�→→

b1· · ·
bm

|| 〈l || s || μ〉〉 :: a
(2)
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〈 k|| 〈l || vs || μ〉〉 :: 〈b || 〈l′ || s ′ || μ′〉〉 :: a ⇒ 〈b || 〈l′ || vs :: s ′ || μ〉〉 :: a (3)

〈 k|| 〈l || e || μ〉〉 :: 〈b || 〈l′ || s ′ || μ′〉〉 :: a ⇒ 〈b || 〈l′ || e || μ〉〉 :: a (4)

1 ≤ i ≤ m

〈 k→→ b1· · ·
bm

|| σ 〉 :: a ⇒ 〈bi || σ 〉 :: a
(5)

1 ≤ i ≤ l

〈 blockcall mp1 · · ·mpl
rest

mk

|| σ 〉 :: a ⇒ 〈P (mpi) || σ 〉 :: 〈 rest
mk || σ 〉 :: a

(6)

〈 mk || σ 〉 :: 〈b || σ ′〉 :: a ⇒ 〈b || σ 〉 :: a . (7)

Rule (1) executes an instruction ins, different from call and blockcall, by us-
ing its semantics ins. The Java Virtual Machine moves then forward to run the rest of the
instructions. Instruction ins might be here a makescope, whose semantics is given in
Definition 7. Rule (2) calls a method. It looks for the block b where the latter starts and
builds its initial state σ ′, by using makescope. It creates a new current configuration con-
taining b and σ ′. It removes the actual arguments from the old current configuration and the
call from the instructions still to be executed at return time. Since a method call can actu-
ally call many implementations, depending on the run-time class of the receiver, this rule
is apparently non-deterministic. However, only one thread of execution will continue, the
one starting with the receiver_is bytecode for the right run-time class of the receiver.
Control returns to the caller by rule (3), that rehabilitates the configuration of the caller but
forces the memory to be that at the end of the execution of the callee. The return value of
the callee is pushed on the stack of the caller. This rule is executed if the state reached at the
end of the caller is a normal state. If it is an exceptional state, rule (4) is executed instead,
that propagates the exception back to the caller. Rule (5) applies when all instructions in-
side a block have been executed; it runs one of its immediate successors, if any. This rule
is normally deterministic, since if a block of our formalisation of the Java bytecode has two
or more immediate successors then they start with mutually exclusive conditional instruc-
tions and only one thread of control is actually followed. Rule (6) runs a blockcall by
choosing one of the called blocks mpi and creating a new configuration where it can run.
This is true non-determinism, corresponding to the fact that there might be more ways of
reaching a magic block and hence more intermediate states at an internal program point.
Rule (7) applies at the end of the execution of a magic block mk. It returns the control to
the caller of mk and keeps the state reached at the end of the execution of mk. Rules (1)
and (2) can be used both for the original and for the magic blocks of the program; rules (3),
(4) and (5) only for the original blocks, which is expressed by the use of k as label of the
blocks; rules (6) and (7) only for the magic ones, which is expressed by the use of mk as
label of the blocks.

From now on, when we use the notation ⇒, we often specify the rule of Definition 9 that
is used at each derivation step; for instance, we write ⇒

(1)
to mean a derivation step through

rule (1).
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Example 4 Let σ = 〈[�] || �′ || μ〉 be the state in Example 3 and consider an arbitrary activa-
tion stack a. The first steps of the execution of block 16 in Fig. 6 are

〈
dup Record

load 0 Record
getfield Record.amount : int

16

→→ 17
19 || σ 〉 :: a

⇒
(1)

〈 load 0 Record
getfield Record.amount : int

16

→→ 17
19 || 〈[�] || �′ ::�′ || μ〉〉 :: a

⇒
(1)

〈 getfield Record.amount : int
16→→ 17

19 || 〈[�] || �::�′ ::�′ || μ〉〉 :: a

⇒
(1)

〈 16→→ 17
19 || 〈[�] || μ(�).amount::�′ ::�′ || μ〉〉 :: a

⇒
(5)

〈 call Record(int)
17→→ 18

19 || 〈[�] || μ(�).amount::�′ ::�′ || μ〉::a

⇒
(2)

〈b || 〈[�′,μ(�).amount] || ε || μ〉〉::〈
17→→ 18

19 || 〈[�] || �′ || μ〉::a

where block b is the beginning of the constructor Record(int). When rule (5) is applied,
we could have continued with block 19 as well. But that execution thread would stop imme-
diately since 〈[�] || μ(�).amount ::�′ ::�′ || μ〉 is a normal state and the catch instruction
that is at the beginning of block 19 is undefined on that state.

Our small step operational semantics allows us to define the set of intermediate states at
a given, internal program point p, provided that p ends a block k. This is not restrictive,
since one can always split after p the block where p occurs. The idea of Definition 10 is to
execute the program from the main method until the computation reaches block k and all
its instructions have been executed. Hence collect all the resulting states σ .

Definition 10 (Intermediate states at a program point) Let σin be the initial state provided
to the method main of P starting at block bin. The intermediate states at the end of block
k ∈ N during the execution of P from σin are

�
σin,bin
k = {σ | 〈bin || σin〉 ⇒∗ 〈 k→→ b1· · ·

bm
|| σ 〉 :: a}.

When σin and bin are clear from the context, we write �k instead of �
σin,bin
k .

In general, �k is a set since there might be more ways of reaching block k, for instance
through loops or recursion.

5 Correctness of the magic-sets transformation

By using the operational semantics of Sect. 4, we show that the final states reached at the
end of the execution of a magic block mk are exactly the intermediate states reached at the
end of block k, before executing its successors: the functional behaviour of mk coincides
hence with the internal behaviour at the end of k.
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Theorem 1 (Correctness of the magic-sets transformation) Let σin be the initial state pro-
vided to the method main of P and k ∈ N be a block of P . We have

�k = {
σ
∣∣〈P (mk) || σin〉 ⇒∗ 〈 mk || σ 〉} .

The proof follows from the next two propositions. They entail the double inclusion be-
tween the left and right-hand sides of the equality in Theorem 1. In order to keep an inductive
invariant, they prove stronger results than those needed for Theorem 1. Namely, they prove
the inclusions when block mk is not necessarily empty at the end of the derivation, but
contains instead some bytecode instructions rest, still to be executed.

Proposition 2 Let P be a program and k ∈ N. If

〈bin || σin〉 ⇒∗ 〈 rest
k→→ b1· · ·

bm
|| σ 〉 :: a

then

〈P (mk) || σin〉 ⇒∗ 〈 rest
mk || σ 〉.

Proof For any n ∈ N, we let Prop⊆(n) denote the property:

for any program P and any k ∈ N, if

〈bin || σin〉 ⇒n 〈 rest
k→→ b1· · ·

bm
|| σ 〉 :: a

then

〈P (mk) || σin〉 ⇒∗ 〈 rest
mk || σ 〉.

We prove by induction on n that Prop⊆(n) holds for any n ∈ N.

– (Basis) We prove that Prop⊆(0) holds. Let

〈bin || σin〉 ⇒0 〈 rest
k→→ b1· · ·

bm
|| σ 〉 :: a.

Then, bin = rest
k →→ b1· · ·

bm
, σin = σ and a is empty. Notice that P (mk) = magic(P (k))

with P (k) = bin. Since the first block of method main has no predecessors and is not

called by any method, by the third case of Definition 1, we have P (mk) = rest
mk
. As

〈P (mk) || σin〉 ⇒∗ 〈P (mk) || σin〉 we have 〈P (mk) || σin〉 ⇒∗ 〈 rest
mk || σ 〉.

– (Induction) Suppose that for each i ≤ n, Prop⊆(i) holds. We prove that Prop⊆(n+1) also
holds. Assume that

〈bin || σin〉 ⇒n+1 〈 rest
k→→ b1· · ·

bm
|| σ 〉 :: a.

Then 〈bin || σin〉 ⇒n an ⇒ 〈 rest
k→→ b1· · ·

bm
|| σ 〉 :: a. Let us consider the rule of Definition 9

that is used in the last derivation step, from an.
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1. If rule (1) is used then an = 〈 ins
rest

k→→ b1· · ·
bm

|| σ ′〉 :: a and σ = ins(σ ′). By inductive

hypothesis,

〈P (mk) || σin〉 ⇒∗ 〈 ins
rest

mk

|| σ ′〉.

Moreover,

〈 ins
rest

mk

|| σ ′〉⇒
(1)

〈 rest
mk || ins(σ ′)〉.

Consequently, as ins(σ ′) = σ ,

〈P (mk) || σin〉 ⇒∗ 〈 rest
mk || σ 〉.

2. If rule (2) is used then an is

〈 call . . . κ.m(�τ) : t . . .

rest

k′
→→ · · · || σ ′〉 :: a′

where σ ′ = 〈l || pars :: s || μ〉 and

σ = (makescope κ.m(�τ) : t)(σ ′).

Moreover, a has the form 〈 rest
k′→→ · · · || 〈l || s || μ〉〉 :: a′. Notice that we have as-

sumed that only the starting blocks of the methods have no predecessor and that such

blocks do not start with a call. Consequently, call . . . κ.m(�τ ) : t . . .

rest

k′
→→ · · · has some

predecessors, say p1, . . . , pl . So, the derivation from 〈bin || σin〉 to an has the form

〈bin || σin〉 ⇒∗ 〈 pi→→ ·· · || σ ′〉 :: a′

⇒
(5)

〈 call . . . κ.m(�τ ) : t . . .

rest

k′
→→ · · · || σ ′〉 :: a′

︸ ︷︷ ︸
an

with 1 ≤ i ≤ l.

As rest
k→→ b1· · ·

bm
is the first block of method κ.m(�τ) : t , then it has no predecessor

and P (k) = rest
k→→ b1· · ·

bm
. Consequently, by the second case of Definition 1, we have

P (mk) = magic(P (k)) = blockcall · · ·mpi · · ·
makescope κ.m(�τ ) : t

rest

mk

.

So, we have:

〈P (mk) || σin〉⇒
(6)

〈P (mpi) || σin〉 :: 〈 makescope κ.m(�τ ) : t
rest

mk

|| σin〉
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and, by inductive hypothesis,

〈P (mpi) || σin〉 ⇒∗ 〈 mpi || σ ′〉.

Consequently,

〈P (mk) || σin〉 ⇒∗ 〈 mpi || σ ′〉 :: 〈 makescope κ.m(�τ ) : t
rest

mk

|| σin〉

⇒
(7)

〈 makescope κ.m(�τ) : t
rest

mk

|| σ ′〉

⇒
(1)

〈 rest
mk || (makescope κ.m(�τ) : t)(σ ′)︸ ︷︷ ︸

σ

〉.

3. If rule (3) is used then an has the form

〈 k′ || 〈l′ || vs || μ′〉〉 :: 〈 rest
k→→ b1· · ·

bm
|| 〈l || s || μ〉〉 :: a

and σ = 〈l || vs :: s || μ′〉. Notice that rule (3) corresponds to a situation when control
returns to the caller P (k), since the only rule that can create a new top configuration
with an original (i.e., non-magic) block is rule (2). As a call instruction is always
located at the beginning of a block, we have

P (k) = call . . . κ.m(�τ) : t . . .

rest

k→→ b1· · ·
bm

.

Hence P (k) has some predecessors (because we have assumed that only the starting
blocks of the methods have no predecessor and that such blocks do not start with a
call), say p1, . . . , px . So, the derivation from 〈bin || σin〉 to an has the form

〈bin || σin〉 ⇒∗ 〈 pi→→ ·· · || σi〉 :: a
⇒
(5)

〈P (k) || σi〉 :: a

⇒
(2)

〈b || σ ′
i 〉 :: 〈 rest

k→→ b1· · ·
bm

|| 〈l || s || μ〉〉 :: a

⇒∗ 〈 k′ || 〈l′ || vs || μ′〉〉 :: 〈 rest
k→→ b1· · ·

bm
|| 〈l || s || μ〉〉 :: a

︸ ︷︷ ︸
an

where 1 ≤ i ≤ x, σi = 〈l || pars :: s || μ〉, σ ′
i = (makescope κ.m(�τ) : t)(σi) and b is the

starting block of κ.m(�τ) : t . Moreover, 〈b || σ ′
i 〉 ⇒∗ 〈 k′ || 〈l′ || vs || μ′〉〉. By the first

case of Definition 1, we have

P (mk) = magic(P (k)) = blockcall mp1 · · ·mpx

call . . . κ.m(�τ) : t . . .

rest

mk

.
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Then,

〈P (mk) || σin〉⇒
(6)

〈P (mpi) || σin〉 :: 〈 call . . . κ.m(�τ ) : t . . .

rest

mk

|| σin〉

and, by inductive hypothesis,

〈P (mpi) || σin〉 ⇒∗ 〈 mpi || σi〉.
So we have

〈P (mk) || σin〉 ⇒∗ 〈 mpi || σi〉 :: 〈 call . . . κ.m(�τ ) : t . . .

rest

mk

|| σin〉

⇒
(7)

〈 call . . . κ.m(�τ) : t . . .

rest

mk

|| σi〉

⇒
(2)

〈b || σ ′
i 〉 :: 〈 rest

mk || 〈l || s || μ〉〉.

Since we have observed that 〈b || σ ′
i 〉 ⇒∗ 〈 k′ || 〈l′ || vs || μ′〉〉, we conclude that

〈P (mk) || σin〉 ⇒∗ 〈 k′ || 〈l′ || vs || μ′〉〉 :: 〈 rest
mk || 〈l || s || μ〉〉

⇒
(3)

〈 rest
mk || 〈l || vs :: s || μ′〉〉

i.e., 〈P (mk) || σin〉 ⇒∗ 〈 rest
mk || σ 〉.

4. If rule (4) is used then an has the form

〈 k′ || 〈l′ || e || μ′〉〉 :: 〈 rest
k→→ b1· · ·

bm
|| 〈l || s || μ〉〉 :: a

and σ = 〈l || e || μ′〉. Notice that rule (4) corresponds to a situation when control returns
to the caller P (k), since the only rule that can create a new top configuration with an
original block is rule 2. As a call instruction is always located at the beginning of a
block, we have

P (k) = call . . . κ.m(�τ) : t . . .

rest

k→→ b1· · ·
bm

.

Hence P (k) has some predecessors (because we have assumed that only the starting
blocks of the methods have no predecessor and that such blocks do not start with a
call), say p1, . . . , px . So, the derivation from 〈bin || σin〉 to an has the form

〈bin || σin〉 ⇒∗ 〈 pi→→ ·· · || σi〉 :: a
⇒
(5)

〈P (k) || σi〉 :: a

⇒
(2)

〈b || σ ′
i 〉 :: 〈 rest

k→→ b1· · ·
bm

|| 〈l || s || μ〉〉 :: a

⇒∗ 〈 k′ || 〈l′ || e || μ′〉〉 :: 〈 rest
k→→ b1· · ·

bm
|| 〈l || s || μ〉〉 :: a

︸ ︷︷ ︸
an
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where 1 ≤ i ≤ x, σi = 〈l || pars :: s || μ〉, σ ′
i = (makescope κ.m(�τ) : t)(σi) and b is the

starting block of κ.m(�τ) : t . Moreover, 〈b || σ ′
i 〉 ⇒∗ 〈 k′ || 〈l′ || e || μ′〉〉. By the first

case of Definition 1, we have

P (mk) = magic(P (k)) = blockcall mp1 · · ·mpl
call . . . κ.m(�τ) : t . . .

rest

mk

.

Then,

〈P (mk) || σin〉⇒
(6)

〈P (mpi) || σin〉 :: 〈 call . . . κ.m(�τ ) : t . . .

rest

mk

|| σin〉

and, by inductive hypothesis,

〈P (mpi) || σin〉 ⇒∗ 〈 mpi || σi〉.

So we have

〈P (mk) || σin〉 ⇒∗ 〈 mpi || σi〉 :: 〈 call . . . κ.m(�τ ) : t . . .

rest

mk

|| σin〉

⇒
(7)

〈 call . . . κ.m(�τ) : t . . .

rest

mk

|| σi〉

⇒
(2)

〈b || σ ′
i 〉 :: 〈 rest

mk || 〈l || s || μ〉〉.

Since we have observed that 〈b || σ ′
i 〉 ⇒∗ 〈 k′ || 〈l′ || e || μ′〉〉, we conclude that

〈P (mk) || σin〉 ⇒∗ 〈 k′ || 〈l′ || e || μ′〉〉 :: 〈 rest
mk || 〈l || s || μ〉〉

⇒
(4)

〈 rest
mk || 〈l || e || μ′〉〉

i.e., 〈P (mk) || σin〉 ⇒∗ 〈 rest
mk || σ 〉.

5. If rule (5) is used then an has the form 〈 k′→→
b′

1· · ·
b′
m′

|| σ 〉 :: a and rest
k→→ b1· · ·

bm
is a b′

i .

Then, rest
k→→ b1· · ·

bm
= P (k). By the first case of Definition 1,

P (mk) = magic(P (k)) = blockcall · · ·mk′ · · ·
rest

mk

.

Hence,

〈P (mk) || σin〉⇒
(6)

〈P (mk′) || σin〉 :: 〈 rest
mk || σin〉.

As 〈bin || σin〉 ⇒n an, by inductive hypothesis we have

〈P (mk′) || σin〉 ⇒∗ 〈 mk′ || σ 〉.
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Consequently,

〈P (mk) || σin〉 ⇒∗ 〈 mk′ || σ 〉 :: 〈 rest
mk || σin〉

⇒
(7)

〈 rest
mk || σ 〉.

6. Rule (6) cannot be used. Indeed, bin is an original block and an original block does not
call any magic block. Hence, the block in an is not a magic block.

7. Rule (7) cannot be used for the same reason as above. �

Proposition 3 Let P be a program and k ∈ N. If

〈P (mk) || σin〉 ⇒∗ 〈 rest
mk || σ 〉

where rest does not contain any blockcall nor makescope then

〈bin || σin〉 ⇒∗ 〈 rest
k→→ b1· · ·

bm
|| σ 〉 :: a

for some a (the hypothesis on rest is not restrictive, since in Theorem 1 rest is empty).

Proof For any n ∈ N, we let Prop⊇(n) denote the property:

for any k ∈ N, if

〈P (mk) || σin〉 ⇒n 〈 rest
mk || σ 〉

where rest does not contain any blockcall nor makescope then

〈bin || σin〉 ⇒∗ 〈 rest
k→→ b1· · ·

bm
|| σ 〉 :: a

for some a.

We prove by induction on n that Prop⊇(n) holds for any n ∈ N.

– (Basis) We prove that Prop⊇(0) holds. Let k ∈ N. Suppose that

〈P (mk) || σin〉 ⇒0 〈 rest
mk || σ 〉

where rest does not contain any blockcall nor makescope. Then, σin = σ and

P (mk) = rest
mk
, so P (mk) does not contain any blockcall nor makescope. So,

as P (mk) = magic(P (k)), P (mk) is obtained from the third case of Definition 1. Conse-
quently:

• P (k) = rest
k→→ b1· · ·

bm
,

• P (k) has no predecessor, so P (k) is the starting block of a method κ.m(�τ) : t ,
• each block of P starting with call . . . κ.m(�τ) : t . . . has no predecessor, hence it is

the starting block of a method; as the starting block of any method does not start with a
call, no block of P starts with call . . . κ.m(�τ) : t . . . . Then κ.m(�τ) : t is the method
main and P (k) = bin.
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Therefore, as 〈bin || σin〉 ⇒∗ 〈bin || σin〉 with σin = σ , we have

〈bin || σin〉 ⇒∗ 〈 rest
k→→ b1· · ·

bm
|| σ 〉.

– (Induction) Suppose that for each i ≤ n, Prop⊇(i) holds. We prove that Prop⊇(n+1) also
holds. Suppose that

〈P (mk) || σin〉 ⇒n+1 〈 rest
mk || σ 〉

where rest does not contain any blockcall nor makescope. Then, we have 〈P (mk) |
| σin〉 ⇒n an ⇒ 〈 rest

mk || σ 〉. Let us consider the rule of Definition 9 that is used in the
derivation from an.

1. If rule (1) is used then an has the form 〈 ins
rest

mk

|| σ ′〉 and σ = ins(σ ′). If ins is not a

makescope then, by inductive hypothesis,

〈bin || σin〉 ⇒∗ 〈 ins
rest

k→→ b1· · ·
bm

|| σ ′〉 :: a.

Moreover,

〈 ins
rest

k→→ b1· · ·
bm

|| σ ′〉 :: a ⇒
(1)

〈 rest
k→→ b1· · ·

bm
|| ins(σ ′)〉 :: a.

Consequently, as ins(σ ′) = σ ,

〈bin || σin〉 ⇒∗ 〈 rest
k→→ b1· · ·

bm
|| σ 〉 :: a.

If ins= makescope κ.m(�τ) : t then, as P (mk) = magic(P (k)), by the second case
of Definition 1, that is the only case that introduces a makescope instruction in the
code, we have:

• P (k) = rest
k→→ b1· · ·

bm
,

• P (k) is the starting block of method κ.m(�τ) : t ,

• P (mk) = blockcall · · ·mk′ · · ·
makescope κ.m(�τ ) : t

rest

mk

,

• P (k′) is a predecessor of a block of P , say P (k′′), that begins with call . . . κ.m(�τ) :
t . . . .

Moreover, the derivation from 〈P (mk) || σin〉 to an has the form

〈P (mk) || σin〉 ⇒
(6)

〈P (mk′) || σin〉 :: 〈 ins
rest

mk

|| σin〉

⇒∗ 〈 mk′ || σ ′〉 :: 〈 ins
rest

mk

|| σin〉

⇒
(7)

〈 ins
rest

mk

|| σ ′〉
︸ ︷︷ ︸

an
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where 〈P (mk′) || σin〉 ⇒∗ 〈 mk′ || σ ′〉 in less than n steps. So, by inductive hypothesis,
we have

〈bin || σin〉 ⇒∗ 〈 k′→→ · · · || σ ′〉 :: a′.

As P (k′′) is a successor of P (k′) and P (k′′) begins with

call . . . κ.m(�τ) : t . . .

we have

〈bin || σin〉 ⇒∗ 〈 k′→→ · · · || σ ′〉 :: a′

⇒
(5)

〈 call . . . κ.m(�τ) : t . . .

rest

k′′
→→ · · ·

︸ ︷︷ ︸
P(k′′)

|| σ ′〉 :: a′

⇒
(2)

〈P (k) || ins(σ ′)〉 :: 〈 rest
k′′→→ · · · || σ ′′〉 :: a′

since ins= makescope κ.m(�τ) : t . Hence, since we have P (k) = rest
k→→ b1· · ·

bm
and

σ = ins(σ ′):

〈bin || σin〉 ⇒∗ 〈 rest
k→→ b1· · ·

bm
|| σ 〉 :: a.

2. Rule (2) cannot be used because otherwise the length of the resulting activation stack

would be at least equal to 2. Here, the resulting activation stack is 〈 rest
mk|| σ 〉, whose

length is equal to 1.
3. If rule (3) is used then an has the form

〈 k′ || 〈l′ || vs || μ′〉〉 :: 〈 rest
mk || 〈l || s || μ〉〉

and σ = 〈l || vs :: s || μ′〉. Notice that rule (3) corresponds to a situation when control
returns to the caller P (mk). So, the derivation from 〈P (mk) || σin〉 to an has the form

〈P (mk) || σin〉 ⇒∗ 〈 call . . . κ.m(�τ) : t . . .

rest

mk

|| σ1〉

⇒
(2)

〈b || σ ′
1〉 :: 〈 rest

mk || 〈l || s || μ〉〉

⇒∗ 〈 k′ || 〈l′ || vs || μ′〉〉 :: 〈 rest
mk || 〈l || s || μ〉〉

︸ ︷︷ ︸
an

where σ1 = 〈l || pars :: s || μ〉, σ ′
1 = (makescope κ.m(�τ) : t)(σ1), b is the starting block

of κ.m(�τ) : t and

〈b || σ ′
1〉 ⇒∗ 〈 k′ || 〈l′ || vs || μ′〉〉.
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Note that the block call . . . κ.m(�τ) : t . . .

rest

mk

does not contain any blockcall nor

makescope, since rest does not contain them. Hence, by inductive hypothesis:

〈bin || σin〉 ⇒∗ 〈 call . . . κ.m(�τ ) : t . . .

rest

k→→ b1· · ·
bm

|| σ1〉.

Consequently,

〈bin || σin〉 ⇒∗ 〈 call . . . κ.m(�τ ) : t . . .

rest

k→→ b1· · ·
bm

|| σ1〉

⇒
(2)

〈b || σ ′
1〉 :: 〈 rest

k→→ b1· · ·
bm

|| 〈l || s || μ〉〉

⇒∗ 〈 k′ || 〈l′ || vs || μ′〉〉 :: 〈 rest
k→→ b1· · ·

bm
|| 〈l || s || μ〉〉

⇒
(3)

〈 rest
k→→ b1· · ·

bm
|| 〈l || vs :: s || μ′〉〉

i.e.,

〈bin || σin〉 ⇒∗ 〈 rest
k→→ b1· · ·

bm
|| σ 〉.

4. If rule (4) is used then an has the form

〈 k′ || 〈l′ || e || μ′〉〉 :: 〈 rest
mk || 〈l || s || μ〉〉

and σ = 〈l || e || μ′〉. Notice that rule (4) corresponds to a situation when control returns
to the caller P (mk). So, the derivation from 〈P (mk) || σin〉 to an has the form

〈P (mk) || σin〉 ⇒∗ 〈 call . . . κ.m(�τ ) : t . . .

rest

mk

|| σ1〉

⇒
(2)

〈b || σ ′
1〉 :: 〈 rest

mk || 〈l || s || μ〉〉

⇒∗ 〈 k′ || 〈l′ || e || μ′〉〉 :: 〈 rest
mk || 〈l || s || μ〉〉

︸ ︷︷ ︸
an

where σ1 = 〈l || pars :: s || μ〉, σ ′
1 = (makescope κ.m(�τ) : t)(σ1), b is the starting block

of κ.m(�τ) : t and

〈b || σ ′
1〉 ⇒∗ 〈 k′ || 〈l′ || e || μ′〉〉.

Note that the block call . . . κ.m(�τ) : t . . .

rest

mk

does not contain any blockcall nor

makescope, since rest does not contain them. Hence, by inductive hypothesis:

〈bin || σin〉 ⇒∗ 〈 call . . . κ.m(�τ ) : t . . .

rest

k→→ b1· · ·
bm

|| σ1〉.
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Consequently,

〈bin || σin〉 ⇒∗ 〈 call . . . κ.m(�τ ) : t . . .

rest

k→→ b1· · ·
bm

|| σ1〉

⇒
(2)

〈b || σ ′
1〉 :: 〈 rest

k→→ b1· · ·
bm

|| 〈l || s || μ〉〉

⇒∗ 〈 k′ || 〈l′ || e || μ′〉〉 :: 〈 rest
k→→ b1· · ·

bm
|| 〈l || s || μ〉〉

⇒
(4)

〈 rest
k→→ b1· · ·

bm
|| 〈l || e || μ′〉〉

i.e.,

〈bin || σin〉 ⇒∗ 〈 rest
k→→ b1· · ·

bm
|| σ 〉.

5. Rule (5) cannot be used. Indeed, in this rule the top of the resulting activation stack is

〈bi || σ 〉 where bi is not a magic block, while here rest
mk

is a magic block.
6. Rule (6) cannot be used because otherwise the length of the resulting activation stack

would be at least equal to 2. Here, the resulting activation stack is 〈 rest
mk|| σ 〉, whose

length is equal to 1.
7. If rule (7) is used then an has the form

〈 mk′ || σ 〉 :: 〈 rest
mk || σ ′〉.

Since only rule 6 pushes a magic block on top of the stack, block P (mk) has the form

blockcall · · ·mk′ · · ·
rest

mk

and the derivation

〈P (mk) || σin〉 ⇒∗ an

has the form

〈P (mk) || σin〉 ⇒
(6)

〈P (mk′) || σin〉 :: 〈 rest
mk || σin〉

⇒n−1 〈 mk′ || σ 〉 :: 〈 rest
mk || σin〉︸ ︷︷ ︸

an

where 〈P (mk′) || σin〉 ⇒n−1 〈 mk′ || σ 〉. Moreover, as rest does not contain any
makescope, P (mk) is obtained from P (k) using the first case of Definition 1. Con-

sequently, P (k) has the form rest
k→→ b1· · ·

bm
and P (k′) is a predecessor of P (k). By

inductive hypothesis, 〈bin || σin〉 ⇒∗ 〈 k′→→ · · · || σ 〉 :: a. Hence

〈bin || σin〉 ⇒∗ 〈 k′→→ · · · || σ 〉 :: a

⇒
(5)

〈 rest
k→→ b1· · ·

bm
|| σ 〉 :: a
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i.e., 〈bin || σin〉 ⇒∗ 〈 rest
k→→ b1· · ·

bm
|| σ 〉 :: a. �

In Sect. 6 we define a denotational semantics for Java bytecode and prove it equiva-
lent to our operational semantics of Sect. 4 w.r.t. functional behaviours. By Theorem 1, we
will conclude that the denotational semantics of mk is the internal behaviour at the end of
block k.

6 Denotational semantics of Java bytecode

A denotational semantics for Java bytecode maps each block of code b in a denotation [[b]]
(Definition 6) i.e., in a partial function from an initial state at the beginning of b to an output
or final state at the end of the execution of the code starting at b and continuing with the
following blocks until no successor blocks are found anymore. Hence, if bin is the initial
block of method main, then [[bin]] is the functional behaviour of the whole program. The
use of partial functions allows one to model divergence.

The semantics ins of a bytecode ins (Sect. 4) is a denotation for ins. However, we
never gave any definition for the semantics of call, that must reflect the execution of the
callee method(s). A key feature of denotational semantics is that the semantics of a method
(function, procedure. . . ) is computed once and then extended or plugged at each calling
point to the method. This is possible since the denotation of a method, as every denotation, is
a function from the initial state to the final state of the method. Hence, it can be instantiated
in the context of every calling point by providing a possibly different initial state to the
method. This feature is called context-sensitivity of the semantics or compositionality w.r.t.
method calls.

Let hence δ ∈ 	 be the functional behaviour of a method κ.m(�τ) : t . As the Java Vir-
tual Machine specification requires, at its beginning the operand stack is empty and local
variables hold the arguments of the call. At its end the operand stack holds the return value
of κ.m(�τ) : t only, if any. From the point of view of a caller executing a call to method
κ.m(�τ) : t , its local variables and its operand stack do not change, except for the arguments
of the call which get popped from the stack and replaced by the return value of κ.m(�τ) : t ,
if any. The final memory is that reached at the end of the execution of κ.m(�τ) : t . These
considerations let us extend δ into the denotation of the call instruction.

Definition 11 (extend) Let δ ∈ 	 and κ.m(�τ) : t be a method. We define the operator
extend κ.m(�τ) : t ∈ 	 �→ 	 as

(extend κ.m(�τ) : t)(δ)(〈l || pars :: s || μ〉) = 〈l || vs :: s || μ′〉
if δ((makescope κ.m(�τ) : t)(〈l || pars :: s || μ〉)) = 〈l′ || vs || μ′〉, where pars are the parame-
ters passed to κ.m(�τ) : t and vs its return value, if any. If instead δ((makescope κ.m(�τ) :
t)(〈l || pars :: s || μ〉)) = 〈l′ || e || μ′〉, then we define

(extend κ.m(�τ) : t)(δ)(〈l || pars :: s || μ〉) = 〈l || e || μ′〉.

Definition 11 considers both the case when the method returns normally and the case
when it throws an exception, that is propagated back to the caller.

Traditionally, the denotational semantics of a program is an interpretation that specifies
the behaviour of each function of the program. Since Java bytecode is made of blocks of
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instructions, our interpretations actually specify the behaviour of each block in the program
by providing a set of denotations for each block. Sets can express non-deterministic behav-
iours, which means for us that we can observe more intermediate states between blocks. The
operations extend and ; over denotations are consequently extended to sets of denotations.

Definition 12 (Interpretation) An interpretation for P is a map from P ’s blocks into sets
of denotations. The set of interpretations I is ordered by pointwise set-inclusion. The least
upper bound operator � over I is pointwise ∪.

Given an interpretation ι providing the functional behaviour of the blocks of P , we can
determine the functional behaviour [[b]]ι of the code starting at a given block b, not neces-
sarily in P , that can call methods and blocks of P , and continues with its successor blocks
until a block with no successors is reached. Namely, the denotation of a block composes,
sequentially, the denotations of the instructions inside the block and then continues by com-
posing the result with the denotations of its successors b1, . . . , bn. The denotations of the
instructions inside the block are those given in Sect. 4, except for call, that extends the
denotation of the first block of the called method(s), as provided by ι; and of blockcall,
that joins, non-deterministically, the denotations of the called blocks, as provided by the
interpretation ι.

Definition 13 (Denotations of instructions and blocks) Let ι ∈ I. The denotations in ι of an
instruction are

[[ins]]ι ={ins} if ins is not a call nor a blockcall
[[
blockcall mp1 · · ·mpl

]]ι =ι(P (mp1)) ∪ · · · ∪ ι(P (mpl))

[[
call κ1.m(�τ) : t, . . . , κn.m(�τ) : t]]ι =

⋃

1≤i≤n

(extend κi .m(�τ ) : t)(ι(bκi .m(�τ):t ))

where bκi .m(�τ):t is the block where method or constructor κi.m(�τ) : t starts. The function [[_]]ι

is extended to blocks as
⎡
⎣
⎡
⎣ ins1

· · ·
insn

�
⎤
⎦
⎤
⎦

ι

= [[ins1]]ι ; · · · ; [[insn]]ι

⎡
⎣
⎡
⎣ ins1

· · ·
insn

�

→→ b1· · ·
bm

⎤
⎦
⎤
⎦

ι

= [[ins1]]ι ; · · · ; [[insn]]ι ; (ι(b1) ∪ · · · ∪ ι(bm))

with the assumption that if n = 0 then [[ins1]]ι ; · · · ; [[insn]]ι = {id}, where the identity
denotation id is such that id = λσ.σ .

The blocks of P are in general interdependent, because of loops and recursion, and a
denotational semantics must be built through a fixpoint computation. Given an empty ap-
proximation ι ∈ I of the denotational semantics, such that ι(b) = ∅ for every block b of P ,
one improves it into TP (ι) ∈ I and iterates the application of TP until a fixpoint i.e., the
denotational semantics of P (our implementation JULIA performs smaller fixpoints on each
strongly-connected component of blocks rather than a huge fixpoint over all blocks. This is
important for efficiency reasons but irrelevant here for our theoretical results).
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Definition 14 (Transformer on interpretations) The transformer TP : I �→ I for P is defined
as TP (ι)(b) = [[b]]ι for every ι ∈ I and block b of P .

We want to prove that the operator TP is additive (Proposition 4), which entails that its
least fixpoint exists and can be built through an iterative computation (Definition 15). To that
purpose, we first state that the interpretation of a single bytecode is an isomorphism w.r.t.
possibly infinite union of interpretations.

Lemma 2 Let ins be a bytecode instruction and {ιj }j∈J ⊆ I with J ⊆ N. Then

[[ins]]�j∈J ιj =
⋃
j∈J

[[ins]]ιj .

Proof If ins is not a call nor a blockcall, then

[[ins]]�j∈J ιj = {ins} = ⋃
j∈J

[[ins]]ιj .

If ins is a call κ1.m(�τ) : t, . . . , κn.m(�τ) : t and bκi .m(�τ):t is the block where κi.m(�τ) : t
starts then, since extend has been extended to sets of denotations:

[[ins]]�j∈J ιj =
⋃

1≤i≤n

(extend κi.m(�τ) : t)
((⊔

j∈J

ιj

)
(bκi .m(�τ):t )

)

=
⋃

1≤i≤n

(extend κi.m(�τ) : t)
(⋃

j∈J

ιj (bκi .m(�τ):t )
)

=
⋃

1≤i≤n

⋃
j∈J

(extend κi.m(�τ) : t)(ιj (bκi .m(�τ):t ))

=
⋃
j∈J

⋃
1≤i≤n

(extend κi.m(�τ) : t)(ιj (bκi .m(�τ):t ))

=
⋃
j∈J

[[ins]]ιj .

If ins is a blockcall mp1 · · ·mpl then

[[ins]]�j∈J ιj =
(⊔

j∈J

ιj

)
(P (mp1)) ∪ · · · ∪

(⊔
j∈J

ιj

)
(P (mpl))

=
(⋃

j∈J

ιj (P (mp1))

)
∪ · · · ∪

(⋃
j∈J

ιj (P (mpl))

)

=
⋃
j∈J

(
ιj (P (mp1)) ∪ · · · ∪ ιj (P (mpl))

)

=
⋃
j∈J

[[ins]]ιj .
�

We can now prove that TP is additive.
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Proposition 4 The operator TP is additive, so its least fixpoint exists and is
⊔

i≥0 T i
P , where

T 0
P (b) = ∅ for every block b of P and T i+1

P = TP (T i
P ) for every i ≥ 0 [46].

Proof Let {ιj }j∈J ⊆ I with J ⊆ N. We have to prove additivity, that is:

TP

(⊔
j∈J

ιj

)
(b) =

(⊔
j∈J

TP (ιj )

)
(b)

for all blocks b.

Let first b be
ins1
· · ·

insk

�

→→ b1· · ·
bm

with k > 0 and m > 0 (the cases when k = 0 or m = 0 are

considered later). We have:

TP

(⊔
j∈J

ιj

)
(b) = [[b]]�j∈J ιj

= [[ins1]]�j∈J ιj ; · · · ; [[insn]]�j∈J ιj ;
((⊔

j∈J

ιj

)
(b1) ∪ · · · ∪

(⊔
j∈J

ιj

)
(bm)

)

which by Lemma 2 is equal to

⋃
j∈J

[[ins1]]ιj ; · · · ;
⋃
j∈J

[[insn]]ιj ;
⎛
⎝⋃

j∈J

(ιj (b1)) ∪ · · · ∪
⋃
j∈J

(ιj (bm))

⎞
⎠ . (8)

Since ; is the extention of ; over sets of denotations, it is by definition additive; the same
holds for ∪. Since the composition of additive functions is additive, (8) can be rewritten into

⋃
j∈J

(
[[ins1]]ιj ; · · · ; [[insn]]ιj ; (ιj (b1) ∪ · · · ∪ ιj (bm)

))

=
⋃
j∈J

[[b]]ιj =
⋃
j∈J

(TP (ιj )(b))

=
(⊔

j∈J

TP (ιj )

)
(b).

The cases when k = 0 or m = 0 follow similarly: when k = 0 we remove the interpretations
of the instructions ins1, . . . ,insm; when m = 0 we remove the interpretations of the blocks
b1, . . . , bm. �

Definition 15 (Denotational semantics) Let P be a Java bytecode program (possibly en-
riched with its magic blocks). Its denotational semantics DP is the least fixpoint

⊔
i≥0 T i

P of
TP .

In general, Definition 15 does not provide an effective way for computing the least fix-
point of TP , since the number of iterations required to reach the fixpoint might be infinite.
However, abstract interpretation [15] allows one to replace sets of denotations with abstract
domain elements, expressing some property of the denotations. If the number of abstract
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domain elements is finite or if the abstract domain satisfies at least the ascending chain con-
dition, then the computation of the resulting abstract semantics is feasible in a finite number
of fixpoint iterations. If the abstract domain does not satisfy the ascending chain condition,
termination can still be enforced by fixpoint acceleration techniques such as widening [15].

6.1 Handling of subroutines

Our operational and denotational semantics have been defined for a restricted, still repre-
sentative subset of the actual Java bytecode. The way other bytecodes are accommodated
inside our framework should be relatively clear from the examples of bytecodes considered
in Sects. 4 and 6. We just describe here the most complex scenario of the jsr and ret
bytecodes, that are used to implement subroutines in Java bytecode [25]. Subroutines are
portions of code inside a method or constructor that can be called from different points of
the same method or constructor and hence shared across different execution paths. They
were used almost exclusively to compile the finally blocks of Java, that are always exe-
cuted at the end of a try block. It seemed sensible, to the developers of Java, to share the
code inside the finally block by letting it be called at the end of all normal as well as at
the end of all exceptional executions of the code inside the try block or inside its exception
handlers. Note, however, that jsr and ret might also be used for other purposes and a
static analyser for Java bytecode must be able to deal with those instructions in a general
way.

The static requirements of the Java Virtual Machine [25] prescribe that the height of the
stack and the type of its elements at the beginning of a subroutine are statically known, as
well as the number and type of the local variables. It is actually possible to call a subroutine
with different number and type of local variables, but then the local variables that do not
always exist or have conflicting type, depending on the calling point, cannot be accessed
inside the subroutine and are typed with the special type unused.

We show here an example of code using the jsr and ret instructions, taken from [25].
Consider a Java class Example defining a method

void tryCatchFinally() {
try {

tryItOut();
} catch (TestExc e) {

handleExc(e);
} finally {

wrapItOut();
}

}

The wrapItOut() method is always called at the end of the execution of tryCatch
Finally(): this happens when tryItOut() does not throw any exception, as well as
when the exception is a TestExc and handleExc(e) does not throw any exception, as
well as when the exception is a TestExc and handleExc(e) throws an exception, as
well as when the exception is not a TestExc. In the last two cases, the finally block
is executed and then the exception is thrown back to the caller of tryCatchFinally().
Old Java compilers would compile tryCatchFinally() by using a subroutine (mod-
ern Java compilers do not generate subroutines anymore). The resulting bytecode is repre-
sented in our framework as in Fig. 7. The subroutine is the block of code starting with the
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Fig. 7 The Java bytecode of the method tryCatchFinally

store 2 ReturnAddressType bytecode. Its goal is to save into local variable 2 the re-
turn address pushed on top of the stack by the jsr p1 or by the jsr p2 bytecodes, where
p1 and p2 are return addresses: they can be represented in many ways in our framework,
the only important requirement being that they are distinct. At the end of the subroutine, if
no exception is thrown inside the subroutine, then the ret bytecodes select the right return
point, on the basis of the fact that local variable 2 contains p1 or p2. If an exception is
thrown inside the try or catch blocks, then that exception is temporarily parked in lo-
cal variable 1 and finally recovered after the subroutine terminates. Note that a unique ret
bytecode is used in Java bytecode, while we split it in two in our representation in order to
get a definition of ret as a state transformer. Namely, the semantics of the jsr and ret
bytecodes is defined in our framework as the state transformers:

jsr p = λ〈l || s || μ〉.〈l || p ::s || μ〉

ret i p = λ〈l || s || μ〉.
{

〈l || s || μ〉 if l(i) = p

undefined otherwise

where, in the case of ret, local variable i must exist in l and have type ReturnAddress
Type. Note that these definitions require us to modify the set of values (Definition 4) so that
return addresses are values. These definitions let us apply the magic-sets transformation of
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Sect. 3 to programs containing subroutines. The jsr and ret bytecodes are not special in
any way. Also the operational and denotational semantics of Sects. 4 and 6 can be applied to
those programs, with no change at all. The correctness result of Sect. 5 and the equivalence
result of next section also hold for those programs. The proofs do not need any modification
nor expansion w.r.t. those presented in this paper.

7 Equivalence of operational and denotational semantics

We show here that the operational semantics of Sect. 4 and the denotational semantics of
Sect. 6 coincide, so that (Theorem 1) the denotation of a magic block mk is the internal
behaviour at the end of block k. Namely, the main result of this section is Theorem 2.

Theorem 2 (Equivalence of the semantics) Let b be a block (not necessarily of P ) and
σin an initial state for b. The functional behaviour of b, as modelled by the operational
semantics of Sect. 4, coincides with its denotational semantics:

{σout | 〈b || σin〉 ⇒∗
P 〈b′ || σout〉 ⇒P } =

{δ(σin) | δ ∈ [[b]]DP, δ(σin) is defined}.

We prove Theorem 2 by a double inclusion of its left-hand side in its right-hand side
(Proposition 5) and vice versa (Proposition 6). To that purpose, we first need a lemma that
states that if a block cannot be rewritten by our operational semantics then it is empty and
has no successors.

Lemma 3 Let 〈b || σ 〉 be a state such that 〈b || σ 〉 ⇒. Then b has the form �.

Proof The proof follows from these remarks:

– b cannot have the form
ins1
· · ·

insn

�

→→ b1· · ·
bm

with n = 0, otherwise one of the rules (1), (2) and

(6) of Definition 9 would be applicable to 〈b || σ 〉. Note that when ins1 is a call then
rule 2 is applicable since the Java bytecode is verifiable [25].

– b cannot have the form k→→ b1· · ·
bm

with m = 0 and k ∈ N, otherwise rule (5) of Definition 9

would be applicable to 〈b || σ 〉.
– b cannot have the form mk→→ b1· · ·

bm
with m = 0 and k ∈ N since magic blocks have no

successors, accordingly with Definition 1. �

Proposition 5 Let b a block (not necessarily of P ) and σin an initial state for b. Then,

{σout | 〈b || σin〉 ⇒∗ 〈b′ || σout〉 ⇒} ⊆ {δ(σin) | δ ∈ [[b]]DP, δ(σin) is defined}.

Proof For any n ∈ N, block b and state σin, we let Prop⊆(n) denote the property:

if

〈b || σin〉 ⇒n 〈b′ || σout〉 ⇒
then

σout ∈ {δ(σin) | δ ∈ [[b]]DP, δ(σin) is defined}.
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We prove by induction on n that Prop⊆(n) holds for any n ∈ N.

– (Basis) We prove that Prop⊆(0) holds. Suppose that

〈b || σin〉 ⇒0 〈b′ || σout〉 ⇒ .

Then, b′ = b and σout = σin. So, by Lemma 3, b has the form �. Consequently, [[b]]DP =
{id}. Hence, as id(σin) = σin, we have

σin ∈ {δ(σin) | δ ∈ [[b]]DP, δ(σin) is defined}
so σout ∈ {δ(σin) | δ ∈ [[b]]DP, δ(σin) is defined}.

– (Induction) Suppose that for each i ≤ n, Prop⊆(i) holds. We prove that Prop⊆(n+1) also
holds. Assume that

〈b || σin〉 ⇒n+1 〈b′ || σout〉 ⇒ .

Then, 〈b || σin〉 ⇒ a ⇒n 〈b′ || σout〉 ⇒. Let us consider the rule of Definition 9 that is used
in the first derivation step.

1. If rule (1) is used then

b = ins
rest

�→→ b1· · ·
bm

and a = 〈 rest
�→→ b1· · ·

bm
|| ins(σin)〉.

Let ba = rest
�→→ b1· · ·

bm
. By Definition 13,

[[b]]DP = [[ins]]
DP ; [[ba]]DP

and, as ins is not a call nor a blockcall, [[ins]]
DP = {ins}. Therefore,

[[b]]DP = {ins}; [[ba]]DP .

By inductive hypothesis,

σout ∈ {δ(ins(σin)) | δ ∈ [[ba]]DP, δ(ins(σin)) is defined}.
Then, there exists δ ∈ [[ba]]DP such that δ(ins(σin)) is defined and σout = δ(ins(σin)).
Then, σout = (ins; δ)(σin) with ins; δ ∈ {ins}; [[ba]]DP i.e., ins; δ ∈ [[b]]DP . Conse-
quently,

σout ∈ {δ(σin) | δ ∈ [[b]]DP, δ(σin) is defined}.
2. If rule (2) is used then

b = call . . . κ.m(�τ ) : t . . .

rest

�→→ b1· · ·
bm

and

a = 〈b1 || σ1〉 :: 〈 rest
�→→ b1· · ·

bm
|| 〈l || s || μ〉〉

where b1 is the starting block of method κ.m(�τ) : t , σin = 〈l || pars :: s || μ〉 and σ1 =
(makescope κ.m(�τ) : t)(σin). We consider the two possible forms of the derivation
from a to 〈b′ || σout〉.
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• Suppose that this derivation has the form:

〈b1 || σ1〉 :: 〈 rest
�→→ b1· · ·

bm
|| 〈l || s || μ〉〉

⇒∗ 〈 k || 〈l′ || vs || μ′〉〉 :: 〈 rest
�→→ b1· · ·

bm
|| 〈l || s || μ〉〉

⇒
(3)

〈 rest
�→→ b1· · ·

bm
|| 〈l || vs :: s || μ′〉〉

⇒∗ 〈b′ || σout〉
where 〈b1 || σ1〉 ⇒∗ 〈 k || 〈l′ || vs || μ′〉〉 in less than n steps. Notice that
〈 k || 〈l′ || vs || μ′〉〉 ⇒. So, by inductive hypothesis,

〈l′ || vs || μ′〉 ∈ {δ(σ1) | δ ∈ [[b1]]DP, δ(σ1) is defined}.
Then, there exists δ1 ∈ [[b1]]DP such that δ1(σ1) is defined and

〈l′ || vs || μ′〉 = δ1(σ1) = δ1((makescope κ.m(�τ) : t)(σin)).

Consequently, by Definition 11,

〈l || vs :: s || μ′〉 = (extend κ.m(�τ) : t)(δ1)(σin). (9)

Let ba = rest
�→→ b1· · ·

bm
. By Definition 13,

[[b]]DP = [[
call . . . κ.m(�τ) : t . . .

]]DP ; [[ba]]DP

⊇ (extend κ.m(�τ) : t)(DP (b1)); [[ba]]DP .

As 〈ba || 〈l || vs :: s || μ′〉〉 ⇒∗ 〈b′ || σout〉 in less than n steps, by inductive hypothesis

σout ∈
{
δ(〈l || vs :: s || μ′〉) δ ∈ [[ba]]DP,

δ(〈l || vs :: s || μ′〉) is defined

}
.

Hence, there exists δ2 ∈ [[ba]]DP such that δ2(〈l || vs :: s || μ′〉) is defined and σout =
δ2(〈l || vs :: s || μ′〉). So, by (9), we have

σout = δ2((extend κ.m(�τ) : t)(δ1)(σin))

= ((extend κ.m(�τ) : t)(δ1); δ2)(σin).

Notice that, by Definition 14, [[b1]]DP = TP (DP )(b1). As DP is the least fixpoint
of TP , we have TP (DP )(b1) = DP (b1). Hence, [[b1]]DP = DP (b1) which implies, as
δ1 ∈ [[b1]]DP , that δ1 ∈ DP (b1) i.e., that (extend κ.m(�τ) : t)(δ1) ∈ (extend κ.m(�τ) :
t)(DP (b1)). Therefore,

(extend κ.m(�τ) : t)(δ1); δ2 ∈ (extend κ.m(�τ) : t)(DP (b1)); [[ba]]DP

i.e., (extend κ.m(�τ) : t)(δ1); δ2 ∈ [[b]]DP . Consequently,

σout ∈ {δ(σin) | δ ∈ [[b]]DP, δ(σin) is defined}.
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• Suppose that the derivation from a to 〈b′ || σout〉 has the form:

〈b1 || σ1〉 :: 〈 rest
�→→ b1· · ·

bm
|| 〈l || s || μ〉〉

⇒∗ 〈 k || 〈l′ || e || μ′〉〉 :: 〈 rest
�→→ b1· · ·

bm
|| 〈l || s || μ〉〉

⇒
(4)

〈 rest
�→→ b1· · ·

bm
|| 〈l || e || μ′〉〉

⇒∗ 〈b′ || σout〉
where 〈b1 || σ1〉 ⇒∗ 〈 k || 〈l′ || e || μ′〉〉 in less than n steps. Notice that 〈 k ||
〈l′ || e || μ′〉〉 ⇒. So, by inductive hypothesis,

〈l′ || e || μ′〉 ∈ {δ(σ1) | δ ∈ [[b1]]DP, δ(σ1) is defined}.

Then, there exists δ1 ∈ [[b1]]DP such that δ1(σ1) is defined and

〈l′ || e || μ′〉 = δ1(σ1) = δ1((makescope κ.m(�τ) : t)(σin)).

Consequently, by Definition 11,

〈l || e || μ′〉 = (extend κ.m(�τ) : t)(δ1)(σin). (10)

Let ba = rest
�→→ b1· · ·

bm
. By Definition 13,

[[b]]DP = [[
call . . . κ.m(�τ) : t . . .

]]DP ; [[ba]]DP

⊇ (extend κ.m(�τ) : t)(DP (b1)); [[ba]]DP .

As 〈ba || 〈l || e || μ′〉〉 ⇒∗ 〈b′ || σout〉 in less than n steps, by inductive hypothesis

σout ∈
{
δ(〈l || e || μ′〉) δ ∈ [[ba]]DP,

δ(〈l || e || μ′〉) is defined

}
.

Hence, there exists δ2 ∈ [[ba]]DP such that δ2(〈l || e || μ′〉) is defined and σout =
δ2(〈l || e || μ′〉). So, by (10), we have

σout = δ2((extend κ.m(�τ) : t)(δ1)(σin))

= ((extend κ.m(�τ) : t)(δ1); δ2)(σin).

Notice that, by Definition 14, [[b1]]DP = TP (DP )(b1). As DP is the least fixpoint
of TP , we have TP (DP )(b1) = DP (b1). Hence, [[b1]]DP = DP (b1) which implies, as
δ1 ∈ [[b1]]DP , that δ1 ∈ DP (b1) i.e., that (extend κ.m(�τ) : t)(δ1) ∈ (extend κ.m(�τ) :
t)(DP (b1)). Therefore,

(extend κ.m(�τ) : t)(δ1); δ2 ∈ (extend κ.m(�τ) : t)(DP (b1)); [[ba]]DP

i.e., (extend κ.m(�τ) : t)(δ1); δ2 ∈ [[b]]DP . Consequently,

σout ∈ {δ(σin) | δ ∈ [[b]]DP, δ(σin) is defined}.
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3. Rule (3) cannot be used because it requires a starting activation stack whose length is
at least equal to 2. Here, the starting activation stack is 〈b || σin〉, whose length is equal
to 1.

4. Rule (4) cannot be used for the same reasons as above.
5. If rule (5) is used then

b = k→→ b1· · ·
bm

and a = 〈bi || σin〉

where i ∈ {1, . . . ,m}. Notice that, by Definition 13,

[[b]]DP = DP (b1) ∪ · · · ∪ DP (bm).

Moreover, for each j ∈ {1, . . . ,m}, �bj �DP = TP (DP )(bj ) by Definition 14. As DP

is the least fixpoint of TP , then we have TP (DP )(bj ) = DP (bj ). Therefore, �bj �DP =
DP (bj ). Consequently,

[[b]]DP = [[b1]]DP ∪ · · · ∪ [[bm]]DP .

As 〈bi || σin〉 ⇒n 〈b′ || σout〉, by inductive hypothesis

σout ∈ {δ(σin) | δ ∈ [[bi]]
DP, δ(σin) is defined}.

Hence, there exists δ ∈ [[bi]]DP such that δ(σin) is defined and σout = δ(σin). As
[[bi]]DP ⊆ [[b]]DP , we have δ ∈ [[b]]DP . So,

σout ∈ {δ(σin) | δ ∈ [[b]]DP, δ(σin) is defined}.

6. If rule (6) is used then

b = blockcall mp1 · · ·mpl
rest

mk

and

a = 〈P (mpi) || σin〉 :: 〈 rest
mk || σin〉

where i ∈ {1, . . . , l}. The derivation from a to 〈b′ || σout〉 has the form

〈P (mpi) || σin〉 :: 〈 rest
mk || σin〉

⇒∗ 〈 mpi || σ 〉 :: 〈 rest
mk || σin〉

⇒
(7)

〈 rest
mk || σ 〉

⇒∗ 〈b′ || σout〉

where 〈P (mpi) || σin〉 ⇒∗ 〈 mpi || σ 〉 in less than n steps. Notice that 〈 mpi || σ 〉 ⇒.
So, by inductive hypothesis,

σ ∈ {δ(σin) | δ ∈ [[
P (mpi)

]]DP
, δ(σin) is defined}.
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Then, there exists δi ∈ �P (mpi)�DP such that δi(σin) is defined and σ = δi(σin). Let

ba = rest
mk
. By Definition 13,

[[b]]DP = [[
blockcall mp1 · · ·mpl

]]DP ; [[ba]]DP

= (DP (P (mp1)) ∪ · · · ∪ DP (P (mpl))); [[ba]]DP .

Moreover, for each j ∈ {1, . . . , l},
[[
P (mpj )

]]DP = TP (DP )(P (mpj ))

by Definition 14. As DP is the least fixpoint of TP ,

TP (DP )(P (mpj )) = DP (P (mpj )).

Therefore, �P (mpj )�DP = DP (P (mpj )). Consequently,

[[b]]DP = (�P (mp1)�DP ∪ · · · ∪ �P (mpl)�DP ); �ba �DP .

As 〈ba || σ 〉 ⇒∗ 〈b′ || σout〉 in less than n steps, by inductive hypothesis

σout ∈ {δ(σ ) | δ ∈ �ba �DP, δ(σ ) is defined}.
Hence, there exists δ′ ∈ �ba �DP such that δ′(σ ) is defined and σout = δ′(σ ) i.e., σout =
δ′(δi(σin)) = (δi; δ′)(σin). As δi ∈ �P (mpi)�DP , we have δi ∈ �P (mp1)�DP ∪ · · · ∪
�P (mpl)�DP . Moreover, δ′ ∈ �ba �DP . Hence,

δi; δ′ ∈ (�P (mp1)�DP ∪ · · · ∪ �P (mpl)�DP ); �ba �DP

i.e., δi; δ′ ∈ �b�DP . Therefore,

σout ∈ {δ(σin) | δ ∈ �b�DP, δ(σin) is defined}.
7. Rule (7) cannot be used because it requires a starting activation stack whose length is

at least equal to 2. Here, the starting activation stack is 〈b || σin〉, whose length is equal
to 1. �

Proposition 6 Let b a block (not necessarily of P ) and σin an initial state for b. Then,

{σout | 〈b || σin〉 ⇒∗ 〈b′ || σout〉 ⇒} ⊇ {δ(σin) | δ ∈ [[b]]DP, δ(σin) is defined}.

Proof Notice that, by Definition 15, DP = ⊔
i≥0 T i

P . Hence, for any n ∈ N, we let Prop⊇(n)

denote the property:

for every δ ∈ [[b]]T
n
P such that δ(σin) is defined we have

δ(σin) ∈ {σout | 〈b || σin〉 ⇒∗ 〈b′ || σout〉 ⇒}.
We prove by induction on n that Prop⊇(n) holds for any n ∈ N. Without loss of generality,

suppose that b has the form
ins1
· · ·

insk

�

→→ b1· · ·
bm

with k ≥ 0 and m ≥ 0.
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– (Basis) We prove that Prop⊇(0) holds.
• If m = 0 or if there is an i ∈ {1, . . . , k} such that insi is a call or a blockcall,

then, as T 0
P maps every block to ∅, we have [[b]]T

0
P = ∅ by Definition 13. So, Prop⊇(0)

holds.
• If m = 0 and, for each i ∈ {1, . . . , k}, insi is not a call nor a blockcall then, by

Definition 13, we have

[[b]]T
0
P = {ins1}; · · · ; {insk} = {ins1; · · · ; insk}.

Moreover, by Definition 9,

〈 ins1
· · ·

insk

�

︸ ︷︷ ︸
b

|| σin〉 ⇒
(1)

〈 ins2
· · ·

insk

�

|| ins1(σin)〉

⇒
(1)

〈 ins3
· · ·

insk

�

|| ins2(ins1(σin))〉

...

⇒
(1)

〈 �|| insk(· · · ins1(σin) · · · )〉
⇒

with insk(· · · ins1(σin) · · · ) = (ins1; · · · ; insk)(σin). Hence, for every δ ∈ [[b]]T
0
P such

that δ(σin) is defined we have

δ(σin) ∈ {σout | 〈b || σin〉 ⇒∗ 〈b′ || σout〉 ⇒}
i.e., Prop⊇(0) holds.

– (Induction) Suppose that Prop⊇(n) holds. We prove that then Prop⊇(n + 1) also holds.

If [[b]]T
n+1
P = ∅ then Prop⊇(n + 1) holds. Suppose that [[b]]T

n+1
P = ∅. Let δ ∈ [[b]]T

n+1
P

such that δ(σin) is defined. By Definition 13, we have

[[b]]T
n+1
P = [[ins1]]T

n+1
P ; · · · ; [[insk]]T

n+1
P ; (T n+1

P (b1) ∪ · · · ∪ T n+1
P (bm)).

Notice that for all i ∈ {1, . . . ,m}, T n+1
P (bi) = TP (T n

P )(bi) with TP (T n
P )(bi) = [[bi]]T

n
P by

Definition 14. Hence,

[[b]]T
n+1
P = [[ins1]]T

n+1
P ; · · · ; [[insk]]T

n+1
P ; ([[b1]]T

n
p ∪ · · · ∪ [[bm]]T

n
p ).

Hence there exist δ1 ∈ [[ins1]]T
n+1
P , . . . , δk ∈ [[insk]]T

n+1
P , i ∈ {1, . . . ,m} and δ′ ∈ [[bi]]T

n
P

such that

δ = δ1; · · · ; δk; δ′.

If b is not a magic block, then b does not contain any blockcall and either b does
not contain any call or only the first instruction of b is a call. If b is a magic block,
derived from a non-magic block b′ accordingly to Definition 1, then we assumed that b′
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can only start with a call when it is not the first block of a method. Hence either b does
not contain any blockcall nor call (third case of Definition 1), or b starts with a
blockcall and then consists of instructions that are not a call nor a blockcall
(first and second case of Definition 1), or b starts with a blockcall then with a call
and then consists of instructions that are not a call nor a blockcall (first case of
Definition 1). Let us consider each of these cases.

1. Suppose that b does not contain any blockcall nor call. Then, by Definition 13,

δ = ins1; · · · ; insk; δ′.

Moreover, by Definition 9,

〈 ins1
· · ·

insk

�

→→ b1· · ·
bm

︸ ︷︷ ︸
b

|| σin〉 ⇒
(1)

〈 ins2
· · ·

insk

�

→→ b1· · ·
bm

|| ins1(σin)〉

⇒
(1)

〈 ins3
· · ·

insk

�

→→ b1· · ·
bm

|| ins2(ins1(σin))〉

...

⇒
(1)

〈 �→→ b1· · ·
bm

|| insk(· · · ins1(σin) · · · )〉

⇒
(5)

〈bi || insk(· · · ins1(σin) · · · )〉.

As δ(σin) is defined,

(ins1; · · · ; insk; δ′)(σin) = δ′(insk(· · · ins1(σin) · · · ))
is defined. Consequently, as δ′ ∈ [[bi]]T

n
P , by induction hypothesis we have

〈bi || insk(· · · ins1(σin) · · · )〉 ⇒∗ 〈b′ || δ′(insk(· · · ins1(σin) · · · ))〉
⇒

So, 〈b || σin〉 ⇒∗ 〈b′ || δ(σin)〉 ⇒ i.e.,

δ(σin) ∈ {σout | 〈b || σin〉 ⇒∗ 〈b′ || σout〉 ⇒}.
2. Suppose that b starts with a call and then consists of instructions that are not a call

nor a blockcall. Then, ins1 has the form call κ1.m(�τ) : t, . . . , κx.m(�τ) : t and,
by Definition 13,

[[ins1]]T
n+1
P =

⋃
1≤i≤x

(extend κi.m(�τ) : t)(T n+1
P (bκi .m(�τ):t ))

(where bκi .m(�τ):t is the block where method κi.m(�τ) : t starts) i.e.,

[[ins1]]T
n+1
P =

⋃
1≤i≤x

(extend κi.m(�τ) : t)(TP (T n
P )(bκi .m(�τ):t ))
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=
⋃

1≤i≤x

(extend κi.m(�τ) : t)([[bκi .m(�τ):t ]]T n
P ).

Moreover, by Definition 9, σin = 〈l || pars :: s || μ〉 and

〈 ins1
· · ·

insk

�

→→ b1· · ·
bm

︸ ︷︷ ︸
b

|| σin〉⇒
(2)

〈bκi .m(�τ):t || σ ′〉 :: 〈 ins2
· · ·

insk

�

→→ b1· · ·
bm

|| 〈l || s || μ〉〉
(11)

for some 1 ≤ i ≤ x, where σ ′ = (makescope κi.m(�τ) : t)(σin). As δ1 ∈ [[ins1]]T
n+1
P ,

there exists δ′
1 ∈ [[bκi .m(�τ):t ]]T n

P such that δ1 = (extend κi.m(�τ) : t)(δ′
1). As δ1(σin) is

defined (because δ(σin) is defined) by Definition 11 we have two possible situations:
• In the first situation,

δ1(σin) = 〈l || vs :: s || μ′〉
where 〈l′ || vs || μ′〉 = δ′

1((makescope κi.m(�τ) : t)(σin)) = δ′
1(σ

′). Hence, δ′
1(σ

′) is
defined and, as δ′

1 ∈ [[bκi .m(�τ):t]]]T n
P , by inductive hypothesis 〈bκi .m(�τ):t || σ ′〉 ⇒∗ 〈b′ ||

δ′
1(σ

′)〉 ⇒ i.e.,

〈bκi .m(�τ):t || σ ′〉 ⇒∗ 〈b′ || 〈l′ || vs || μ′〉〉 ⇒ .

Note that b′ is not a magic block (because no magic block is reachable from a non-
magic block of a method, like bκi .m(�τ):t ) and that, by Lemma 3, b′ has the form k′

.
Therefore, by (11) and Definition 9, we have

〈b || σin〉 ⇒
(2)

〈bκi .m(�τ):t || σ ′〉 :: 〈 ins2
· · ·

insk

�

→→ b1· · ·
bm

|| 〈l || s || μ〉〉

⇒∗ 〈 k′ || 〈l′ || vs || μ′〉〉 :: 〈 ins2
· · ·

insk

�

→→ b1· · ·
bm

|| 〈l || s || μ〉〉

⇒
(3)

〈 ins2
· · ·

insk

�

→→ b1· · ·
bm

|| 〈l || vs :: s || μ′〉〉

i.e., 〈b || σin〉 ⇒∗ 〈 ins2
· · ·

insk

�

→→ b1· · ·
bm

|| δ1(σin)〉. Then, proceeding as in case 1 above, we

prove that

δ(σin) ∈ {σout | 〈b || σin〉 ⇒∗ 〈b′ || σout〉 ⇒}.
• In the second situation,

δ1(σin) = 〈l || e || μ′〉
where 〈l′ || e || μ′〉 = δ′

1((makescope κi.m(�τ) : t)(σin)) = δ′
1(σ

′). Hence, δ′
1(σ

′) is de-

fined and, as δ′
1 ∈ [[bκi .m(�τ):t]]]T n

P , by inductive hypothesis 〈bκi .m(�τ ):t || σ ′〉 ⇒∗ 〈b′ ||
δ′

1(σ
′)〉 ⇒ i.e.,

〈bκi .m(�τ ):t || σ ′〉 ⇒∗ 〈b′ || 〈l′ || e || μ′〉〉 ⇒ .
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Note that b′ is not a magic block (because no magic block is reachable from a non-
magic block of a method, like bκi .m(�τ):t ) and that, by Lemma 3, b′ has the form k′

.
Therefore, by (11) and Definition 9, we have

〈b || σin〉 ⇒
(2)

〈bκi .m(�τ):t || σ ′〉 :: 〈 ins2
· · ·

insk

�

→→ b1· · ·
bm

|| 〈l || s || μ〉〉

⇒∗ 〈 k′ || 〈l′ || e || μ′〉〉 :: 〈 ins2
· · ·

insk

�

→→ b1· · ·
bm

|| 〈l || s || μ〉〉

⇒
(4)

〈 ins2
· · ·

insk

�

→→ b1· · ·
bm

|| 〈l || e || μ′〉〉

i.e., 〈b || σin〉 ⇒∗ 〈 ins2
· · ·

insk

�

→→ b1· · ·
bm

|| δ1(σin)〉. Then, proceeding as in case 1 above, we

prove that

δ(σin) ∈ {σout | 〈b || σin〉 ⇒∗ 〈b′ || σout〉 ⇒}.
3. Suppose that b starts with a blockcall and then consists of instructions that are not

a call nor a blockcall. Then, ins1 has the form blockcall mp1 · · ·mpl and,
by Definition 13,

[[ins1]]T
n+1
P = T n+1

P (P (mp1)) ∪ · · · ∪ T n+1
P (P (mpl))

= TP (T n
P )(P (mp1)) ∪ · · · ∪ TP (T n

P )(P (mpl))

= [[
P (mp1)

]]T n
P ∪ · · · ∪ [[

P (mpl)
]]T n

P .

As δ1 ∈ [[ins1]]T
n+1
P , there is an i ∈ {1, . . . , l} such that δ1 ∈ �P (mpi)�T n

P . By Defini-
tion 9, we have

〈 ins1
· · ·

insk

�

→→ b1· · ·
bm

︸ ︷︷ ︸
b

|| σin〉⇒
(6)

〈P (mpi) || σin〉 :: 〈 ins2
· · ·

insk

�

→→ b1· · ·
bm

|| σin〉.
(12)

As δ1(σin) is defined (because δ(σin) is defined) and δ1 ∈ �P (mpi)�T n
P , by inductive

hypothesis we have

〈P (mpi) || σin〉 ⇒∗ 〈b′ || δ1(σin)〉 ⇒ .

By the rules of Definition 9, b′ is a magic block labelled with mpi and, by Lemma 3,
b′ has the form mpi. Therefore, by (12) and Definition 9, we have

〈b || σin〉 ⇒
(6)

〈P (mpi) || σin〉 :: 〈 ins2
· · ·

insk

�

→→ b1· · ·
bm

|| σin〉
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⇒∗ 〈 mpi || δ1(σin)〉 :: 〈 ins2
· · ·

insk

�

→→ b1· · ·
bm

|| σin〉

⇒
(7)

〈 ins2
· · ·

insk

�

→→ b1· · ·
bm

|| δ1(σin)〉.

Then, proceeding as in case 1 above, we prove that

δ(σin) ∈ {σout | 〈b || σin〉 ⇒∗ 〈b′ || σout〉 ⇒}.
4. Suppose that b starts with a blockcall then with a call and then consists of

instructions that are not a call nor a blockcall. This case is a combination of
the three above. In order to conclude, one has first to reason as in case 3, then as in
case 2 and finally as in case 1. �

The conclusion of this section is that we can apply the magic-set transformation to a pro-
gram, compute the denotational semantics of the transformed program and get information
at internal program points by looking at the denotations of the magic blocks.

8 Abstraction of the denotational semantics

This paper provides a semantical basis for the analysis of program properties at internal pro-
gram points through denotational semantics. The abstraction of this denotational semantics
is completely identical to well-known abstractions of denotational semantics, such as that
described in [17]. Nevertheless, in this section we show an example of abstract denotational
semantics, that should help understanding our denotational analyses. It is meant to track the
program variables that hold null. We do not provide formal proofs of correctness here, in
terms of abstraction and concretisation maps, that are outside the scope of this paper. More-
over, we do not discuss how exceptions can be taken into account in this abstraction and
how fields can receive a non-trivial approximation. All this material, including proofs, can
be found in [41] and [39].

The first step for defining an abstract semantics through abstract interpretation is the
definition of the abstract domain. Since the concrete denotational semantics of Sect. 6 works
over denotations, the abstract domain abstracts denotations. Since such denotations are maps
from input to output states and we want to track the nullness of reference variables, also the
abstract domain will naturally distinguish between nullness of variables in the input and in
the normal (non-exceptional) output. Thus we write v̌ to express the fact that variable v

holds null in the input and we write v̂ to express the fact that variable v holds null in
the normal output. We discuss Java bytecode and hence by variable we mean both a local
variable li and a stack element si , where i is the index of the local variable or the height of
the stack element from the bottom s0. The abstract domain N for nullness analysis [39, 41]
is made of Boolean formulas over v̌ and v̂, for every variable v which is in scope at a given
program point.

Consider for instance the denotations of every single bytecode, given in Sect. 4. The
denotation const c pushes a constant c on top of the stack; all local variables l0, . . . , lk and
all stack elements sh :: · · · :: s0 of the input state keep their value unchanged. Note that k and
h are fixed and statically known for each instance of a bytecode in a program, as the Java
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Virtual Machine specification requires. As a consequence, the following Boolean formula is
true w.r.t. nullness:

(ľ0 ⇐⇒ l̂0) ∧ · · · ∧ (ľk ⇐⇒ l̂k) ∧ (š0 ⇐⇒ ŝ0) ∧ · · · ∧ (šh ⇐⇒ ŝh). (13)

This formula says that each local variable or stack element in the input state holds null
if and only if the same local variable or stack element holds null in the normal output
state. The formula (13) is known as frame condition. From now on, we will write U (as
unchanged) for (13) and assume that U predicates over the variables of the input which are
never modified by the bytecode nor disappear after its execution. By using this notation, we
can provide an approximation of the const c denotation:

constN c =
{

U ∧ ŝh+1 if c = null

U ∧ ¬ŝh+1 if c = null.

In words, the original variables do not change their nullness, and a new variable sh+1 is
pushed on top of the output stack, holding null if and only if c = null.

We can continue this way and define a Boolean formula for each denotation of a single
bytecode. For instance, the dup t denotation duplicates the topmost value sh of the input
stack. No local variable changes and no original stack variable changes nor disappear. Hence
we define

dupN t = U ∧ (šh ⇐⇒ ŝh+1).

This formula means that no local variable and no stack element changes and the new top
of the stack sh+1 holds null in the output if and only if the old top of the stack sh holds
null in the input. This is true since dup t copies the old top of the stack over itself, thus
duplicating it.

Consider the denotation load i t. It pushes the value of the ith local variable on top of
the output stack. No input local variable nor stack element changes or disappears. Hence we
define

loadN i t = U ∧ (ľi ⇐⇒ ŝh+1).

The conditional bytecode if _ne t asserts that the value on top of the input stack was non-
null, since otherwise the concrete bytecode would be undefined (Sect. 4) and there would
not be any normal output:

if _neN t = U ∧ ¬šh.

Moreover, the top of the input stack is lost, which means that variable sh is not considered
in the formula U above.

The denotation new κ pushes on top of the stack a reference to a newly created object.
That reference is by definition non-null. Hence we define

newN κ = U ∧ ¬ŝh+1.

Note the importance of considering only normal output states in the abstraction: if the new
bytecode threw an exception, there would not be any sh+1 element in the exceptional output
state. See [39, 41] for an abstraction that considers exceptional output states also.

The denotation getfield κ.f :t replaces the top of the input stack sh, that must be null or
a reference to an object o, with the value of the field of o named f , having type t and defined
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in class κ . Since we are using an abstract domain that only tracks nullness of variables, we do
not know anything about the value of field f (fields are not variables in the frame of the Java
Virtual Machine, they are instance variables inside each given object). The only conservative
assumption is to leave the nullness of the new top of the stack undefined (see [41] and [39]
for a better solution):

getfield κ.f :tN = U ∧ ¬šh.

In the formula above, U does not consider the top of the input stack, since it is modified
by the bytecode. Nothing is said about the top of the output stack. However, the formula
says that the top of the input stack is definitely non-null in order for an output state to
exist. This is because our formulas express properties of input/output pairs assuming that
the output is a normal state, so that an output state is required to exist and hence we only
consider pairs where the top of the input stack is non-null.

The denotational semantics of Sect. 6 uses a ∪ operation over sets of denotations and an
extend operation for plugging the denotations of a callee at the calling place(s). In order to
define an abstract semantics, we need their abstract counterparts. For ∪, it is always safe to
use ∨ i.e., logical disjunction. Assume now that the formula φ abstracts the denotations of a
callee κ.m(�τ) : t and let p be the number of stack elements required to hold the parameters
of that method, including the implicit this parameter. Then a safe abstraction, over N, of
extend κ.m(�τ) : t is

U ∧ ∃{l̂0,...,l̂r }(φ[ľp−1 �→ šh, . . . , ľ0 �→ šh−p+1, ŝ0 �→ ŝh−p+1]).
That is, the input local variables of the callee are matched to the highest input stack elements
of the caller and the return value of the callee, left as the only element on the stack of the
output, is mapped to the top of the output stack of the caller. The output local variables
of the callee are removed since they disappear at the end of the execution of the callee.
The ∃ operation removes them and is implemented as Schröder elimination [3]. A similar
renaming allows one to define a correct abstraction for makescope also.

The last operation used in Sect. 6 is the sequential composition of denotations ;. In the
abstract semantics, the sequential composition of two formulas φ1 and φ2 is defined by
renaming the output variables of φ1 and the input variables of φ2 into the same new set of
fresh variables; the renamed formulas are then conjuncted (through ∧) and the new fresh
variables are existentially quantified through Schröder elimination (hence removed from the
resulting Boolean formula). See [41] and [39] for details.

We have now abstractions for each single bytecode and for the semantical operators used
in Sect. 6. Hence the construction of the abstract semantics proceeds by Definitions 12, 13
and 14, except that we use abstractions now instead of concrete bytecodes and of concrete
operators. The abstract semantics is computed as a fixpoint, by following Definition 15. For
better efficiency, that fixpoint is computed by following, backwards, the strongly-connected
components of blocks. No widening is used for this computation, but other abstract domains
will also require the definition of a widening operator [15].

Note that this semantics is only defined in terms of a single abstract domain of Boolean
formulas. All the required operations over Boolean formulas can be efficiently implemented
in terms of binary decision diagrams [10].

9 Experiments

We have implemented our magic-sets transformation inside the generic analyser JULIA for
Java bytecode [47] and used it with some abstract domains. JULIA is a bottom-up analyser
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that follows the strongly-connected components of blocks backwards and computes local
fixpoints for each component. For better efficiency, it caches the analysis of each byte-
code so that, if it is needed twice, it is computed only once. This happens frequently with
our magic-sets transformation, that introduces code duplication. For instance, block m16 in
Fig. 6 shares three bytecodes which block 16. This technique has been inspired by a sim-
ilar optimisation of the analysis of magic logic programs, defined in [12]. Since it caches
the functional behaviour of the code, it is different from memoisation, that only caches its
behaviour for each given input state. The development of an abstract domain for JULIA

requires only to provide the abstraction of each single bytecode, abstract sequential compo-
sition, abstract union and abstract extend and makescope (as those that we have defined in
Sect. 8 for the case of nullness analysis). The definition of a widening operator [15] is also
mandatory if the abstract domain does not satisfy the ascending chain condition (this is the
case of size analysis, for instance).

The abstract domain that we consider in these experiments are the following:

1. The first domain [38] over-approximates the set of pairs of program variables, which for
the Java bytecode means local variables or stack elements, that share i.e., reach the same
memory location; it is used for automatic program parallelisation and to support other
analyses;

2. The second [35] over-approximates the set of cyclical program variables, those that reach
a loop of memory locations; it needs a preliminary pair-sharing analysis;

3. The third, which comes in two versions of different precision [39, 41], over-approximates
the set of program variables that can actually hold null at run-time. The other variables
are, hence, definitely non-null;

4. The fourth under-approximates the set of classes that are definitely initialised at a given
program point. As a consequence, subsequent initialisation tests over those classes are
useless and static reference to those classes will not call their static initialiser [25]. This
analysis is important to simplify the control-flow of the program before other analyses
are applied;

5. The fifth is a kind of size analysis, called path-length, that provides a linear approxima-
tion of the size of the variables at a given program point. It is defined in [42, 43] and is
inspired by the domain in [18]. Compared to that work, our domain also approximates
the values of variables of reference type with the length of the longest path of pointers
that can be followed from them. It also provides approximations for a few fields, deemed
relevant for the analysis. It is used for proving termination of programs.

The first three domains are implemented with Boolean formulas to abstract sets of deno-
tations by relating properties of their input to properties of their output, as shown in Sect. 8.
For instance, ˇ(l1, s1) ⇒ ˆ(l1, l2) abstracts those denotations δ such that for every state σ ,
where only local variable 1 and stack element 1 might share (the base of the stack is s0), we
have that in δ(σ ) only local variables 1 and 2 might share (for simplicity, we do not report
variables sharing with themselves [38]). We have implemented Boolean formulas through
binary decision diagrams [10]. The fourth domain is implemented through bitsets that spec-
ify which classes are definitely initialised during the execution of a piece of code. The fifth
domain is implemented with linear numerical constraints, represented through polyhedra of
the native C++ Parma Polyhedra Library [4]. Since polyhedra have expensive operations,
we keep them in a simpler form, as zones [30] represented in Java, whenever this is possible
without any loss of precision. This hybrid approach (polyhedra and zones, together) yields
a static analysis that is as precise as a purely polyhedral one but still relatively fast. We have
also another implementation of path-length, where only zones are used, that is much faster
and only slightly less precise.
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Our experiments have been performed on a quad-core Intel Xeon machine running at
2.66 GHz, with 4 gigabytes of RAM, Linux 2.6.27 and Sun jdk 1.6.

Let us consider pair-sharing. JULIA computes a formula containing the conjunct ˆ(l1, s0)

as abstract denotation for the magic block corresponding to the internal program point just
after the l.clone() call in method main of Fig. 1. This means that (l1, s0) is true just
after that call, that is, local variable 1, that holds the list l of Fig. 1, might share with stack
element 0 (the base of the stack), that holds the return value of clone. JULIA computes a
formula where s0 only occurs in pair with itself as abstract denotation for the magic block
corresponding to the internal program point just after the l.deepClone() call. Hence it
proves that no local variable can share there with the return value of that call, held in the stack
before being written into l2. Let us consider cyclicity analysis. JULIA computes false as ab-
stract denotation for the same magic blocks as above i.e., it proves that no local variable and
stack element might be cyclical after the calls l.clone() and l.deepClone(), which
is an optimal approximation of the actual behaviour of the program. Let us consider nullness
analysis now. JULIA computes a formula containing the conjunct ¬ŝ2 as abstract denotation
for the blocks that precede, immediately, the calls to head.copy() in Fig. 1. This means
that the top value of the stack just before those calls (i.e., their receiver) is never null. A
recent evolution of the domain in [41], defined in [39], computes a formula containing also
the conjunct ¬ŝ3 as abstract denotation for the block that precedes, immediately, the recur-
sive call to tail.clone() in the same figure. This means that the receiver of that call is
never null. In conclusion, JULIA proves points 1, 2 and 3 of Sect. 1.

Figure 1 shows a simple program. More complex benchmarks such as those in Fig. 8
challenge the scalability, the efficiency and the precision of the analyses. The first 4 bench-
marks, which are the smallest, have been also analysed with the pair-sharing analyser in [29]
so we can build a comparison. The others are progressively larger to check the scalability of
the analyses. Figure 8 reports their size (number of methods), their preprocessing time with
JULIA (extraction and parsing of the .class files, building a high-level representation of
the bytecode and the magic-sets) and the percentage of the latter time due to the magic-sets
transformation, which is never more than 6.63%. Only java.lang. and java.util.
library classes are included in the analysis: calls to the missing classes use a worst-case as-
sumption. We have computed the average number of dependencies between magic-blocks,
that is, how many blocks are called or blockcalled by a given block, on the average.
This information is important since the analysis of a block depends on that of its dependen-
cies (Definition 13), so that a high level of dependencies might make the cost of the static
analyses explode. The result is an average of just 2.2 dependencies per block.

Figure 9 reports the results of pair-sharing and cyclicity analyses with JULIA. Precision,
for sharing analysis, is the percentage of pairs of distinct local variables or stack elements
that are proved not to share, definitely, before a putfield, an arraystore or a call.
Only putfield’s, arraystore’s and call’s are considered, since it is there where
sharing analysis helps other analyses (see for instance [35] for its help to cyclicity analysis).
Precision, for cyclicity analysis, is the percentage of local variables or stack elements that are
proved to be non-cyclical, definitely, before a getfield bytecode. This information is only
computed at getfield’s that access a field or reference type, since cyclicity information
is typically used there, for instance to prove termination of iterations over dynamic data-
structures [42, 43].

We are not aware of any other cyclicity analysis for Java bytecode. An operational pair-
sharing analyser was instead applied in [29] to the smallest 4 benchmarks in Fig. 8, without
including the library classes, but we could not use their analyser. It takes time P + T + A:
P is the preprocessing time, that they do not report. Since they use the generic analyser
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methods preproc. magic-sets dependencies

Qsort 193 0.15 7.14% 2.05
IntegerQsort 194 0.19 6.84% 2.06

Passau 192 0.19 5.05% 2.04
ZipVector 198 0.22 4.54% 2.07

JLex 502 1.39 5.96% 2.22
JavaCup 1029 4.62 6.44% 2.28
Jess 3432 12.19 6.63% 2.47
jEdit 4710 20.39 4.67% 2.32
Julia 6671 21.93 4.40% 2.36

Fig. 8 Size and preprocessing times (in seconds) for our benchmarks. Only java.lang.* and
java.util.* library classes are included. Dependencies is the average number of blocks that each block
calls or blockcalls

sharing analysis cyclicity analysis
time precision time precision

Qsort 0.24 70.24% 0.08 10.71%
IntegerQsort 0.23 73.87% 0.17 17.18%

Passau 0.19 42.13% 0.08 100.00%
ZipVector 0.32 54.67% 0.09 7.69%

JLex 1.006 30.34% 1.23 33.46%
JavaCup 5.78 53.70% 1.23 33.46%
Jess 72.99 38.60% 4.11 30.42%
jEdit 108.83 40.49% 7.99 20.22%
Julia 104.45 23.86% 7.08 14.31%

Fig. 9 Time (in seconds) and precision of our sharing and cyclicity analyses. Only java.lang.* and
java.util.* library classes are included

Fig. 10 Time (in seconds) of our
pair-sharing analysis and of that
in [29]

JULIA [29]

Qsort 0.33 ≥1.02
IntegerQsort 0.40 ≥0.82

Passau 0.33 ≥1.00
ZipVector 0.54 ≥1.73

SOOT, we could compute P with SOOT version 2.3.0; T is the time to transform the output
of SOOT into the format required in [29]. We cannot estimate T without the analyser; A is
the preliminary running time reported in [29], normalised w.r.t. the relative speeds of our
machine and theirs. Figure 10 compares the running time of JULIA, including preprocessing
and without analysing the libraries, with P + A, since T is unknown. JULIA is faster, even
without knowing T . Exceptions, subroutines, static initialisers and native methods are not
tested by such small benchmarks, so it is not clear if the analyser in [29] is ready for real
analyses. Precision is expressed as a level of multivariance, that we cannot translate into
our more natural notion. Another analysis for (definite) sharing is implemented in [34] for a
subset of Java. Times and precision are not reported. The code is not publicly available.

The CIBAI tool [26] is able to derive class invariants from Java source code rather than
from bytecode. It currently includes an abstract domain tracking abstract locations, that
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The nullness analysis in [20]
program time fs get’s put’s calls
JLex 3.52 44 71.69% 64.18% 48.32%
CaffeineMark 3.80 1 98.55% 100% 63.08%
JavaCup 5.52 31 47.44% 96.04% 86.17%
JavaCC 8.07 58 92.55% 95.80% 71.58%
Kitten - - - - -
Jess - - - - -
Julia - - - - -

Our nullness analysis with the domain in [41]
program time fs get’s put’s calls
JLex 2.22 50 71.07% 71.76% 54.01%
CaffeineMark 2.35 3 100% 100% 100%
JavaCup 4.43 45 47.78% 96.04% 93.92%
JavaCC 19.79 161 92.14% 96.16% 76.78%
Kitten 6.71 85 55.24% 98.52% 90.13%
Jess 24.70 97 97.60% 99.58% 76.38%
Julia 311.13 894 88.25% 97.94% 87.04%

Our nullness analysis with the domain in [39]
program time fs get’s put’s calls
JLex 4.89 50 90.09% 88.47% 58.82%
CaffeineMark 3.33 3 100% 100% 100%
JavaCup 10.25 45 48.52% 98.30% 94.17%
JavaCC 31.09 162 94.51% 98.26% 77.68%
Kitten 18.46 87 55.53% 99.41% 91.64%
Jess 102.19 99 97.73% 100.00% 79.11%
Julia - - - - -

Fig. 11 Number M of methods, time (in seconds), number fs of instance fields of reference type proved
non-null and amount of getfields, putfields and calls proved safe. Only java.lang.* and
java.util.* libraries are included. Dereferences and fields in the library code are not counted

should provide some sharing information, although this is not detailed in [26]. No precision
about sharing analysis is reported by the tool. It has been applied to programs of a few
hundreds methods only. The tool is not freely available on the net so we could not build a
comparison.

We have compared our nullness analysis, using the abstract domain in [41], with the
implementation NIT of [20].1 The results are in Fig. 11. Times are global (preprocessing plus
analysis). Our analysis, coded in Java, performs similarly to NIT, that is natively compiled
OCaml code. The latter did not manage to analyse Kitten, Jess and Julia and signalled
some error. NIT is definitely faster on one example, JavaCC, but the results of its analysis
are unusual, since it reports a total number of fields (105) that is actually half of those defined
in the program analysed. Our analysis always finds more non-null fields than NIT. Another
interesting comparison is the amount of getfields, putfields and instance calls that
are proved safe. Figure 11 shows that JULIA is, on the average, more precise than NIT, with

1We thank Laurent Hubert for his help to understand the results of NIT.
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the only exception of JLex and JavaCC again, w.r.t. getfield’s. Figure 11 also shows
more precise nullness analyses performed with JULIA and the abstract domain in [39], that
is able to spot locally non-null fields. The results are more precise, but the analysis more
expensive. This version of the analysis did not manage to analyse Julia since it exhausted
the available memory.

Figure 12 shows the results of our experiments with the abstract domains for class ini-
tialisation and for path-length. Only the java.lang.* libraries are included. This is par-
ticularly critical for the path-length, that is based on polyhedra and has, hence, a very high
computational cost. Nevertheless, we manage to analyse up to 1300 methods in a couple
of minutes. For class initialition, precision is given as the number of class initialisation
tests that are proved useless by the analysis. We do not count initialisation tests against the
same class where the test occurs, or against one of its superclasses, since they are always
useless [25], nor against java.lang.String, that is always initialised when a Java pro-
gram starts. For path-length, precision is given as the termination ratio i.e., the amount of
loops proved to terminate over the total number of loops in the program. For information on
how termination is proved from path-length approximations, see [42, 43]. Note that the time
to prove the termination after the path-length analysis is completed (that is relatively high)
is not reported in this figure, since it is not part of the path-length analysis. Some data are
missing in Fig. 12: when the time for the path-length analysis with polyhedra is missing, this
means that the analysis runs out of memory; when the precision is missing, it means that the
termination prover (a separate component, that is not part of the path-length analysis) runs
out of memory.

These last two examples show that we can deal with a case of analysis that cannot be
done with static single assignment transformations (class initialisation) and another that is
usually considered very expensive (polyhedral approximations), thus validating the strength
of our framework of analysis. Finally, the last two columns in Fig. 12 reports results about
the path-length analysis performed with zones [30] only instead of polyhedra and zones to-
gether. Zones are more efficient than polyhedra but relatively less precise. For Java bytecode,
it might be the case that a complex Java instruction gets compiled into many bytecodes, so
that one of them does not have a precise approximation through zones although the origi-
nal instruction has one. This has been already observed in [28]. Consequently, Fig. 12 shows
that this implementation of path-length through zones is sometimes slightly less precise than
that using polyhedra, at least for termination analysis. The last columns of Fig. 12 can be
compared with the results reported in [7] about the numerical analysis performed by the
CLOUSOT analyser with pentagons over a similar hardware. The average time for the analy-
sis of a method was 21 milliseconds in [7] (normalised w.r.t. the different hardware) while
JULIA requires 23 milliseconds per method (with zones). Since the benchmarks and the lan-
guage are different, this cannot be considered as a general rule. Namely, it must be observed
that this comparison is not completely fair since CLOUSOT works over .NET code while
JULIA works over Java bytecode, so we cannot analyse the same benchmarks with those
two tools. Moreover, CLOUSOT is natively-compiled C# code while JULIA is slower Java;
pentagons are less precise and probably more efficient than zones; the analysis in CLOUSOT

approximates numerical variables only and is not always correct since it uses a possibly
incorrect heap abstraction, while our path-length analysis approximates also variables of
reference type, is always correct (as proved in [43]) and it also approximates a few fields
that might be important for proving the termination of the program. The goals of those two
analyses are also different (checking array bounds for CLOUSOT, proving termination for
JULIA) so a comparison w.r.t. precision is impossible. Nevertheless, our experiments show
that our analyser scales similarly to a state-of-art analyser for .NET code.
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class init. analysis path-length analysis
polyhedra and zones zones only

program M time precision time precision time precision

JLex 376 0.27 71.35% 11.37 49.38% 4.33 49.38%
JavaCup 534 0.99 71.40% 17.21 42.20% 5.24 42.20%
Kitten 1049 1.34 45.27% 24.62 61.40% 5.35 58.77%
JavaCC 1300 1.84 69.42% 103.40 - 26.65 -
Jess 2286 4.08 20.91% - - 81.31 -
jEdit 3282 4.42 36.85% - - 93.41 -
Julia 5409 8.58 46.97% - - 107.32 -

Fig. 12 Number M of methods, time (in seconds) and precision of our class initialisation and path-length
analyses, performed with polyhedra and with zones. Only java.lang.* library classes are included

The analyses discussed in this section are part of the JULIA analyser, that can be used
through the web interface at the address http://julia.scienze.univr.it. Sharing, cyclicity, path-
length with polyhedra and class initialisation analyses are run by a termination analysis with
polyhedra of a program. Path-length analysis with zones is run by a termination analysis
with zones only of a program. Nullness analysis is run by a simple nullness analysis of a
program. The more precise nullness analysis in [39] is run by a medium nullness analysis.
Times reported by that web interface do not include network delays but might be affected
by the load of the remote machine.

10 Conclusion

Our magic-sets transformation is completely independent from the abstract domains, that
can be developed without even knowing its existence. Then all abstract domains defined so
far for the analysis of Java bytecode can in principle be used in our framework. The do-
main developer must only specify the internal program points where he wants to observe the
results of the analysis, depending on the specific goal for which he develops the abstract do-
main. Our experiments show that denotational analyses of Java bytecode, with a preliminary
magic-sets transformation, are feasible, fast and compare well with other analyses.

Acknowledgements The authors are grateful to the anonymous reviewers for detailed and helpful com-
ments on preliminary versions of this article, and to Andy King for his editorship.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers, Principles Techniques and Tools. Addison-Wesley, Read-
ing (1986)

2. Albert, E., Arenas, P., Codish, C., Genaim, S., Puebla, G., Zanardini, D.: Termination analysis of Java
bytecode. In: Barthe, G., de Boer, F.S. (eds.) Proc. of Formal Methods for Open Object-Based Distributed
Systems, 10th IFIP WG 6.1 International Conference, FMOODS’08, Oslo, Norway, June 2008. Lecture
Notes in Computer Science, vol. 5051, pp. 2–18. Springer, Berlin (2008)

3. Armstrong, T., Marriott, K., Schachte, P., Søndergaard, H.: Two classes of Boolean functions for depen-
dency analysis. Sci. Comput. Program. 31(1), 3–45 (1998)

4. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma polyhedra library: Toward a complete set of numerical
abstractions for the analysis and verification of hardware and software systems. Sci. Comput. Program.
72(1–2), 3–21 (2008)

http://julia.scienze.univr.it


Higher-Order Symb Comput

5. Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.: Magic sets and other strange ways to implement logic
programs. In: Proc. of the 5th ACM Symposium on Principles of Database Systems, pp. 1–15 (1986)

6. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Boogie, K.R.M. Leino: A modular reusable verifier
for object-oriented programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.P. (eds.) Proc.
of the 4th International Symposium on Formal Methods for Components and Objects (FMCO’05), Ams-
terdam, The Netherlands, November 2005. Lecture Notes in Computer Science, vol. 4111, pp. 364–387.
Springer, Berlin (2005)

7. Barnett, M., Fahndrich, M., Logozzo, F.: Foxtrot and Clousot: Language agnostic dynamic and static
contract checking for .NET. Technical Report MSR-TR-2008-105, Microsoft Research (August 2008)

8. Beeri, C., Ramakrishnan, R.: On the power of magic. J. Log. Program. 10(3 & 4), 255–300 (1991)
9. Bodei, C., Degano, P., Nielson, F., Nielson, H.R.: Static analysis for secrecy and non-interference in

networks of processes. In: Proc. of PaCT’01, Lecture Notes in Computer Science, vol. 2127, pp. 27–41.
Springer, Berlin (2001)

10. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. 35(8),
677–691 (1986)

11. Clark, D., Hankin, C., Hunt, S.: Information flow for ALGOL-like languages. Comput. Lang. 28(1),
3–28 (2002)

12. Codish, M.: Efficient goal directed bottom-up evaluation of logic programs. J. Log. Program. 38(3),
355–370 (1999)

13. Codish, M., Dams, D., Yardeni, E.: Bottom-up abstract interpretation of logic programs. J. Theor. Com-
put. Sci. 124, 93–125 (1994)

14. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In: Schwartzbach, M.I.,
Ball, T. (eds.) Proc. of the ACM SIGPLAN 2006 Conference on Programming Language Design and
Implementation (PLDI’06), Ottawa, Ontario, Canada, June 2006, pp. 415–426. ACM, New York (2006)

15. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In: Proc. of the 4th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’77), pp. 238–252 (1977)

16. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Proc. of the 6th ACM
Symposium on Principles of Programming Languages (POPL’79), pp. 269–282 (1979)

17. Cousot, P., Cousot, R.: Abstract interpretation and applications to logic programs. J. Log. Program. 13(2
& 3), 103–179 (1992)

18. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In:
Proc. Fifth ACM Symp. Principles of Programming Languages, pp. 84–96 (1978)

19. Danvy, O., Filinski, A.: Representing control, a study of the CPS transformation. Math. Struct. Comput.
Sci. 2(4), 361–391 (1992)

20. Hubert, L., Jensen, T., Pichardie, D.: Semantic foundations and inference of non-null annotations. In:
Barthe, G., de Boer, F.S. (eds.) Proc. of the 10th International Conference on Formal Methods for Open
Object-based Distributed Systems (FMOODS’08), Oslo, Norway, June 2008. Lecture Notes in Computer
Science, pp. 142–149. Springer, Berlin (2008)

21. Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, virtual machine, and com-
piler. ACM Trans. Program. Lang. Syst. (TOPLAS) 28(4), 619–695 (2006)

22. Laud, P.: Semantics and program analysis of computationally secure information flow. In: Proc. of the
10th European Symposium On Programming (ESOP’01). Lecture Notes in Computer Science, vol. 2028,
pp. 77–91. Springer, Berlin (2001)

23. Leino, K.R.M., Müller, P.: Object invariants in dynamic contexts. In: Odersky, M. (ed.) Proc. of the
18th European Conference on Object-Oriented Programming (ECOOP’04), Oslo, Norway, June 2004.
Lecture Notes in Computer Science, vol. 3086, pp. 491–516. Springer, Berlin (2004)

24. Leino, K.R.M., Wallenburg, A.: Class-local object invariants. In: Proc. of the 1st India Software Engi-
neering Conference (ISEC’08), Hyderabad, India, February 2008, pp. 57–66. ACM, New York (2008)

25. Lindholm, T., Yellin, F.: The JavaTM Virtual Machine Specification, 2nd edn. Addison-Wesley, Reading
(1999)

26. Logozzo, F.: Cibai: An abstract interpretation-based static analyzer for modular analysis and verification
of Java classes. In: Cook, B., Podelski, A. (eds.) 8th International Conference on Verification, Model
Checking and Abstract Interpretation (VMCAI’07), Nice, France, January 2007. Lecture Notes in Com-
puter Science, vol. 4349, pp. 293–298. Springer, Berlin (2007)

27. Logozzo, F.: Class invariants as abstract interpretation of trace semantics. Comput. Lang. Syst. Struct.
35(2), 100–142 (2009)

28. Logozzo, F., Fähndrich, M.: On the relative completeness of bytecode analysis versus source code
analysis. In: Hendren, L.J. (ed.) Proc. of the 17th International Conference on Compiler Construc-
tion, (CC’08), Budapest, Hungary, 2008. Lecture Notes in Computer Science, vol. 4959, pp. 197–212.
Springer, Berlin (2008)



Higher-Order Symb Comput

29. Méndez, M., Navas, J., Hermenegildo, M.V.: An efficient, parametric fixpoint algorithm for incremen-
tal analysis of Java bytecode. In: Proc. of the Second Workshop on Bytecode Semantics, Verification,
Analysis and Transformation, Braga, Portugal, March 2007. Electronic Notes on Theoretical Computer
Science, vol. 190(1), pp. 51–66

30. Miné, A.: A new numerical abstract domain based on difference-bound matrices. In: Proc. of the 2nd
Symposium on Programs as Data Objects (PADO II), Aarhus, Danemark, May 2001. Lecture Notes in
Computer Science, vol. 2053, pp. 155–172. Springer, Berlin (2001)

31. Müller, P.: Reasoning about object structures using ownership. In: Meyer, B., Woodcock, J. (eds.) Proc.
of the Workshop on Verified Software: Theories, Tools, Experiments (VSTTE’07). Lecture Notes in
Computer Science, vol. 4171. Springer, Berlin (2007)

32. Palsberg, J., Schwartzbach, M.I.: Object-oriented type inference. In: Proc. of OOPSLA’91, ACM SIG-
PLAN Notices, vol. 26(11), pp. 146–161. ACM Press, New York (1991)

33. Payet, É., Spoto, F.: Magic-sets transformation for the analysis of Java bytecode. In: Nielson, H.R., Filé,
G. (eds.) Proceedings of the 14th International Static Analysis Symposium (SAS’07), Kongens Lyngby,
Denmark, August 2007. Lecture Notes in Computer Science, vol. 4634, pp. 452–467. Springer, Berlin
(2007)

34. Pollet, I., Le Charlier, B., Cortesi, A.: Distinctness and sharing domains for static analysis of Java pro-
grams. In: 15th European Conference on Object-Oriented Programming (ECOOP’01), Budapest, Hun-
gary, June 2001. Lecture Notes in Computer Science, vol. 2072, pp. 77–98. Springer, Berlin (2001)

35. Rossignoli, S., Spoto, F.: Detecting non-cyclicity by abstract compilation into boolean functions. In:
Emerson, E.A., Namjoshi, K.S. (eds.) Proc. of Verification, Model Checking and Abstract Interpreta-
tion, Charleston, SC, USA, January 2006. Lecture Notes in Computer Science, vol. 3855, pp. 95–110.
Springer, Berlin (2006)

36. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel. Areas Commun.
21(1), 5–19 (2003)

37. Schmidt, D.A.: Trace-based abstract interpretation of operational semantics. J. Lisp Symb. Comput.
10(3), 237–271 (1998)

38. Secci, S., Spoto, F.: Pair-sharing analysis of object-oriented programs. In: Hankin, C. (ed.) Proc. of the
12th Static Analysis Symposium (SAS’05), London, UK, September 2005. Lecture Notes in Computer
Science, vol. 3672, pp. 320–335. Springer, Berlin (2005)

39. Spoto, F.: Precise null-pointer analysis. J. Softw. Syst. Model. (to appear)
40. Spoto, F.: Watchpoint semantics: a tool for compositional and focussed static analyses. In: Cousot, P.

(ed.) Proceedings of the 8th International Static Analysis Symposium (SAS’01), Paris, July 2001. Lec-
ture Notes in Computer Science, vol. 2126, pp. 127–145. Springer, Berlin (2001)

41. Spoto, F.: Nullness analysis in Boolean form. In: Cerone, A., Gruner, S. (eds.) Proc. of the 6th IEEE
International Conference on Software Engineering and Formal Methods (SEFM’08), Cape Town, South
Africa, November 2008, pp. 21–30. IEEE, New York (2008)

42. Spoto, F., Hill, P.M., Payet, É.: Path-length analysis for object-oriented programs. In: Proc. of Emerg-
ing Applications of Abstract Interpretation, Vienna, Austria March 2006. profs.sci.univr.it/~spoto/
papers.html

43. Spoto, F., Mesnard, F., Payet, É.: A termination analyzer for Java bytecode based on path-length. ACM
Trans. Program. Lang. Syst. 32(3) (2010)

44. Sussman, G.J., Steele, G.L.: Scheme: An interpreter for extended lambda calculus. In: AI Memo, vol.
349. MIT Artificial Intelligence Laboratory (December 1975)

45. Sussman, G.J., Steele, G.L.: Scheme: An interpreter for extended lambda calculus. High.-Order Symb.
Comput. 11(4), 405–439 (1998)

46. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math. 5, 285–309 (1955)
47. The JULIA Static Analyser. http://julia.scienze.univr.it
48. Volpano, D., Smith, G., Irvine, C.: A sound type system for secure flow analysis. J. Comput. Secur.

4(2,3), 167–187 (1996)
49. Winskel, G.: The Formal Semantics of Programming Languages. MIT Press, Cambridge (1993)

http://profs.sci.univr.it/~spoto/papers.html
http://profs.sci.univr.it/~spoto/papers.html
http://julia.scienze.univr.it

	Magic-sets for localised analysis of Java bytecode
	Abstract
	Introduction
	Denotational static analysis
	Our contributions
	Related work

	Our magic-sets transformation for Java bytecode
	Java bytecode as blocks of code
	The magic-sets transformation

	A formalisation of our magic-sets transformation
	Operational semantics of the Java bytecode
	Correctness of the magic-sets transformation
	Denotational semantics of Java bytecode
	Handling of subroutines

	Equivalence of operational and denotational semantics
	Abstraction of the denotational semantics
	Experiments
	Conclusion
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


